qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

arm_gic.c (68320B)


      1 /*
      2  * ARM Generic/Distributed Interrupt Controller
      3  *
      4  * Copyright (c) 2006-2007 CodeSourcery.
      5  * Written by Paul Brook
      6  *
      7  * This code is licensed under the GPL.
      8  */
      9 
     10 /* This file contains implementation code for the RealView EB interrupt
     11  * controller, MPCore distributed interrupt controller and ARMv7-M
     12  * Nested Vectored Interrupt Controller.
     13  * It is compiled in two ways:
     14  *  (1) as a standalone file to produce a sysbus device which is a GIC
     15  *  that can be used on the realview board and as one of the builtin
     16  *  private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
     17  *  (2) by being directly #included into armv7m_nvic.c to produce the
     18  *  armv7m_nvic device.
     19  */
     20 
     21 #include "qemu/osdep.h"
     22 #include "hw/irq.h"
     23 #include "hw/sysbus.h"
     24 #include "gic_internal.h"
     25 #include "qapi/error.h"
     26 #include "hw/core/cpu.h"
     27 #include "qemu/log.h"
     28 #include "qemu/module.h"
     29 #include "trace.h"
     30 #include "sysemu/kvm.h"
     31 #include "sysemu/qtest.h"
     32 
     33 /* #define DEBUG_GIC */
     34 
     35 #ifdef DEBUG_GIC
     36 #define DEBUG_GIC_GATE 1
     37 #else
     38 #define DEBUG_GIC_GATE 0
     39 #endif
     40 
     41 #define DPRINTF(fmt, ...) do {                                          \
     42         if (DEBUG_GIC_GATE) {                                           \
     43             fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__);      \
     44         }                                                               \
     45     } while (0)
     46 
     47 static const uint8_t gic_id_11mpcore[] = {
     48     0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
     49 };
     50 
     51 static const uint8_t gic_id_gicv1[] = {
     52     0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
     53 };
     54 
     55 static const uint8_t gic_id_gicv2[] = {
     56     0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
     57 };
     58 
     59 static inline int gic_get_current_cpu(GICState *s)
     60 {
     61     if (!qtest_enabled() && s->num_cpu > 1) {
     62         return current_cpu->cpu_index;
     63     }
     64     return 0;
     65 }
     66 
     67 static inline int gic_get_current_vcpu(GICState *s)
     68 {
     69     return gic_get_current_cpu(s) + GIC_NCPU;
     70 }
     71 
     72 /* Return true if this GIC config has interrupt groups, which is
     73  * true if we're a GICv2, or a GICv1 with the security extensions.
     74  */
     75 static inline bool gic_has_groups(GICState *s)
     76 {
     77     return s->revision == 2 || s->security_extn;
     78 }
     79 
     80 static inline bool gic_cpu_ns_access(GICState *s, int cpu, MemTxAttrs attrs)
     81 {
     82     return !gic_is_vcpu(cpu) && s->security_extn && !attrs.secure;
     83 }
     84 
     85 static inline void gic_get_best_irq(GICState *s, int cpu,
     86                                     int *best_irq, int *best_prio, int *group)
     87 {
     88     int irq;
     89     int cm = 1 << cpu;
     90 
     91     *best_irq = 1023;
     92     *best_prio = 0x100;
     93 
     94     for (irq = 0; irq < s->num_irq; irq++) {
     95         if (GIC_DIST_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
     96             (!GIC_DIST_TEST_ACTIVE(irq, cm)) &&
     97             (irq < GIC_INTERNAL || GIC_DIST_TARGET(irq) & cm)) {
     98             if (GIC_DIST_GET_PRIORITY(irq, cpu) < *best_prio) {
     99                 *best_prio = GIC_DIST_GET_PRIORITY(irq, cpu);
    100                 *best_irq = irq;
    101             }
    102         }
    103     }
    104 
    105     if (*best_irq < 1023) {
    106         *group = GIC_DIST_TEST_GROUP(*best_irq, cm);
    107     }
    108 }
    109 
    110 static inline void gic_get_best_virq(GICState *s, int cpu,
    111                                      int *best_irq, int *best_prio, int *group)
    112 {
    113     int lr_idx = 0;
    114 
    115     *best_irq = 1023;
    116     *best_prio = 0x100;
    117 
    118     for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
    119         uint32_t lr_entry = s->h_lr[lr_idx][cpu];
    120         int state = GICH_LR_STATE(lr_entry);
    121 
    122         if (state == GICH_LR_STATE_PENDING) {
    123             int prio = GICH_LR_PRIORITY(lr_entry);
    124 
    125             if (prio < *best_prio) {
    126                 *best_prio = prio;
    127                 *best_irq = GICH_LR_VIRT_ID(lr_entry);
    128                 *group = GICH_LR_GROUP(lr_entry);
    129             }
    130         }
    131     }
    132 }
    133 
    134 /* Return true if IRQ signaling is enabled for the given cpu and at least one
    135  * of the given groups:
    136  *   - in the non-virt case, the distributor must be enabled for one of the
    137  *   given groups
    138  *   - in the virt case, the virtual interface must be enabled.
    139  *   - in all cases, the (v)CPU interface must be enabled for one of the given
    140  *   groups.
    141  */
    142 static inline bool gic_irq_signaling_enabled(GICState *s, int cpu, bool virt,
    143                                     int group_mask)
    144 {
    145     int cpu_iface = virt ? (cpu + GIC_NCPU) : cpu;
    146 
    147     if (!virt && !(s->ctlr & group_mask)) {
    148         return false;
    149     }
    150 
    151     if (virt && !(s->h_hcr[cpu] & R_GICH_HCR_EN_MASK)) {
    152         return false;
    153     }
    154 
    155     if (!(s->cpu_ctlr[cpu_iface] & group_mask)) {
    156         return false;
    157     }
    158 
    159     return true;
    160 }
    161 
    162 /* TODO: Many places that call this routine could be optimized.  */
    163 /* Update interrupt status after enabled or pending bits have been changed.  */
    164 static inline void gic_update_internal(GICState *s, bool virt)
    165 {
    166     int best_irq;
    167     int best_prio;
    168     int irq_level, fiq_level;
    169     int cpu, cpu_iface;
    170     int group = 0;
    171     qemu_irq *irq_lines = virt ? s->parent_virq : s->parent_irq;
    172     qemu_irq *fiq_lines = virt ? s->parent_vfiq : s->parent_fiq;
    173 
    174     for (cpu = 0; cpu < s->num_cpu; cpu++) {
    175         cpu_iface = virt ? (cpu + GIC_NCPU) : cpu;
    176 
    177         s->current_pending[cpu_iface] = 1023;
    178         if (!gic_irq_signaling_enabled(s, cpu, virt,
    179                                        GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1)) {
    180             qemu_irq_lower(irq_lines[cpu]);
    181             qemu_irq_lower(fiq_lines[cpu]);
    182             continue;
    183         }
    184 
    185         if (virt) {
    186             gic_get_best_virq(s, cpu, &best_irq, &best_prio, &group);
    187         } else {
    188             gic_get_best_irq(s, cpu, &best_irq, &best_prio, &group);
    189         }
    190 
    191         if (best_irq != 1023) {
    192             trace_gic_update_bestirq(virt ? "vcpu" : "cpu", cpu,
    193                                      best_irq, best_prio,
    194                                      s->priority_mask[cpu_iface],
    195                                      s->running_priority[cpu_iface]);
    196         }
    197 
    198         irq_level = fiq_level = 0;
    199 
    200         if (best_prio < s->priority_mask[cpu_iface]) {
    201             s->current_pending[cpu_iface] = best_irq;
    202             if (best_prio < s->running_priority[cpu_iface]) {
    203                 if (gic_irq_signaling_enabled(s, cpu, virt, 1 << group)) {
    204                     if (group == 0 &&
    205                         s->cpu_ctlr[cpu_iface] & GICC_CTLR_FIQ_EN) {
    206                         DPRINTF("Raised pending FIQ %d (cpu %d)\n",
    207                                 best_irq, cpu_iface);
    208                         fiq_level = 1;
    209                         trace_gic_update_set_irq(cpu, virt ? "vfiq" : "fiq",
    210                                                  fiq_level);
    211                     } else {
    212                         DPRINTF("Raised pending IRQ %d (cpu %d)\n",
    213                                 best_irq, cpu_iface);
    214                         irq_level = 1;
    215                         trace_gic_update_set_irq(cpu, virt ? "virq" : "irq",
    216                                                  irq_level);
    217                     }
    218                 }
    219             }
    220         }
    221 
    222         qemu_set_irq(irq_lines[cpu], irq_level);
    223         qemu_set_irq(fiq_lines[cpu], fiq_level);
    224     }
    225 }
    226 
    227 static void gic_update(GICState *s)
    228 {
    229     gic_update_internal(s, false);
    230 }
    231 
    232 /* Return true if this LR is empty, i.e. the corresponding bit
    233  * in ELRSR is set.
    234  */
    235 static inline bool gic_lr_entry_is_free(uint32_t entry)
    236 {
    237     return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
    238         && (GICH_LR_HW(entry) || !GICH_LR_EOI(entry));
    239 }
    240 
    241 /* Return true if this LR should trigger an EOI maintenance interrupt, i.e. the
    242  * corrsponding bit in EISR is set.
    243  */
    244 static inline bool gic_lr_entry_is_eoi(uint32_t entry)
    245 {
    246     return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
    247         && !GICH_LR_HW(entry) && GICH_LR_EOI(entry);
    248 }
    249 
    250 static inline void gic_extract_lr_info(GICState *s, int cpu,
    251                                 int *num_eoi, int *num_valid, int *num_pending)
    252 {
    253     int lr_idx;
    254 
    255     *num_eoi = 0;
    256     *num_valid = 0;
    257     *num_pending = 0;
    258 
    259     for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
    260         uint32_t *entry = &s->h_lr[lr_idx][cpu];
    261 
    262         if (gic_lr_entry_is_eoi(*entry)) {
    263             (*num_eoi)++;
    264         }
    265 
    266         if (GICH_LR_STATE(*entry) != GICH_LR_STATE_INVALID) {
    267             (*num_valid)++;
    268         }
    269 
    270         if (GICH_LR_STATE(*entry) == GICH_LR_STATE_PENDING) {
    271             (*num_pending)++;
    272         }
    273     }
    274 }
    275 
    276 static void gic_compute_misr(GICState *s, int cpu)
    277 {
    278     uint32_t value = 0;
    279     int vcpu = cpu + GIC_NCPU;
    280 
    281     int num_eoi, num_valid, num_pending;
    282 
    283     gic_extract_lr_info(s, cpu, &num_eoi, &num_valid, &num_pending);
    284 
    285     /* EOI */
    286     if (num_eoi) {
    287         value |= R_GICH_MISR_EOI_MASK;
    288     }
    289 
    290     /* U: true if only 0 or 1 LR entry is valid */
    291     if ((s->h_hcr[cpu] & R_GICH_HCR_UIE_MASK) && (num_valid < 2)) {
    292         value |= R_GICH_MISR_U_MASK;
    293     }
    294 
    295     /* LRENP: EOICount is not 0 */
    296     if ((s->h_hcr[cpu] & R_GICH_HCR_LRENPIE_MASK) &&
    297         ((s->h_hcr[cpu] & R_GICH_HCR_EOICount_MASK) != 0)) {
    298         value |= R_GICH_MISR_LRENP_MASK;
    299     }
    300 
    301     /* NP: no pending interrupts */
    302     if ((s->h_hcr[cpu] & R_GICH_HCR_NPIE_MASK) && (num_pending == 0)) {
    303         value |= R_GICH_MISR_NP_MASK;
    304     }
    305 
    306     /* VGrp0E: group0 virq signaling enabled */
    307     if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0EIE_MASK) &&
    308         (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
    309         value |= R_GICH_MISR_VGrp0E_MASK;
    310     }
    311 
    312     /* VGrp0D: group0 virq signaling disabled */
    313     if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0DIE_MASK) &&
    314         !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
    315         value |= R_GICH_MISR_VGrp0D_MASK;
    316     }
    317 
    318     /* VGrp1E: group1 virq signaling enabled */
    319     if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1EIE_MASK) &&
    320         (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
    321         value |= R_GICH_MISR_VGrp1E_MASK;
    322     }
    323 
    324     /* VGrp1D: group1 virq signaling disabled */
    325     if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1DIE_MASK) &&
    326         !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
    327         value |= R_GICH_MISR_VGrp1D_MASK;
    328     }
    329 
    330     s->h_misr[cpu] = value;
    331 }
    332 
    333 static void gic_update_maintenance(GICState *s)
    334 {
    335     int cpu = 0;
    336     int maint_level;
    337 
    338     for (cpu = 0; cpu < s->num_cpu; cpu++) {
    339         gic_compute_misr(s, cpu);
    340         maint_level = (s->h_hcr[cpu] & R_GICH_HCR_EN_MASK) && s->h_misr[cpu];
    341 
    342         trace_gic_update_maintenance_irq(cpu, maint_level);
    343         qemu_set_irq(s->maintenance_irq[cpu], maint_level);
    344     }
    345 }
    346 
    347 static void gic_update_virt(GICState *s)
    348 {
    349     gic_update_internal(s, true);
    350     gic_update_maintenance(s);
    351 }
    352 
    353 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
    354                                  int cm, int target)
    355 {
    356     if (level) {
    357         GIC_DIST_SET_LEVEL(irq, cm);
    358         if (GIC_DIST_TEST_EDGE_TRIGGER(irq) || GIC_DIST_TEST_ENABLED(irq, cm)) {
    359             DPRINTF("Set %d pending mask %x\n", irq, target);
    360             GIC_DIST_SET_PENDING(irq, target);
    361         }
    362     } else {
    363         GIC_DIST_CLEAR_LEVEL(irq, cm);
    364     }
    365 }
    366 
    367 static void gic_set_irq_generic(GICState *s, int irq, int level,
    368                                 int cm, int target)
    369 {
    370     if (level) {
    371         GIC_DIST_SET_LEVEL(irq, cm);
    372         DPRINTF("Set %d pending mask %x\n", irq, target);
    373         if (GIC_DIST_TEST_EDGE_TRIGGER(irq)) {
    374             GIC_DIST_SET_PENDING(irq, target);
    375         }
    376     } else {
    377         GIC_DIST_CLEAR_LEVEL(irq, cm);
    378     }
    379 }
    380 
    381 /* Process a change in an external IRQ input.  */
    382 static void gic_set_irq(void *opaque, int irq, int level)
    383 {
    384     /* Meaning of the 'irq' parameter:
    385      *  [0..N-1] : external interrupts
    386      *  [N..N+31] : PPI (internal) interrupts for CPU 0
    387      *  [N+32..N+63] : PPI (internal interrupts for CPU 1
    388      *  ...
    389      */
    390     GICState *s = (GICState *)opaque;
    391     int cm, target;
    392     if (irq < (s->num_irq - GIC_INTERNAL)) {
    393         /* The first external input line is internal interrupt 32.  */
    394         cm = ALL_CPU_MASK;
    395         irq += GIC_INTERNAL;
    396         target = GIC_DIST_TARGET(irq);
    397     } else {
    398         int cpu;
    399         irq -= (s->num_irq - GIC_INTERNAL);
    400         cpu = irq / GIC_INTERNAL;
    401         irq %= GIC_INTERNAL;
    402         cm = 1 << cpu;
    403         target = cm;
    404     }
    405 
    406     assert(irq >= GIC_NR_SGIS);
    407 
    408     if (level == GIC_DIST_TEST_LEVEL(irq, cm)) {
    409         return;
    410     }
    411 
    412     if (s->revision == REV_11MPCORE) {
    413         gic_set_irq_11mpcore(s, irq, level, cm, target);
    414     } else {
    415         gic_set_irq_generic(s, irq, level, cm, target);
    416     }
    417     trace_gic_set_irq(irq, level, cm, target);
    418 
    419     gic_update(s);
    420 }
    421 
    422 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
    423                                             MemTxAttrs attrs)
    424 {
    425     uint16_t pending_irq = s->current_pending[cpu];
    426 
    427     if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
    428         int group = gic_test_group(s, pending_irq, cpu);
    429 
    430         /* On a GIC without the security extensions, reading this register
    431          * behaves in the same way as a secure access to a GIC with them.
    432          */
    433         bool secure = !gic_cpu_ns_access(s, cpu, attrs);
    434 
    435         if (group == 0 && !secure) {
    436             /* Group0 interrupts hidden from Non-secure access */
    437             return 1023;
    438         }
    439         if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
    440             /* Group1 interrupts only seen by Secure access if
    441              * AckCtl bit set.
    442              */
    443             return 1022;
    444         }
    445     }
    446     return pending_irq;
    447 }
    448 
    449 static int gic_get_group_priority(GICState *s, int cpu, int irq)
    450 {
    451     /* Return the group priority of the specified interrupt
    452      * (which is the top bits of its priority, with the number
    453      * of bits masked determined by the applicable binary point register).
    454      */
    455     int bpr;
    456     uint32_t mask;
    457 
    458     if (gic_has_groups(s) &&
    459         !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
    460         gic_test_group(s, irq, cpu)) {
    461         bpr = s->abpr[cpu] - 1;
    462         assert(bpr >= 0);
    463     } else {
    464         bpr = s->bpr[cpu];
    465     }
    466 
    467     /* a BPR of 0 means the group priority bits are [7:1];
    468      * a BPR of 1 means they are [7:2], and so on down to
    469      * a BPR of 7 meaning no group priority bits at all.
    470      */
    471     mask = ~0U << ((bpr & 7) + 1);
    472 
    473     return gic_get_priority(s, irq, cpu) & mask;
    474 }
    475 
    476 static void gic_activate_irq(GICState *s, int cpu, int irq)
    477 {
    478     /* Set the appropriate Active Priority Register bit for this IRQ,
    479      * and update the running priority.
    480      */
    481     int prio = gic_get_group_priority(s, cpu, irq);
    482     int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
    483     int preemption_level = prio >> (min_bpr + 1);
    484     int regno = preemption_level / 32;
    485     int bitno = preemption_level % 32;
    486     uint32_t *papr = NULL;
    487 
    488     if (gic_is_vcpu(cpu)) {
    489         assert(regno == 0);
    490         papr = &s->h_apr[gic_get_vcpu_real_id(cpu)];
    491     } else if (gic_has_groups(s) && gic_test_group(s, irq, cpu)) {
    492         papr = &s->nsapr[regno][cpu];
    493     } else {
    494         papr = &s->apr[regno][cpu];
    495     }
    496 
    497     *papr |= (1 << bitno);
    498 
    499     s->running_priority[cpu] = prio;
    500     gic_set_active(s, irq, cpu);
    501 }
    502 
    503 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
    504 {
    505     /* Recalculate the current running priority for this CPU based
    506      * on the set bits in the Active Priority Registers.
    507      */
    508     int i;
    509 
    510     if (gic_is_vcpu(cpu)) {
    511         uint32_t apr = s->h_apr[gic_get_vcpu_real_id(cpu)];
    512         if (apr) {
    513             return ctz32(apr) << (GIC_VIRT_MIN_BPR + 1);
    514         } else {
    515             return 0x100;
    516         }
    517     }
    518 
    519     for (i = 0; i < GIC_NR_APRS; i++) {
    520         uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
    521         if (!apr) {
    522             continue;
    523         }
    524         return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
    525     }
    526     return 0x100;
    527 }
    528 
    529 static void gic_drop_prio(GICState *s, int cpu, int group)
    530 {
    531     /* Drop the priority of the currently active interrupt in the
    532      * specified group.
    533      *
    534      * Note that we can guarantee (because of the requirement to nest
    535      * GICC_IAR reads [which activate an interrupt and raise priority]
    536      * with GICC_EOIR writes [which drop the priority for the interrupt])
    537      * that the interrupt we're being called for is the highest priority
    538      * active interrupt, meaning that it has the lowest set bit in the
    539      * APR registers.
    540      *
    541      * If the guest does not honour the ordering constraints then the
    542      * behaviour of the GIC is UNPREDICTABLE, which for us means that
    543      * the values of the APR registers might become incorrect and the
    544      * running priority will be wrong, so interrupts that should preempt
    545      * might not do so, and interrupts that should not preempt might do so.
    546      */
    547     if (gic_is_vcpu(cpu)) {
    548         int rcpu = gic_get_vcpu_real_id(cpu);
    549 
    550         if (s->h_apr[rcpu]) {
    551             /* Clear lowest set bit */
    552             s->h_apr[rcpu] &= s->h_apr[rcpu] - 1;
    553         }
    554     } else {
    555         int i;
    556 
    557         for (i = 0; i < GIC_NR_APRS; i++) {
    558             uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
    559             if (!*papr) {
    560                 continue;
    561             }
    562             /* Clear lowest set bit */
    563             *papr &= *papr - 1;
    564             break;
    565         }
    566     }
    567 
    568     s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
    569 }
    570 
    571 static inline uint32_t gic_clear_pending_sgi(GICState *s, int irq, int cpu)
    572 {
    573     int src;
    574     uint32_t ret;
    575 
    576     if (!gic_is_vcpu(cpu)) {
    577         /* Lookup the source CPU for the SGI and clear this in the
    578          * sgi_pending map.  Return the src and clear the overall pending
    579          * state on this CPU if the SGI is not pending from any CPUs.
    580          */
    581         assert(s->sgi_pending[irq][cpu] != 0);
    582         src = ctz32(s->sgi_pending[irq][cpu]);
    583         s->sgi_pending[irq][cpu] &= ~(1 << src);
    584         if (s->sgi_pending[irq][cpu] == 0) {
    585             gic_clear_pending(s, irq, cpu);
    586         }
    587         ret = irq | ((src & 0x7) << 10);
    588     } else {
    589         uint32_t *lr_entry = gic_get_lr_entry(s, irq, cpu);
    590         src = GICH_LR_CPUID(*lr_entry);
    591 
    592         gic_clear_pending(s, irq, cpu);
    593         ret = irq | (src << 10);
    594     }
    595 
    596     return ret;
    597 }
    598 
    599 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
    600 {
    601     int ret, irq;
    602 
    603     /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
    604      * for the case where this GIC supports grouping and the pending interrupt
    605      * is in the wrong group.
    606      */
    607     irq = gic_get_current_pending_irq(s, cpu, attrs);
    608     trace_gic_acknowledge_irq(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
    609                               gic_get_vcpu_real_id(cpu), irq);
    610 
    611     if (irq >= GIC_MAXIRQ) {
    612         DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
    613         return irq;
    614     }
    615 
    616     if (gic_get_priority(s, irq, cpu) >= s->running_priority[cpu]) {
    617         DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
    618         return 1023;
    619     }
    620 
    621     gic_activate_irq(s, cpu, irq);
    622 
    623     if (s->revision == REV_11MPCORE) {
    624         /* Clear pending flags for both level and edge triggered interrupts.
    625          * Level triggered IRQs will be reasserted once they become inactive.
    626          */
    627         gic_clear_pending(s, irq, cpu);
    628         ret = irq;
    629     } else {
    630         if (irq < GIC_NR_SGIS) {
    631             ret = gic_clear_pending_sgi(s, irq, cpu);
    632         } else {
    633             gic_clear_pending(s, irq, cpu);
    634             ret = irq;
    635         }
    636     }
    637 
    638     if (gic_is_vcpu(cpu)) {
    639         gic_update_virt(s);
    640     } else {
    641         gic_update(s);
    642     }
    643     DPRINTF("ACK %d\n", irq);
    644     return ret;
    645 }
    646 
    647 static uint32_t gic_fullprio_mask(GICState *s, int cpu)
    648 {
    649     /*
    650      * Return a mask word which clears the unimplemented priority
    651      * bits from a priority value for an interrupt. (Not to be
    652      * confused with the group priority, whose mask depends on BPR.)
    653      */
    654     int priBits;
    655 
    656     if (gic_is_vcpu(cpu)) {
    657         priBits = GIC_VIRT_MAX_GROUP_PRIO_BITS;
    658     } else {
    659         priBits = s->n_prio_bits;
    660     }
    661     return ~0U << (8 - priBits);
    662 }
    663 
    664 void gic_dist_set_priority(GICState *s, int cpu, int irq, uint8_t val,
    665                       MemTxAttrs attrs)
    666 {
    667     if (s->security_extn && !attrs.secure) {
    668         if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
    669             return; /* Ignore Non-secure access of Group0 IRQ */
    670         }
    671         val = 0x80 | (val >> 1); /* Non-secure view */
    672     }
    673 
    674     val &= gic_fullprio_mask(s, cpu);
    675 
    676     if (irq < GIC_INTERNAL) {
    677         s->priority1[irq][cpu] = val;
    678     } else {
    679         s->priority2[(irq) - GIC_INTERNAL] = val;
    680     }
    681 }
    682 
    683 static uint32_t gic_dist_get_priority(GICState *s, int cpu, int irq,
    684                                  MemTxAttrs attrs)
    685 {
    686     uint32_t prio = GIC_DIST_GET_PRIORITY(irq, cpu);
    687 
    688     if (s->security_extn && !attrs.secure) {
    689         if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
    690             return 0; /* Non-secure access cannot read priority of Group0 IRQ */
    691         }
    692         prio = (prio << 1) & 0xff; /* Non-secure view */
    693     }
    694     return prio & gic_fullprio_mask(s, cpu);
    695 }
    696 
    697 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
    698                                   MemTxAttrs attrs)
    699 {
    700     if (gic_cpu_ns_access(s, cpu, attrs)) {
    701         if (s->priority_mask[cpu] & 0x80) {
    702             /* Priority Mask in upper half */
    703             pmask = 0x80 | (pmask >> 1);
    704         } else {
    705             /* Non-secure write ignored if priority mask is in lower half */
    706             return;
    707         }
    708     }
    709     s->priority_mask[cpu] = pmask & gic_fullprio_mask(s, cpu);
    710 }
    711 
    712 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
    713 {
    714     uint32_t pmask = s->priority_mask[cpu];
    715 
    716     if (gic_cpu_ns_access(s, cpu, attrs)) {
    717         if (pmask & 0x80) {
    718             /* Priority Mask in upper half, return Non-secure view */
    719             pmask = (pmask << 1) & 0xff;
    720         } else {
    721             /* Priority Mask in lower half, RAZ */
    722             pmask = 0;
    723         }
    724     }
    725     return pmask;
    726 }
    727 
    728 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
    729 {
    730     uint32_t ret = s->cpu_ctlr[cpu];
    731 
    732     if (gic_cpu_ns_access(s, cpu, attrs)) {
    733         /* Construct the NS banked view of GICC_CTLR from the correct
    734          * bits of the S banked view. We don't need to move the bypass
    735          * control bits because we don't implement that (IMPDEF) part
    736          * of the GIC architecture.
    737          */
    738         ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
    739     }
    740     return ret;
    741 }
    742 
    743 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
    744                                 MemTxAttrs attrs)
    745 {
    746     uint32_t mask;
    747 
    748     if (gic_cpu_ns_access(s, cpu, attrs)) {
    749         /* The NS view can only write certain bits in the register;
    750          * the rest are unchanged
    751          */
    752         mask = GICC_CTLR_EN_GRP1;
    753         if (s->revision == 2) {
    754             mask |= GICC_CTLR_EOIMODE_NS;
    755         }
    756         s->cpu_ctlr[cpu] &= ~mask;
    757         s->cpu_ctlr[cpu] |= (value << 1) & mask;
    758     } else {
    759         if (s->revision == 2) {
    760             mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
    761         } else {
    762             mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
    763         }
    764         s->cpu_ctlr[cpu] = value & mask;
    765     }
    766     DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
    767             "Group1 Interrupts %sabled\n", cpu,
    768             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
    769             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
    770 }
    771 
    772 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
    773 {
    774     if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) {
    775         /* Idle priority */
    776         return 0xff;
    777     }
    778 
    779     if (gic_cpu_ns_access(s, cpu, attrs)) {
    780         if (s->running_priority[cpu] & 0x80) {
    781             /* Running priority in upper half of range: return the Non-secure
    782              * view of the priority.
    783              */
    784             return s->running_priority[cpu] << 1;
    785         } else {
    786             /* Running priority in lower half of range: RAZ */
    787             return 0;
    788         }
    789     } else {
    790         return s->running_priority[cpu];
    791     }
    792 }
    793 
    794 /* Return true if we should split priority drop and interrupt deactivation,
    795  * ie whether the relevant EOIMode bit is set.
    796  */
    797 static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
    798 {
    799     if (s->revision != 2) {
    800         /* Before GICv2 prio-drop and deactivate are not separable */
    801         return false;
    802     }
    803     if (gic_cpu_ns_access(s, cpu, attrs)) {
    804         return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
    805     }
    806     return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
    807 }
    808 
    809 static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
    810 {
    811     int group;
    812 
    813     if (irq >= GIC_MAXIRQ || (!gic_is_vcpu(cpu) && irq >= s->num_irq)) {
    814         /*
    815          * This handles two cases:
    816          * 1. If software writes the ID of a spurious interrupt [ie 1023]
    817          * to the GICC_DIR, the GIC ignores that write.
    818          * 2. If software writes the number of a non-existent interrupt
    819          * this must be a subcase of "value written is not an active interrupt"
    820          * and so this is UNPREDICTABLE. We choose to ignore it. For vCPUs,
    821          * all IRQs potentially exist, so this limit does not apply.
    822          */
    823         return;
    824     }
    825 
    826     if (!gic_eoi_split(s, cpu, attrs)) {
    827         /* This is UNPREDICTABLE; we choose to ignore it */
    828         qemu_log_mask(LOG_GUEST_ERROR,
    829                       "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
    830         return;
    831     }
    832 
    833     if (gic_is_vcpu(cpu) && !gic_virq_is_valid(s, irq, cpu)) {
    834         /* This vIRQ does not have an LR entry which is either active or
    835          * pending and active. Increment EOICount and ignore the write.
    836          */
    837         int rcpu = gic_get_vcpu_real_id(cpu);
    838         s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
    839 
    840         /* Update the virtual interface in case a maintenance interrupt should
    841          * be raised.
    842          */
    843         gic_update_virt(s);
    844         return;
    845     }
    846 
    847     group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
    848 
    849     if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
    850         DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
    851         return;
    852     }
    853 
    854     gic_clear_active(s, irq, cpu);
    855 }
    856 
    857 static void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
    858 {
    859     int cm = 1 << cpu;
    860     int group;
    861 
    862     DPRINTF("EOI %d\n", irq);
    863     if (gic_is_vcpu(cpu)) {
    864         /* The call to gic_prio_drop() will clear a bit in GICH_APR iff the
    865          * running prio is < 0x100.
    866          */
    867         bool prio_drop = s->running_priority[cpu] < 0x100;
    868 
    869         if (irq >= GIC_MAXIRQ) {
    870             /* Ignore spurious interrupt */
    871             return;
    872         }
    873 
    874         gic_drop_prio(s, cpu, 0);
    875 
    876         if (!gic_eoi_split(s, cpu, attrs)) {
    877             bool valid = gic_virq_is_valid(s, irq, cpu);
    878             if (prio_drop && !valid) {
    879                 /* We are in a situation where:
    880                  *   - V_CTRL.EOIMode is false (no EOI split),
    881                  *   - The call to gic_drop_prio() cleared a bit in GICH_APR,
    882                  *   - This vIRQ does not have an LR entry which is either
    883                  *     active or pending and active.
    884                  * In that case, we must increment EOICount.
    885                  */
    886                 int rcpu = gic_get_vcpu_real_id(cpu);
    887                 s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
    888             } else if (valid) {
    889                 gic_clear_active(s, irq, cpu);
    890             }
    891         }
    892 
    893         gic_update_virt(s);
    894         return;
    895     }
    896 
    897     if (irq >= s->num_irq) {
    898         /* This handles two cases:
    899          * 1. If software writes the ID of a spurious interrupt [ie 1023]
    900          * to the GICC_EOIR, the GIC ignores that write.
    901          * 2. If software writes the number of a non-existent interrupt
    902          * this must be a subcase of "value written does not match the last
    903          * valid interrupt value read from the Interrupt Acknowledge
    904          * register" and so this is UNPREDICTABLE. We choose to ignore it.
    905          */
    906         return;
    907     }
    908     if (s->running_priority[cpu] == 0x100) {
    909         return; /* No active IRQ.  */
    910     }
    911 
    912     if (s->revision == REV_11MPCORE) {
    913         /* Mark level triggered interrupts as pending if they are still
    914            raised.  */
    915         if (!GIC_DIST_TEST_EDGE_TRIGGER(irq) && GIC_DIST_TEST_ENABLED(irq, cm)
    916             && GIC_DIST_TEST_LEVEL(irq, cm)
    917             && (GIC_DIST_TARGET(irq) & cm) != 0) {
    918             DPRINTF("Set %d pending mask %x\n", irq, cm);
    919             GIC_DIST_SET_PENDING(irq, cm);
    920         }
    921     }
    922 
    923     group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
    924 
    925     if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
    926         DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
    927         return;
    928     }
    929 
    930     /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
    931      * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
    932      * i.e. go ahead and complete the irq anyway.
    933      */
    934 
    935     gic_drop_prio(s, cpu, group);
    936 
    937     /* In GICv2 the guest can choose to split priority-drop and deactivate */
    938     if (!gic_eoi_split(s, cpu, attrs)) {
    939         gic_clear_active(s, irq, cpu);
    940     }
    941     gic_update(s);
    942 }
    943 
    944 static uint8_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
    945 {
    946     GICState *s = (GICState *)opaque;
    947     uint32_t res;
    948     int irq;
    949     int i;
    950     int cpu;
    951     int cm;
    952     int mask;
    953 
    954     cpu = gic_get_current_cpu(s);
    955     cm = 1 << cpu;
    956     if (offset < 0x100) {
    957         if (offset == 0) {      /* GICD_CTLR */
    958             /* We rely here on the only non-zero bits being in byte 0 */
    959             if (s->security_extn && !attrs.secure) {
    960                 /* The NS bank of this register is just an alias of the
    961                  * EnableGrp1 bit in the S bank version.
    962                  */
    963                 return extract32(s->ctlr, 1, 1);
    964             } else {
    965                 return s->ctlr;
    966             }
    967         }
    968         if (offset == 4) {
    969             /* GICD_TYPER byte 0 */
    970             return ((s->num_irq / 32) - 1) | ((s->num_cpu - 1) << 5);
    971         }
    972         if (offset == 5) {
    973             /* GICD_TYPER byte 1 */
    974             return (s->security_extn << 2);
    975         }
    976         if (offset == 8) {
    977             /* GICD_IIDR byte 0 */
    978             return 0x3b; /* Arm JEP106 identity */
    979         }
    980         if (offset == 9) {
    981             /* GICD_IIDR byte 1 */
    982             return 0x04; /* Arm JEP106 identity */
    983         }
    984         if (offset < 0x0c) {
    985             /* All other bytes in this range are RAZ */
    986             return 0;
    987         }
    988         if (offset >= 0x80) {
    989             /* Interrupt Group Registers: these RAZ/WI if this is an NS
    990              * access to a GIC with the security extensions, or if the GIC
    991              * doesn't have groups at all.
    992              */
    993             res = 0;
    994             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
    995                 /* Every byte offset holds 8 group status bits */
    996                 irq = (offset - 0x080) * 8;
    997                 if (irq >= s->num_irq) {
    998                     goto bad_reg;
    999                 }
   1000                 for (i = 0; i < 8; i++) {
   1001                     if (GIC_DIST_TEST_GROUP(irq + i, cm)) {
   1002                         res |= (1 << i);
   1003                     }
   1004                 }
   1005             }
   1006             return res;
   1007         }
   1008         goto bad_reg;
   1009     } else if (offset < 0x200) {
   1010         /* Interrupt Set/Clear Enable.  */
   1011         if (offset < 0x180)
   1012             irq = (offset - 0x100) * 8;
   1013         else
   1014             irq = (offset - 0x180) * 8;
   1015         if (irq >= s->num_irq)
   1016             goto bad_reg;
   1017         res = 0;
   1018         for (i = 0; i < 8; i++) {
   1019             if (s->security_extn && !attrs.secure &&
   1020                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
   1021                 continue; /* Ignore Non-secure access of Group0 IRQ */
   1022             }
   1023 
   1024             if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
   1025                 res |= (1 << i);
   1026             }
   1027         }
   1028     } else if (offset < 0x300) {
   1029         /* Interrupt Set/Clear Pending.  */
   1030         if (offset < 0x280)
   1031             irq = (offset - 0x200) * 8;
   1032         else
   1033             irq = (offset - 0x280) * 8;
   1034         if (irq >= s->num_irq)
   1035             goto bad_reg;
   1036         res = 0;
   1037         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
   1038         for (i = 0; i < 8; i++) {
   1039             if (s->security_extn && !attrs.secure &&
   1040                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
   1041                 continue; /* Ignore Non-secure access of Group0 IRQ */
   1042             }
   1043 
   1044             if (gic_test_pending(s, irq + i, mask)) {
   1045                 res |= (1 << i);
   1046             }
   1047         }
   1048     } else if (offset < 0x400) {
   1049         /* Interrupt Set/Clear Active.  */
   1050         if (offset < 0x380) {
   1051             irq = (offset - 0x300) * 8;
   1052         } else if (s->revision == 2) {
   1053             irq = (offset - 0x380) * 8;
   1054         } else {
   1055             goto bad_reg;
   1056         }
   1057 
   1058         if (irq >= s->num_irq)
   1059             goto bad_reg;
   1060         res = 0;
   1061         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
   1062         for (i = 0; i < 8; i++) {
   1063             if (s->security_extn && !attrs.secure &&
   1064                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
   1065                 continue; /* Ignore Non-secure access of Group0 IRQ */
   1066             }
   1067 
   1068             if (GIC_DIST_TEST_ACTIVE(irq + i, mask)) {
   1069                 res |= (1 << i);
   1070             }
   1071         }
   1072     } else if (offset < 0x800) {
   1073         /* Interrupt Priority.  */
   1074         irq = (offset - 0x400);
   1075         if (irq >= s->num_irq)
   1076             goto bad_reg;
   1077         res = gic_dist_get_priority(s, cpu, irq, attrs);
   1078     } else if (offset < 0xc00) {
   1079         /* Interrupt CPU Target.  */
   1080         if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
   1081             /* For uniprocessor GICs these RAZ/WI */
   1082             res = 0;
   1083         } else {
   1084             irq = (offset - 0x800);
   1085             if (irq >= s->num_irq) {
   1086                 goto bad_reg;
   1087             }
   1088             if (irq < 29 && s->revision == REV_11MPCORE) {
   1089                 res = 0;
   1090             } else if (irq < GIC_INTERNAL) {
   1091                 res = cm;
   1092             } else {
   1093                 res = GIC_DIST_TARGET(irq);
   1094             }
   1095         }
   1096     } else if (offset < 0xf00) {
   1097         /* Interrupt Configuration.  */
   1098         irq = (offset - 0xc00) * 4;
   1099         if (irq >= s->num_irq)
   1100             goto bad_reg;
   1101         res = 0;
   1102         for (i = 0; i < 4; i++) {
   1103             if (s->security_extn && !attrs.secure &&
   1104                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
   1105                 continue; /* Ignore Non-secure access of Group0 IRQ */
   1106             }
   1107 
   1108             if (GIC_DIST_TEST_MODEL(irq + i)) {
   1109                 res |= (1 << (i * 2));
   1110             }
   1111             if (GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
   1112                 res |= (2 << (i * 2));
   1113             }
   1114         }
   1115     } else if (offset < 0xf10) {
   1116         goto bad_reg;
   1117     } else if (offset < 0xf30) {
   1118         if (s->revision == REV_11MPCORE) {
   1119             goto bad_reg;
   1120         }
   1121 
   1122         if (offset < 0xf20) {
   1123             /* GICD_CPENDSGIRn */
   1124             irq = (offset - 0xf10);
   1125         } else {
   1126             irq = (offset - 0xf20);
   1127             /* GICD_SPENDSGIRn */
   1128         }
   1129 
   1130         if (s->security_extn && !attrs.secure &&
   1131             !GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
   1132             res = 0; /* Ignore Non-secure access of Group0 IRQ */
   1133         } else {
   1134             res = s->sgi_pending[irq][cpu];
   1135         }
   1136     } else if (offset < 0xfd0) {
   1137         goto bad_reg;
   1138     } else if (offset < 0x1000) {
   1139         if (offset & 3) {
   1140             res = 0;
   1141         } else {
   1142             switch (s->revision) {
   1143             case REV_11MPCORE:
   1144                 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
   1145                 break;
   1146             case 1:
   1147                 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
   1148                 break;
   1149             case 2:
   1150                 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
   1151                 break;
   1152             default:
   1153                 res = 0;
   1154             }
   1155         }
   1156     } else {
   1157         g_assert_not_reached();
   1158     }
   1159     return res;
   1160 bad_reg:
   1161     qemu_log_mask(LOG_GUEST_ERROR,
   1162                   "gic_dist_readb: Bad offset %x\n", (int)offset);
   1163     return 0;
   1164 }
   1165 
   1166 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
   1167                                  unsigned size, MemTxAttrs attrs)
   1168 {
   1169     switch (size) {
   1170     case 1:
   1171         *data = gic_dist_readb(opaque, offset, attrs);
   1172         break;
   1173     case 2:
   1174         *data = gic_dist_readb(opaque, offset, attrs);
   1175         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
   1176         break;
   1177     case 4:
   1178         *data = gic_dist_readb(opaque, offset, attrs);
   1179         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
   1180         *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
   1181         *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
   1182         break;
   1183     default:
   1184         return MEMTX_ERROR;
   1185     }
   1186 
   1187     trace_gic_dist_read(offset, size, *data);
   1188     return MEMTX_OK;
   1189 }
   1190 
   1191 static void gic_dist_writeb(void *opaque, hwaddr offset,
   1192                             uint32_t value, MemTxAttrs attrs)
   1193 {
   1194     GICState *s = (GICState *)opaque;
   1195     int irq;
   1196     int i;
   1197     int cpu;
   1198 
   1199     cpu = gic_get_current_cpu(s);
   1200     if (offset < 0x100) {
   1201         if (offset == 0) {
   1202             if (s->security_extn && !attrs.secure) {
   1203                 /* NS version is just an alias of the S version's bit 1 */
   1204                 s->ctlr = deposit32(s->ctlr, 1, 1, value);
   1205             } else if (gic_has_groups(s)) {
   1206                 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
   1207             } else {
   1208                 s->ctlr = value & GICD_CTLR_EN_GRP0;
   1209             }
   1210             DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
   1211                     s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
   1212                     s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
   1213         } else if (offset < 4) {
   1214             /* ignored.  */
   1215         } else if (offset >= 0x80) {
   1216             /* Interrupt Group Registers: RAZ/WI for NS access to secure
   1217              * GIC, or for GICs without groups.
   1218              */
   1219             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
   1220                 /* Every byte offset holds 8 group status bits */
   1221                 irq = (offset - 0x80) * 8;
   1222                 if (irq >= s->num_irq) {
   1223                     goto bad_reg;
   1224                 }
   1225                 for (i = 0; i < 8; i++) {
   1226                     /* Group bits are banked for private interrupts */
   1227                     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
   1228                     if (value & (1 << i)) {
   1229                         /* Group1 (Non-secure) */
   1230                         GIC_DIST_SET_GROUP(irq + i, cm);
   1231                     } else {
   1232                         /* Group0 (Secure) */
   1233                         GIC_DIST_CLEAR_GROUP(irq + i, cm);
   1234                     }
   1235                 }
   1236             }
   1237         } else {
   1238             goto bad_reg;
   1239         }
   1240     } else if (offset < 0x180) {
   1241         /* Interrupt Set Enable.  */
   1242         irq = (offset - 0x100) * 8;
   1243         if (irq >= s->num_irq)
   1244             goto bad_reg;
   1245         if (irq < GIC_NR_SGIS) {
   1246             value = 0xff;
   1247         }
   1248 
   1249         for (i = 0; i < 8; i++) {
   1250             if (value & (1 << i)) {
   1251                 int mask =
   1252                     (irq < GIC_INTERNAL) ? (1 << cpu)
   1253                                          : GIC_DIST_TARGET(irq + i);
   1254                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
   1255 
   1256                 if (s->security_extn && !attrs.secure &&
   1257                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
   1258                     continue; /* Ignore Non-secure access of Group0 IRQ */
   1259                 }
   1260 
   1261                 if (!GIC_DIST_TEST_ENABLED(irq + i, cm)) {
   1262                     DPRINTF("Enabled IRQ %d\n", irq + i);
   1263                     trace_gic_enable_irq(irq + i);
   1264                 }
   1265                 GIC_DIST_SET_ENABLED(irq + i, cm);
   1266                 /* If a raised level triggered IRQ enabled then mark
   1267                    is as pending.  */
   1268                 if (GIC_DIST_TEST_LEVEL(irq + i, mask)
   1269                         && !GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
   1270                     DPRINTF("Set %d pending mask %x\n", irq + i, mask);
   1271                     GIC_DIST_SET_PENDING(irq + i, mask);
   1272                 }
   1273             }
   1274         }
   1275     } else if (offset < 0x200) {
   1276         /* Interrupt Clear Enable.  */
   1277         irq = (offset - 0x180) * 8;
   1278         if (irq >= s->num_irq)
   1279             goto bad_reg;
   1280         if (irq < GIC_NR_SGIS) {
   1281             value = 0;
   1282         }
   1283 
   1284         for (i = 0; i < 8; i++) {
   1285             if (value & (1 << i)) {
   1286                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
   1287 
   1288                 if (s->security_extn && !attrs.secure &&
   1289                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
   1290                     continue; /* Ignore Non-secure access of Group0 IRQ */
   1291                 }
   1292 
   1293                 if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
   1294                     DPRINTF("Disabled IRQ %d\n", irq + i);
   1295                     trace_gic_disable_irq(irq + i);
   1296                 }
   1297                 GIC_DIST_CLEAR_ENABLED(irq + i, cm);
   1298             }
   1299         }
   1300     } else if (offset < 0x280) {
   1301         /* Interrupt Set Pending.  */
   1302         irq = (offset - 0x200) * 8;
   1303         if (irq >= s->num_irq)
   1304             goto bad_reg;
   1305         if (irq < GIC_NR_SGIS) {
   1306             value = 0;
   1307         }
   1308 
   1309         for (i = 0; i < 8; i++) {
   1310             if (value & (1 << i)) {
   1311                 if (s->security_extn && !attrs.secure &&
   1312                     !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
   1313                     continue; /* Ignore Non-secure access of Group0 IRQ */
   1314                 }
   1315 
   1316                 GIC_DIST_SET_PENDING(irq + i, GIC_DIST_TARGET(irq + i));
   1317             }
   1318         }
   1319     } else if (offset < 0x300) {
   1320         /* Interrupt Clear Pending.  */
   1321         irq = (offset - 0x280) * 8;
   1322         if (irq >= s->num_irq)
   1323             goto bad_reg;
   1324         if (irq < GIC_NR_SGIS) {
   1325             value = 0;
   1326         }
   1327 
   1328         for (i = 0; i < 8; i++) {
   1329             if (s->security_extn && !attrs.secure &&
   1330                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
   1331                 continue; /* Ignore Non-secure access of Group0 IRQ */
   1332             }
   1333 
   1334             /* ??? This currently clears the pending bit for all CPUs, even
   1335                for per-CPU interrupts.  It's unclear whether this is the
   1336                corect behavior.  */
   1337             if (value & (1 << i)) {
   1338                 GIC_DIST_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
   1339             }
   1340         }
   1341     } else if (offset < 0x380) {
   1342         /* Interrupt Set Active.  */
   1343         if (s->revision != 2) {
   1344             goto bad_reg;
   1345         }
   1346 
   1347         irq = (offset - 0x300) * 8;
   1348         if (irq >= s->num_irq) {
   1349             goto bad_reg;
   1350         }
   1351 
   1352         /* This register is banked per-cpu for PPIs */
   1353         int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
   1354 
   1355         for (i = 0; i < 8; i++) {
   1356             if (s->security_extn && !attrs.secure &&
   1357                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
   1358                 continue; /* Ignore Non-secure access of Group0 IRQ */
   1359             }
   1360 
   1361             if (value & (1 << i)) {
   1362                 GIC_DIST_SET_ACTIVE(irq + i, cm);
   1363             }
   1364         }
   1365     } else if (offset < 0x400) {
   1366         /* Interrupt Clear Active.  */
   1367         if (s->revision != 2) {
   1368             goto bad_reg;
   1369         }
   1370 
   1371         irq = (offset - 0x380) * 8;
   1372         if (irq >= s->num_irq) {
   1373             goto bad_reg;
   1374         }
   1375 
   1376         /* This register is banked per-cpu for PPIs */
   1377         int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
   1378 
   1379         for (i = 0; i < 8; i++) {
   1380             if (s->security_extn && !attrs.secure &&
   1381                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
   1382                 continue; /* Ignore Non-secure access of Group0 IRQ */
   1383             }
   1384 
   1385             if (value & (1 << i)) {
   1386                 GIC_DIST_CLEAR_ACTIVE(irq + i, cm);
   1387             }
   1388         }
   1389     } else if (offset < 0x800) {
   1390         /* Interrupt Priority.  */
   1391         irq = (offset - 0x400);
   1392         if (irq >= s->num_irq)
   1393             goto bad_reg;
   1394         gic_dist_set_priority(s, cpu, irq, value, attrs);
   1395     } else if (offset < 0xc00) {
   1396         /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
   1397          * annoying exception of the 11MPCore's GIC.
   1398          */
   1399         if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
   1400             irq = (offset - 0x800);
   1401             if (irq >= s->num_irq) {
   1402                 goto bad_reg;
   1403             }
   1404             if (irq < 29 && s->revision == REV_11MPCORE) {
   1405                 value = 0;
   1406             } else if (irq < GIC_INTERNAL) {
   1407                 value = ALL_CPU_MASK;
   1408             }
   1409             s->irq_target[irq] = value & ALL_CPU_MASK;
   1410         }
   1411     } else if (offset < 0xf00) {
   1412         /* Interrupt Configuration.  */
   1413         irq = (offset - 0xc00) * 4;
   1414         if (irq >= s->num_irq)
   1415             goto bad_reg;
   1416         if (irq < GIC_NR_SGIS)
   1417             value |= 0xaa;
   1418         for (i = 0; i < 4; i++) {
   1419             if (s->security_extn && !attrs.secure &&
   1420                 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
   1421                 continue; /* Ignore Non-secure access of Group0 IRQ */
   1422             }
   1423 
   1424             if (s->revision == REV_11MPCORE) {
   1425                 if (value & (1 << (i * 2))) {
   1426                     GIC_DIST_SET_MODEL(irq + i);
   1427                 } else {
   1428                     GIC_DIST_CLEAR_MODEL(irq + i);
   1429                 }
   1430             }
   1431             if (value & (2 << (i * 2))) {
   1432                 GIC_DIST_SET_EDGE_TRIGGER(irq + i);
   1433             } else {
   1434                 GIC_DIST_CLEAR_EDGE_TRIGGER(irq + i);
   1435             }
   1436         }
   1437     } else if (offset < 0xf10) {
   1438         /* 0xf00 is only handled for 32-bit writes.  */
   1439         goto bad_reg;
   1440     } else if (offset < 0xf20) {
   1441         /* GICD_CPENDSGIRn */
   1442         if (s->revision == REV_11MPCORE) {
   1443             goto bad_reg;
   1444         }
   1445         irq = (offset - 0xf10);
   1446 
   1447         if (!s->security_extn || attrs.secure ||
   1448             GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
   1449             s->sgi_pending[irq][cpu] &= ~value;
   1450             if (s->sgi_pending[irq][cpu] == 0) {
   1451                 GIC_DIST_CLEAR_PENDING(irq, 1 << cpu);
   1452             }
   1453         }
   1454     } else if (offset < 0xf30) {
   1455         /* GICD_SPENDSGIRn */
   1456         if (s->revision == REV_11MPCORE) {
   1457             goto bad_reg;
   1458         }
   1459         irq = (offset - 0xf20);
   1460 
   1461         if (!s->security_extn || attrs.secure ||
   1462             GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
   1463             GIC_DIST_SET_PENDING(irq, 1 << cpu);
   1464             s->sgi_pending[irq][cpu] |= value;
   1465         }
   1466     } else {
   1467         goto bad_reg;
   1468     }
   1469     gic_update(s);
   1470     return;
   1471 bad_reg:
   1472     qemu_log_mask(LOG_GUEST_ERROR,
   1473                   "gic_dist_writeb: Bad offset %x\n", (int)offset);
   1474 }
   1475 
   1476 static void gic_dist_writew(void *opaque, hwaddr offset,
   1477                             uint32_t value, MemTxAttrs attrs)
   1478 {
   1479     gic_dist_writeb(opaque, offset, value & 0xff, attrs);
   1480     gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
   1481 }
   1482 
   1483 static void gic_dist_writel(void *opaque, hwaddr offset,
   1484                             uint32_t value, MemTxAttrs attrs)
   1485 {
   1486     GICState *s = (GICState *)opaque;
   1487     if (offset == 0xf00) {
   1488         int cpu;
   1489         int irq;
   1490         int mask;
   1491         int target_cpu;
   1492 
   1493         cpu = gic_get_current_cpu(s);
   1494         irq = value & 0xf;
   1495         switch ((value >> 24) & 3) {
   1496         case 0:
   1497             mask = (value >> 16) & ALL_CPU_MASK;
   1498             break;
   1499         case 1:
   1500             mask = ALL_CPU_MASK ^ (1 << cpu);
   1501             break;
   1502         case 2:
   1503             mask = 1 << cpu;
   1504             break;
   1505         default:
   1506             DPRINTF("Bad Soft Int target filter\n");
   1507             mask = ALL_CPU_MASK;
   1508             break;
   1509         }
   1510         GIC_DIST_SET_PENDING(irq, mask);
   1511         target_cpu = ctz32(mask);
   1512         while (target_cpu < GIC_NCPU) {
   1513             s->sgi_pending[irq][target_cpu] |= (1 << cpu);
   1514             mask &= ~(1 << target_cpu);
   1515             target_cpu = ctz32(mask);
   1516         }
   1517         gic_update(s);
   1518         return;
   1519     }
   1520     gic_dist_writew(opaque, offset, value & 0xffff, attrs);
   1521     gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
   1522 }
   1523 
   1524 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
   1525                                   unsigned size, MemTxAttrs attrs)
   1526 {
   1527     trace_gic_dist_write(offset, size, data);
   1528 
   1529     switch (size) {
   1530     case 1:
   1531         gic_dist_writeb(opaque, offset, data, attrs);
   1532         return MEMTX_OK;
   1533     case 2:
   1534         gic_dist_writew(opaque, offset, data, attrs);
   1535         return MEMTX_OK;
   1536     case 4:
   1537         gic_dist_writel(opaque, offset, data, attrs);
   1538         return MEMTX_OK;
   1539     default:
   1540         return MEMTX_ERROR;
   1541     }
   1542 }
   1543 
   1544 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
   1545 {
   1546     /* Return the Nonsecure view of GICC_APR<regno>. This is the
   1547      * second half of GICC_NSAPR.
   1548      */
   1549     switch (GIC_MIN_BPR) {
   1550     case 0:
   1551         if (regno < 2) {
   1552             return s->nsapr[regno + 2][cpu];
   1553         }
   1554         break;
   1555     case 1:
   1556         if (regno == 0) {
   1557             return s->nsapr[regno + 1][cpu];
   1558         }
   1559         break;
   1560     case 2:
   1561         if (regno == 0) {
   1562             return extract32(s->nsapr[0][cpu], 16, 16);
   1563         }
   1564         break;
   1565     case 3:
   1566         if (regno == 0) {
   1567             return extract32(s->nsapr[0][cpu], 8, 8);
   1568         }
   1569         break;
   1570     default:
   1571         g_assert_not_reached();
   1572     }
   1573     return 0;
   1574 }
   1575 
   1576 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
   1577                                          uint32_t value)
   1578 {
   1579     /* Write the Nonsecure view of GICC_APR<regno>. */
   1580     switch (GIC_MIN_BPR) {
   1581     case 0:
   1582         if (regno < 2) {
   1583             s->nsapr[regno + 2][cpu] = value;
   1584         }
   1585         break;
   1586     case 1:
   1587         if (regno == 0) {
   1588             s->nsapr[regno + 1][cpu] = value;
   1589         }
   1590         break;
   1591     case 2:
   1592         if (regno == 0) {
   1593             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
   1594         }
   1595         break;
   1596     case 3:
   1597         if (regno == 0) {
   1598             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
   1599         }
   1600         break;
   1601     default:
   1602         g_assert_not_reached();
   1603     }
   1604 }
   1605 
   1606 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
   1607                                 uint64_t *data, MemTxAttrs attrs)
   1608 {
   1609     switch (offset) {
   1610     case 0x00: /* Control */
   1611         *data = gic_get_cpu_control(s, cpu, attrs);
   1612         break;
   1613     case 0x04: /* Priority mask */
   1614         *data = gic_get_priority_mask(s, cpu, attrs);
   1615         break;
   1616     case 0x08: /* Binary Point */
   1617         if (gic_cpu_ns_access(s, cpu, attrs)) {
   1618             if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
   1619                 /* NS view of BPR when CBPR is 1 */
   1620                 *data = MIN(s->bpr[cpu] + 1, 7);
   1621             } else {
   1622                 /* BPR is banked. Non-secure copy stored in ABPR. */
   1623                 *data = s->abpr[cpu];
   1624             }
   1625         } else {
   1626             *data = s->bpr[cpu];
   1627         }
   1628         break;
   1629     case 0x0c: /* Acknowledge */
   1630         *data = gic_acknowledge_irq(s, cpu, attrs);
   1631         break;
   1632     case 0x14: /* Running Priority */
   1633         *data = gic_get_running_priority(s, cpu, attrs);
   1634         break;
   1635     case 0x18: /* Highest Pending Interrupt */
   1636         *data = gic_get_current_pending_irq(s, cpu, attrs);
   1637         break;
   1638     case 0x1c: /* Aliased Binary Point */
   1639         /* GIC v2, no security: ABPR
   1640          * GIC v1, no security: not implemented (RAZ/WI)
   1641          * With security extensions, secure access: ABPR (alias of NS BPR)
   1642          * With security extensions, nonsecure access: RAZ/WI
   1643          */
   1644         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
   1645             *data = 0;
   1646         } else {
   1647             *data = s->abpr[cpu];
   1648         }
   1649         break;
   1650     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
   1651     {
   1652         int regno = (offset - 0xd0) / 4;
   1653         int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
   1654 
   1655         if (regno >= nr_aprs || s->revision != 2) {
   1656             *data = 0;
   1657         } else if (gic_is_vcpu(cpu)) {
   1658             *data = s->h_apr[gic_get_vcpu_real_id(cpu)];
   1659         } else if (gic_cpu_ns_access(s, cpu, attrs)) {
   1660             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
   1661             *data = gic_apr_ns_view(s, regno, cpu);
   1662         } else {
   1663             *data = s->apr[regno][cpu];
   1664         }
   1665         break;
   1666     }
   1667     case 0xe0: case 0xe4: case 0xe8: case 0xec:
   1668     {
   1669         int regno = (offset - 0xe0) / 4;
   1670 
   1671         if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
   1672             gic_cpu_ns_access(s, cpu, attrs) || gic_is_vcpu(cpu)) {
   1673             *data = 0;
   1674         } else {
   1675             *data = s->nsapr[regno][cpu];
   1676         }
   1677         break;
   1678     }
   1679     case 0xfc:
   1680         if (s->revision == REV_11MPCORE) {
   1681             /* Reserved on 11MPCore */
   1682             *data = 0;
   1683         } else {
   1684             /* GICv1 or v2; Arm implementation */
   1685             *data = (s->revision << 16) | 0x43b;
   1686         }
   1687         break;
   1688     default:
   1689         qemu_log_mask(LOG_GUEST_ERROR,
   1690                       "gic_cpu_read: Bad offset %x\n", (int)offset);
   1691         *data = 0;
   1692         break;
   1693     }
   1694 
   1695     trace_gic_cpu_read(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
   1696                        gic_get_vcpu_real_id(cpu), offset, *data);
   1697     return MEMTX_OK;
   1698 }
   1699 
   1700 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
   1701                                  uint32_t value, MemTxAttrs attrs)
   1702 {
   1703     trace_gic_cpu_write(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
   1704                         gic_get_vcpu_real_id(cpu), offset, value);
   1705 
   1706     switch (offset) {
   1707     case 0x00: /* Control */
   1708         gic_set_cpu_control(s, cpu, value, attrs);
   1709         break;
   1710     case 0x04: /* Priority mask */
   1711         gic_set_priority_mask(s, cpu, value, attrs);
   1712         break;
   1713     case 0x08: /* Binary Point */
   1714         if (gic_cpu_ns_access(s, cpu, attrs)) {
   1715             if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
   1716                 /* WI when CBPR is 1 */
   1717                 return MEMTX_OK;
   1718             } else {
   1719                 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
   1720             }
   1721         } else {
   1722             int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
   1723             s->bpr[cpu] = MAX(value & 0x7, min_bpr);
   1724         }
   1725         break;
   1726     case 0x10: /* End Of Interrupt */
   1727         gic_complete_irq(s, cpu, value & 0x3ff, attrs);
   1728         return MEMTX_OK;
   1729     case 0x1c: /* Aliased Binary Point */
   1730         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
   1731             /* unimplemented, or NS access: RAZ/WI */
   1732             return MEMTX_OK;
   1733         } else {
   1734             s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
   1735         }
   1736         break;
   1737     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
   1738     {
   1739         int regno = (offset - 0xd0) / 4;
   1740         int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
   1741 
   1742         if (regno >= nr_aprs || s->revision != 2) {
   1743             return MEMTX_OK;
   1744         }
   1745         if (gic_is_vcpu(cpu)) {
   1746             s->h_apr[gic_get_vcpu_real_id(cpu)] = value;
   1747         } else if (gic_cpu_ns_access(s, cpu, attrs)) {
   1748             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
   1749             gic_apr_write_ns_view(s, regno, cpu, value);
   1750         } else {
   1751             s->apr[regno][cpu] = value;
   1752         }
   1753         s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
   1754         break;
   1755     }
   1756     case 0xe0: case 0xe4: case 0xe8: case 0xec:
   1757     {
   1758         int regno = (offset - 0xe0) / 4;
   1759 
   1760         if (regno >= GIC_NR_APRS || s->revision != 2) {
   1761             return MEMTX_OK;
   1762         }
   1763         if (gic_is_vcpu(cpu)) {
   1764             return MEMTX_OK;
   1765         }
   1766         if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
   1767             return MEMTX_OK;
   1768         }
   1769         s->nsapr[regno][cpu] = value;
   1770         s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
   1771         break;
   1772     }
   1773     case 0x1000:
   1774         /* GICC_DIR */
   1775         gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
   1776         break;
   1777     default:
   1778         qemu_log_mask(LOG_GUEST_ERROR,
   1779                       "gic_cpu_write: Bad offset %x\n", (int)offset);
   1780         return MEMTX_OK;
   1781     }
   1782 
   1783     if (gic_is_vcpu(cpu)) {
   1784         gic_update_virt(s);
   1785     } else {
   1786         gic_update(s);
   1787     }
   1788 
   1789     return MEMTX_OK;
   1790 }
   1791 
   1792 /* Wrappers to read/write the GIC CPU interface for the current CPU */
   1793 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
   1794                                     unsigned size, MemTxAttrs attrs)
   1795 {
   1796     GICState *s = (GICState *)opaque;
   1797     return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
   1798 }
   1799 
   1800 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
   1801                                      uint64_t value, unsigned size,
   1802                                      MemTxAttrs attrs)
   1803 {
   1804     GICState *s = (GICState *)opaque;
   1805     return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
   1806 }
   1807 
   1808 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
   1809  * These just decode the opaque pointer into GICState* + cpu id.
   1810  */
   1811 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
   1812                                    unsigned size, MemTxAttrs attrs)
   1813 {
   1814     GICState **backref = (GICState **)opaque;
   1815     GICState *s = *backref;
   1816     int id = (backref - s->backref);
   1817     return gic_cpu_read(s, id, addr, data, attrs);
   1818 }
   1819 
   1820 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
   1821                                     uint64_t value, unsigned size,
   1822                                     MemTxAttrs attrs)
   1823 {
   1824     GICState **backref = (GICState **)opaque;
   1825     GICState *s = *backref;
   1826     int id = (backref - s->backref);
   1827     return gic_cpu_write(s, id, addr, value, attrs);
   1828 }
   1829 
   1830 static MemTxResult gic_thisvcpu_read(void *opaque, hwaddr addr, uint64_t *data,
   1831                                     unsigned size, MemTxAttrs attrs)
   1832 {
   1833     GICState *s = (GICState *)opaque;
   1834 
   1835     return gic_cpu_read(s, gic_get_current_vcpu(s), addr, data, attrs);
   1836 }
   1837 
   1838 static MemTxResult gic_thisvcpu_write(void *opaque, hwaddr addr,
   1839                                      uint64_t value, unsigned size,
   1840                                      MemTxAttrs attrs)
   1841 {
   1842     GICState *s = (GICState *)opaque;
   1843 
   1844     return gic_cpu_write(s, gic_get_current_vcpu(s), addr, value, attrs);
   1845 }
   1846 
   1847 static uint32_t gic_compute_eisr(GICState *s, int cpu, int lr_start)
   1848 {
   1849     int lr_idx;
   1850     uint32_t ret = 0;
   1851 
   1852     for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
   1853         uint32_t *entry = &s->h_lr[lr_idx][cpu];
   1854         ret = deposit32(ret, lr_idx - lr_start, 1,
   1855                         gic_lr_entry_is_eoi(*entry));
   1856     }
   1857 
   1858     return ret;
   1859 }
   1860 
   1861 static uint32_t gic_compute_elrsr(GICState *s, int cpu, int lr_start)
   1862 {
   1863     int lr_idx;
   1864     uint32_t ret = 0;
   1865 
   1866     for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
   1867         uint32_t *entry = &s->h_lr[lr_idx][cpu];
   1868         ret = deposit32(ret, lr_idx - lr_start, 1,
   1869                         gic_lr_entry_is_free(*entry));
   1870     }
   1871 
   1872     return ret;
   1873 }
   1874 
   1875 static void gic_vmcr_write(GICState *s, uint32_t value, MemTxAttrs attrs)
   1876 {
   1877     int vcpu = gic_get_current_vcpu(s);
   1878     uint32_t ctlr;
   1879     uint32_t abpr;
   1880     uint32_t bpr;
   1881     uint32_t prio_mask;
   1882 
   1883     ctlr = FIELD_EX32(value, GICH_VMCR, VMCCtlr);
   1884     abpr = FIELD_EX32(value, GICH_VMCR, VMABP);
   1885     bpr = FIELD_EX32(value, GICH_VMCR, VMBP);
   1886     prio_mask = FIELD_EX32(value, GICH_VMCR, VMPriMask) << 3;
   1887 
   1888     gic_set_cpu_control(s, vcpu, ctlr, attrs);
   1889     s->abpr[vcpu] = MAX(abpr, GIC_VIRT_MIN_ABPR);
   1890     s->bpr[vcpu] = MAX(bpr, GIC_VIRT_MIN_BPR);
   1891     gic_set_priority_mask(s, vcpu, prio_mask, attrs);
   1892 }
   1893 
   1894 static MemTxResult gic_hyp_read(void *opaque, int cpu, hwaddr addr,
   1895                                 uint64_t *data, MemTxAttrs attrs)
   1896 {
   1897     GICState *s = ARM_GIC(opaque);
   1898     int vcpu = cpu + GIC_NCPU;
   1899 
   1900     switch (addr) {
   1901     case A_GICH_HCR: /* Hypervisor Control */
   1902         *data = s->h_hcr[cpu];
   1903         break;
   1904 
   1905     case A_GICH_VTR: /* VGIC Type */
   1906         *data = FIELD_DP32(0, GICH_VTR, ListRegs, s->num_lrs - 1);
   1907         *data = FIELD_DP32(*data, GICH_VTR, PREbits,
   1908                            GIC_VIRT_MAX_GROUP_PRIO_BITS - 1);
   1909         *data = FIELD_DP32(*data, GICH_VTR, PRIbits,
   1910                            (7 - GIC_VIRT_MIN_BPR) - 1);
   1911         break;
   1912 
   1913     case A_GICH_VMCR: /* Virtual Machine Control */
   1914         *data = FIELD_DP32(0, GICH_VMCR, VMCCtlr,
   1915                            extract32(s->cpu_ctlr[vcpu], 0, 10));
   1916         *data = FIELD_DP32(*data, GICH_VMCR, VMABP, s->abpr[vcpu]);
   1917         *data = FIELD_DP32(*data, GICH_VMCR, VMBP, s->bpr[vcpu]);
   1918         *data = FIELD_DP32(*data, GICH_VMCR, VMPriMask,
   1919                            extract32(s->priority_mask[vcpu], 3, 5));
   1920         break;
   1921 
   1922     case A_GICH_MISR: /* Maintenance Interrupt Status */
   1923         *data = s->h_misr[cpu];
   1924         break;
   1925 
   1926     case A_GICH_EISR0: /* End of Interrupt Status 0 and 1 */
   1927     case A_GICH_EISR1:
   1928         *data = gic_compute_eisr(s, cpu, (addr - A_GICH_EISR0) * 8);
   1929         break;
   1930 
   1931     case A_GICH_ELRSR0: /* Empty List Status 0 and 1 */
   1932     case A_GICH_ELRSR1:
   1933         *data = gic_compute_elrsr(s, cpu, (addr - A_GICH_ELRSR0) * 8);
   1934         break;
   1935 
   1936     case A_GICH_APR: /* Active Priorities */
   1937         *data = s->h_apr[cpu];
   1938         break;
   1939 
   1940     case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
   1941     {
   1942         int lr_idx = (addr - A_GICH_LR0) / 4;
   1943 
   1944         if (lr_idx > s->num_lrs) {
   1945             *data = 0;
   1946         } else {
   1947             *data = s->h_lr[lr_idx][cpu];
   1948         }
   1949         break;
   1950     }
   1951 
   1952     default:
   1953         qemu_log_mask(LOG_GUEST_ERROR,
   1954                       "gic_hyp_read: Bad offset %" HWADDR_PRIx "\n", addr);
   1955         return MEMTX_OK;
   1956     }
   1957 
   1958     trace_gic_hyp_read(addr, *data);
   1959     return MEMTX_OK;
   1960 }
   1961 
   1962 static MemTxResult gic_hyp_write(void *opaque, int cpu, hwaddr addr,
   1963                                  uint64_t value, MemTxAttrs attrs)
   1964 {
   1965     GICState *s = ARM_GIC(opaque);
   1966     int vcpu = cpu + GIC_NCPU;
   1967 
   1968     trace_gic_hyp_write(addr, value);
   1969 
   1970     switch (addr) {
   1971     case A_GICH_HCR: /* Hypervisor Control */
   1972         s->h_hcr[cpu] = value & GICH_HCR_MASK;
   1973         break;
   1974 
   1975     case A_GICH_VMCR: /* Virtual Machine Control */
   1976         gic_vmcr_write(s, value, attrs);
   1977         break;
   1978 
   1979     case A_GICH_APR: /* Active Priorities */
   1980         s->h_apr[cpu] = value;
   1981         s->running_priority[vcpu] = gic_get_prio_from_apr_bits(s, vcpu);
   1982         break;
   1983 
   1984     case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
   1985     {
   1986         int lr_idx = (addr - A_GICH_LR0) / 4;
   1987 
   1988         if (lr_idx > s->num_lrs) {
   1989             return MEMTX_OK;
   1990         }
   1991 
   1992         s->h_lr[lr_idx][cpu] = value & GICH_LR_MASK;
   1993         trace_gic_lr_entry(cpu, lr_idx, s->h_lr[lr_idx][cpu]);
   1994         break;
   1995     }
   1996 
   1997     default:
   1998         qemu_log_mask(LOG_GUEST_ERROR,
   1999                       "gic_hyp_write: Bad offset %" HWADDR_PRIx "\n", addr);
   2000         return MEMTX_OK;
   2001     }
   2002 
   2003     gic_update_virt(s);
   2004     return MEMTX_OK;
   2005 }
   2006 
   2007 static MemTxResult gic_thiscpu_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
   2008                                     unsigned size, MemTxAttrs attrs)
   2009 {
   2010     GICState *s = (GICState *)opaque;
   2011 
   2012     return gic_hyp_read(s, gic_get_current_cpu(s), addr, data, attrs);
   2013 }
   2014 
   2015 static MemTxResult gic_thiscpu_hyp_write(void *opaque, hwaddr addr,
   2016                                      uint64_t value, unsigned size,
   2017                                      MemTxAttrs attrs)
   2018 {
   2019     GICState *s = (GICState *)opaque;
   2020 
   2021     return gic_hyp_write(s, gic_get_current_cpu(s), addr, value, attrs);
   2022 }
   2023 
   2024 static MemTxResult gic_do_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
   2025                                     unsigned size, MemTxAttrs attrs)
   2026 {
   2027     GICState **backref = (GICState **)opaque;
   2028     GICState *s = *backref;
   2029     int id = (backref - s->backref);
   2030 
   2031     return gic_hyp_read(s, id, addr, data, attrs);
   2032 }
   2033 
   2034 static MemTxResult gic_do_hyp_write(void *opaque, hwaddr addr,
   2035                                      uint64_t value, unsigned size,
   2036                                      MemTxAttrs attrs)
   2037 {
   2038     GICState **backref = (GICState **)opaque;
   2039     GICState *s = *backref;
   2040     int id = (backref - s->backref);
   2041 
   2042     return gic_hyp_write(s, id + GIC_NCPU, addr, value, attrs);
   2043 
   2044 }
   2045 
   2046 static const MemoryRegionOps gic_ops[2] = {
   2047     {
   2048         .read_with_attrs = gic_dist_read,
   2049         .write_with_attrs = gic_dist_write,
   2050         .endianness = DEVICE_NATIVE_ENDIAN,
   2051     },
   2052     {
   2053         .read_with_attrs = gic_thiscpu_read,
   2054         .write_with_attrs = gic_thiscpu_write,
   2055         .endianness = DEVICE_NATIVE_ENDIAN,
   2056     }
   2057 };
   2058 
   2059 static const MemoryRegionOps gic_cpu_ops = {
   2060     .read_with_attrs = gic_do_cpu_read,
   2061     .write_with_attrs = gic_do_cpu_write,
   2062     .endianness = DEVICE_NATIVE_ENDIAN,
   2063 };
   2064 
   2065 static const MemoryRegionOps gic_virt_ops[2] = {
   2066     {
   2067         .read_with_attrs = gic_thiscpu_hyp_read,
   2068         .write_with_attrs = gic_thiscpu_hyp_write,
   2069         .endianness = DEVICE_NATIVE_ENDIAN,
   2070     },
   2071     {
   2072         .read_with_attrs = gic_thisvcpu_read,
   2073         .write_with_attrs = gic_thisvcpu_write,
   2074         .endianness = DEVICE_NATIVE_ENDIAN,
   2075     }
   2076 };
   2077 
   2078 static const MemoryRegionOps gic_viface_ops = {
   2079     .read_with_attrs = gic_do_hyp_read,
   2080     .write_with_attrs = gic_do_hyp_write,
   2081     .endianness = DEVICE_NATIVE_ENDIAN,
   2082 };
   2083 
   2084 static void arm_gic_realize(DeviceState *dev, Error **errp)
   2085 {
   2086     /* Device instance realize function for the GIC sysbus device */
   2087     int i;
   2088     GICState *s = ARM_GIC(dev);
   2089     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
   2090     ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
   2091     Error *local_err = NULL;
   2092 
   2093     agc->parent_realize(dev, &local_err);
   2094     if (local_err) {
   2095         error_propagate(errp, local_err);
   2096         return;
   2097     }
   2098 
   2099     if (kvm_enabled() && !kvm_arm_supports_user_irq()) {
   2100         error_setg(errp, "KVM with user space irqchip only works when the "
   2101                          "host kernel supports KVM_CAP_ARM_USER_IRQ");
   2102         return;
   2103     }
   2104 
   2105     if (s->n_prio_bits > GIC_MAX_PRIORITY_BITS ||
   2106        (s->virt_extn ? s->n_prio_bits < GIC_VIRT_MAX_GROUP_PRIO_BITS :
   2107         s->n_prio_bits < GIC_MIN_PRIORITY_BITS)) {
   2108         error_setg(errp, "num-priority-bits cannot be greater than %d"
   2109                    " or less than %d", GIC_MAX_PRIORITY_BITS,
   2110                    s->virt_extn ? GIC_VIRT_MAX_GROUP_PRIO_BITS :
   2111                    GIC_MIN_PRIORITY_BITS);
   2112         return;
   2113     }
   2114 
   2115     /* This creates distributor, main CPU interface (s->cpuiomem[0]) and if
   2116      * enabled, virtualization extensions related interfaces (main virtual
   2117      * interface (s->vifaceiomem[0]) and virtual CPU interface).
   2118      */
   2119     gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops, gic_virt_ops);
   2120 
   2121     /* Extra core-specific regions for the CPU interfaces. This is
   2122      * necessary for "franken-GIC" implementations, for example on
   2123      * Exynos 4.
   2124      * NB that the memory region size of 0x100 applies for the 11MPCore
   2125      * and also cores following the GIC v1 spec (ie A9).
   2126      * GIC v2 defines a larger memory region (0x1000) so this will need
   2127      * to be extended when we implement A15.
   2128      */
   2129     for (i = 0; i < s->num_cpu; i++) {
   2130         s->backref[i] = s;
   2131         memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
   2132                               &s->backref[i], "gic_cpu", 0x100);
   2133         sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
   2134     }
   2135 
   2136     /* Extra core-specific regions for virtual interfaces. This is required by
   2137      * the GICv2 specification.
   2138      */
   2139     if (s->virt_extn) {
   2140         for (i = 0; i < s->num_cpu; i++) {
   2141             memory_region_init_io(&s->vifaceiomem[i + 1], OBJECT(s),
   2142                                   &gic_viface_ops, &s->backref[i],
   2143                                   "gic_viface", 0x200);
   2144             sysbus_init_mmio(sbd, &s->vifaceiomem[i + 1]);
   2145         }
   2146     }
   2147 
   2148 }
   2149 
   2150 static void arm_gic_class_init(ObjectClass *klass, void *data)
   2151 {
   2152     DeviceClass *dc = DEVICE_CLASS(klass);
   2153     ARMGICClass *agc = ARM_GIC_CLASS(klass);
   2154 
   2155     device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
   2156 }
   2157 
   2158 static const TypeInfo arm_gic_info = {
   2159     .name = TYPE_ARM_GIC,
   2160     .parent = TYPE_ARM_GIC_COMMON,
   2161     .instance_size = sizeof(GICState),
   2162     .class_init = arm_gic_class_init,
   2163     .class_size = sizeof(ARMGICClass),
   2164 };
   2165 
   2166 static void arm_gic_register_types(void)
   2167 {
   2168     type_register_static(&arm_gic_info);
   2169 }
   2170 
   2171 type_init(arm_gic_register_types)