qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

pci.c (15427B)


      1 /*
      2  * QEMU IDE Emulation: PCI Bus support.
      3  *
      4  * Copyright (c) 2003 Fabrice Bellard
      5  * Copyright (c) 2006 Openedhand Ltd.
      6  *
      7  * Permission is hereby granted, free of charge, to any person obtaining a copy
      8  * of this software and associated documentation files (the "Software"), to deal
      9  * in the Software without restriction, including without limitation the rights
     10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     11  * copies of the Software, and to permit persons to whom the Software is
     12  * furnished to do so, subject to the following conditions:
     13  *
     14  * The above copyright notice and this permission notice shall be included in
     15  * all copies or substantial portions of the Software.
     16  *
     17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
     20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     23  * THE SOFTWARE.
     24  */
     25 
     26 #include "qemu/osdep.h"
     27 #include "hw/pci/pci.h"
     28 #include "migration/vmstate.h"
     29 #include "sysemu/dma.h"
     30 #include "qemu/error-report.h"
     31 #include "qemu/module.h"
     32 #include "hw/ide/pci.h"
     33 #include "trace.h"
     34 
     35 #define BMDMA_PAGE_SIZE 4096
     36 
     37 #define BM_MIGRATION_COMPAT_STATUS_BITS \
     38         (IDE_RETRY_DMA | IDE_RETRY_PIO | \
     39         IDE_RETRY_READ | IDE_RETRY_FLUSH)
     40 
     41 static uint64_t pci_ide_status_read(void *opaque, hwaddr addr, unsigned size)
     42 {
     43     IDEBus *bus = opaque;
     44 
     45     if (addr != 2 || size != 1) {
     46         return ((uint64_t)1 << (size * 8)) - 1;
     47     }
     48     return ide_status_read(bus, addr + 2);
     49 }
     50 
     51 static void pci_ide_ctrl_write(void *opaque, hwaddr addr,
     52                                uint64_t data, unsigned size)
     53 {
     54     IDEBus *bus = opaque;
     55 
     56     if (addr != 2 || size != 1) {
     57         return;
     58     }
     59     ide_ctrl_write(bus, addr + 2, data);
     60 }
     61 
     62 const MemoryRegionOps pci_ide_cmd_le_ops = {
     63     .read = pci_ide_status_read,
     64     .write = pci_ide_ctrl_write,
     65     .endianness = DEVICE_LITTLE_ENDIAN,
     66 };
     67 
     68 static uint64_t pci_ide_data_read(void *opaque, hwaddr addr, unsigned size)
     69 {
     70     IDEBus *bus = opaque;
     71 
     72     if (size == 1) {
     73         return ide_ioport_read(bus, addr);
     74     } else if (addr == 0) {
     75         if (size == 2) {
     76             return ide_data_readw(bus, addr);
     77         } else {
     78             return ide_data_readl(bus, addr);
     79         }
     80     }
     81     return ((uint64_t)1 << (size * 8)) - 1;
     82 }
     83 
     84 static void pci_ide_data_write(void *opaque, hwaddr addr,
     85                                uint64_t data, unsigned size)
     86 {
     87     IDEBus *bus = opaque;
     88 
     89     if (size == 1) {
     90         ide_ioport_write(bus, addr, data);
     91     } else if (addr == 0) {
     92         if (size == 2) {
     93             ide_data_writew(bus, addr, data);
     94         } else {
     95             ide_data_writel(bus, addr, data);
     96         }
     97     }
     98 }
     99 
    100 const MemoryRegionOps pci_ide_data_le_ops = {
    101     .read = pci_ide_data_read,
    102     .write = pci_ide_data_write,
    103     .endianness = DEVICE_LITTLE_ENDIAN,
    104 };
    105 
    106 static void bmdma_start_dma(const IDEDMA *dma, IDEState *s,
    107                             BlockCompletionFunc *dma_cb)
    108 {
    109     BMDMAState *bm = DO_UPCAST(BMDMAState, dma, dma);
    110 
    111     bm->dma_cb = dma_cb;
    112     bm->cur_prd_last = 0;
    113     bm->cur_prd_addr = 0;
    114     bm->cur_prd_len = 0;
    115 
    116     if (bm->status & BM_STATUS_DMAING) {
    117         bm->dma_cb(bmdma_active_if(bm), 0);
    118     }
    119 }
    120 
    121 /**
    122  * Prepare an sglist based on available PRDs.
    123  * @limit: How many bytes to prepare total.
    124  *
    125  * Returns the number of bytes prepared, -1 on error.
    126  * IDEState.io_buffer_size will contain the number of bytes described
    127  * by the PRDs, whether or not we added them to the sglist.
    128  */
    129 static int32_t bmdma_prepare_buf(const IDEDMA *dma, int32_t limit)
    130 {
    131     BMDMAState *bm = DO_UPCAST(BMDMAState, dma, dma);
    132     IDEState *s = bmdma_active_if(bm);
    133     PCIDevice *pci_dev = PCI_DEVICE(bm->pci_dev);
    134     struct {
    135         uint32_t addr;
    136         uint32_t size;
    137     } prd;
    138     int l, len;
    139 
    140     pci_dma_sglist_init(&s->sg, pci_dev,
    141                         s->nsector / (BMDMA_PAGE_SIZE / BDRV_SECTOR_SIZE) + 1);
    142     s->io_buffer_size = 0;
    143     for(;;) {
    144         if (bm->cur_prd_len == 0) {
    145             /* end of table (with a fail safe of one page) */
    146             if (bm->cur_prd_last ||
    147                 (bm->cur_addr - bm->addr) >= BMDMA_PAGE_SIZE) {
    148                 return s->sg.size;
    149             }
    150             pci_dma_read(pci_dev, bm->cur_addr, &prd, 8);
    151             bm->cur_addr += 8;
    152             prd.addr = le32_to_cpu(prd.addr);
    153             prd.size = le32_to_cpu(prd.size);
    154             len = prd.size & 0xfffe;
    155             if (len == 0)
    156                 len = 0x10000;
    157             bm->cur_prd_len = len;
    158             bm->cur_prd_addr = prd.addr;
    159             bm->cur_prd_last = (prd.size & 0x80000000);
    160         }
    161         l = bm->cur_prd_len;
    162         if (l > 0) {
    163             uint64_t sg_len;
    164 
    165             /* Don't add extra bytes to the SGList; consume any remaining
    166              * PRDs from the guest, but ignore them. */
    167             sg_len = MIN(limit - s->sg.size, bm->cur_prd_len);
    168             if (sg_len) {
    169                 qemu_sglist_add(&s->sg, bm->cur_prd_addr, sg_len);
    170             }
    171 
    172             bm->cur_prd_addr += l;
    173             bm->cur_prd_len -= l;
    174             s->io_buffer_size += l;
    175         }
    176     }
    177 
    178     qemu_sglist_destroy(&s->sg);
    179     s->io_buffer_size = 0;
    180     return -1;
    181 }
    182 
    183 /* return 0 if buffer completed */
    184 static int bmdma_rw_buf(const IDEDMA *dma, bool is_write)
    185 {
    186     BMDMAState *bm = DO_UPCAST(BMDMAState, dma, dma);
    187     IDEState *s = bmdma_active_if(bm);
    188     PCIDevice *pci_dev = PCI_DEVICE(bm->pci_dev);
    189     struct {
    190         uint32_t addr;
    191         uint32_t size;
    192     } prd;
    193     int l, len;
    194 
    195     for(;;) {
    196         l = s->io_buffer_size - s->io_buffer_index;
    197         if (l <= 0)
    198             break;
    199         if (bm->cur_prd_len == 0) {
    200             /* end of table (with a fail safe of one page) */
    201             if (bm->cur_prd_last ||
    202                 (bm->cur_addr - bm->addr) >= BMDMA_PAGE_SIZE)
    203                 return 0;
    204             pci_dma_read(pci_dev, bm->cur_addr, &prd, 8);
    205             bm->cur_addr += 8;
    206             prd.addr = le32_to_cpu(prd.addr);
    207             prd.size = le32_to_cpu(prd.size);
    208             len = prd.size & 0xfffe;
    209             if (len == 0)
    210                 len = 0x10000;
    211             bm->cur_prd_len = len;
    212             bm->cur_prd_addr = prd.addr;
    213             bm->cur_prd_last = (prd.size & 0x80000000);
    214         }
    215         if (l > bm->cur_prd_len)
    216             l = bm->cur_prd_len;
    217         if (l > 0) {
    218             if (is_write) {
    219                 pci_dma_write(pci_dev, bm->cur_prd_addr,
    220                               s->io_buffer + s->io_buffer_index, l);
    221             } else {
    222                 pci_dma_read(pci_dev, bm->cur_prd_addr,
    223                              s->io_buffer + s->io_buffer_index, l);
    224             }
    225             bm->cur_prd_addr += l;
    226             bm->cur_prd_len -= l;
    227             s->io_buffer_index += l;
    228         }
    229     }
    230     return 1;
    231 }
    232 
    233 static void bmdma_set_inactive(const IDEDMA *dma, bool more)
    234 {
    235     BMDMAState *bm = DO_UPCAST(BMDMAState, dma, dma);
    236 
    237     bm->dma_cb = NULL;
    238     if (more) {
    239         bm->status |= BM_STATUS_DMAING;
    240     } else {
    241         bm->status &= ~BM_STATUS_DMAING;
    242     }
    243 }
    244 
    245 static void bmdma_restart_dma(const IDEDMA *dma)
    246 {
    247     BMDMAState *bm = DO_UPCAST(BMDMAState, dma, dma);
    248 
    249     bm->cur_addr = bm->addr;
    250 }
    251 
    252 static void bmdma_cancel(BMDMAState *bm)
    253 {
    254     if (bm->status & BM_STATUS_DMAING) {
    255         /* cancel DMA request */
    256         bmdma_set_inactive(&bm->dma, false);
    257     }
    258 }
    259 
    260 static void bmdma_reset(const IDEDMA *dma)
    261 {
    262     BMDMAState *bm = DO_UPCAST(BMDMAState, dma, dma);
    263 
    264     trace_bmdma_reset();
    265     bmdma_cancel(bm);
    266     bm->cmd = 0;
    267     bm->status = 0;
    268     bm->addr = 0;
    269     bm->cur_addr = 0;
    270     bm->cur_prd_last = 0;
    271     bm->cur_prd_addr = 0;
    272     bm->cur_prd_len = 0;
    273 }
    274 
    275 static void bmdma_irq(void *opaque, int n, int level)
    276 {
    277     BMDMAState *bm = opaque;
    278 
    279     if (!level) {
    280         /* pass through lower */
    281         qemu_set_irq(bm->irq, level);
    282         return;
    283     }
    284 
    285     bm->status |= BM_STATUS_INT;
    286 
    287     /* trigger the real irq */
    288     qemu_set_irq(bm->irq, level);
    289 }
    290 
    291 void bmdma_cmd_writeb(BMDMAState *bm, uint32_t val)
    292 {
    293     trace_bmdma_cmd_writeb(val);
    294 
    295     /* Ignore writes to SSBM if it keeps the old value */
    296     if ((val & BM_CMD_START) != (bm->cmd & BM_CMD_START)) {
    297         if (!(val & BM_CMD_START)) {
    298             ide_cancel_dma_sync(idebus_active_if(bm->bus));
    299             bm->status &= ~BM_STATUS_DMAING;
    300         } else {
    301             bm->cur_addr = bm->addr;
    302             if (!(bm->status & BM_STATUS_DMAING)) {
    303                 bm->status |= BM_STATUS_DMAING;
    304                 /* start dma transfer if possible */
    305                 if (bm->dma_cb)
    306                     bm->dma_cb(bmdma_active_if(bm), 0);
    307             }
    308         }
    309     }
    310 
    311     bm->cmd = val & 0x09;
    312 }
    313 
    314 static uint64_t bmdma_addr_read(void *opaque, hwaddr addr,
    315                                 unsigned width)
    316 {
    317     BMDMAState *bm = opaque;
    318     uint32_t mask = (1ULL << (width * 8)) - 1;
    319     uint64_t data;
    320 
    321     data = (bm->addr >> (addr * 8)) & mask;
    322     trace_bmdma_addr_read(data);
    323     return data;
    324 }
    325 
    326 static void bmdma_addr_write(void *opaque, hwaddr addr,
    327                              uint64_t data, unsigned width)
    328 {
    329     BMDMAState *bm = opaque;
    330     int shift = addr * 8;
    331     uint32_t mask = (1ULL << (width * 8)) - 1;
    332 
    333     trace_bmdma_addr_write(data);
    334     bm->addr &= ~(mask << shift);
    335     bm->addr |= ((data & mask) << shift) & ~3;
    336 }
    337 
    338 MemoryRegionOps bmdma_addr_ioport_ops = {
    339     .read = bmdma_addr_read,
    340     .write = bmdma_addr_write,
    341     .endianness = DEVICE_LITTLE_ENDIAN,
    342 };
    343 
    344 static bool ide_bmdma_current_needed(void *opaque)
    345 {
    346     BMDMAState *bm = opaque;
    347 
    348     return (bm->cur_prd_len != 0);
    349 }
    350 
    351 static bool ide_bmdma_status_needed(void *opaque)
    352 {
    353     BMDMAState *bm = opaque;
    354 
    355     /* Older versions abused some bits in the status register for internal
    356      * error state. If any of these bits are set, we must add a subsection to
    357      * transfer the real status register */
    358     uint8_t abused_bits = BM_MIGRATION_COMPAT_STATUS_BITS;
    359 
    360     return ((bm->status & abused_bits) != 0);
    361 }
    362 
    363 static int ide_bmdma_pre_save(void *opaque)
    364 {
    365     BMDMAState *bm = opaque;
    366     uint8_t abused_bits = BM_MIGRATION_COMPAT_STATUS_BITS;
    367 
    368     if (!(bm->status & BM_STATUS_DMAING) && bm->dma_cb) {
    369         bm->bus->error_status =
    370             ide_dma_cmd_to_retry(bmdma_active_if(bm)->dma_cmd);
    371     }
    372     bm->migration_retry_unit = bm->bus->retry_unit;
    373     bm->migration_retry_sector_num = bm->bus->retry_sector_num;
    374     bm->migration_retry_nsector = bm->bus->retry_nsector;
    375     bm->migration_compat_status =
    376         (bm->status & ~abused_bits) | (bm->bus->error_status & abused_bits);
    377 
    378     return 0;
    379 }
    380 
    381 /* This function accesses bm->bus->error_status which is loaded only after
    382  * BMDMA itself. This is why the function is called from ide_pci_post_load
    383  * instead of being registered with VMState where it would run too early. */
    384 static int ide_bmdma_post_load(void *opaque, int version_id)
    385 {
    386     BMDMAState *bm = opaque;
    387     uint8_t abused_bits = BM_MIGRATION_COMPAT_STATUS_BITS;
    388 
    389     if (bm->status == 0) {
    390         bm->status = bm->migration_compat_status & ~abused_bits;
    391         bm->bus->error_status |= bm->migration_compat_status & abused_bits;
    392     }
    393     if (bm->bus->error_status) {
    394         bm->bus->retry_sector_num = bm->migration_retry_sector_num;
    395         bm->bus->retry_nsector = bm->migration_retry_nsector;
    396         bm->bus->retry_unit = bm->migration_retry_unit;
    397     }
    398 
    399     return 0;
    400 }
    401 
    402 static const VMStateDescription vmstate_bmdma_current = {
    403     .name = "ide bmdma_current",
    404     .version_id = 1,
    405     .minimum_version_id = 1,
    406     .needed = ide_bmdma_current_needed,
    407     .fields = (VMStateField[]) {
    408         VMSTATE_UINT32(cur_addr, BMDMAState),
    409         VMSTATE_UINT32(cur_prd_last, BMDMAState),
    410         VMSTATE_UINT32(cur_prd_addr, BMDMAState),
    411         VMSTATE_UINT32(cur_prd_len, BMDMAState),
    412         VMSTATE_END_OF_LIST()
    413     }
    414 };
    415 
    416 static const VMStateDescription vmstate_bmdma_status = {
    417     .name ="ide bmdma/status",
    418     .version_id = 1,
    419     .minimum_version_id = 1,
    420     .needed = ide_bmdma_status_needed,
    421     .fields = (VMStateField[]) {
    422         VMSTATE_UINT8(status, BMDMAState),
    423         VMSTATE_END_OF_LIST()
    424     }
    425 };
    426 
    427 static const VMStateDescription vmstate_bmdma = {
    428     .name = "ide bmdma",
    429     .version_id = 3,
    430     .minimum_version_id = 0,
    431     .pre_save  = ide_bmdma_pre_save,
    432     .fields = (VMStateField[]) {
    433         VMSTATE_UINT8(cmd, BMDMAState),
    434         VMSTATE_UINT8(migration_compat_status, BMDMAState),
    435         VMSTATE_UINT32(addr, BMDMAState),
    436         VMSTATE_INT64(migration_retry_sector_num, BMDMAState),
    437         VMSTATE_UINT32(migration_retry_nsector, BMDMAState),
    438         VMSTATE_UINT8(migration_retry_unit, BMDMAState),
    439         VMSTATE_END_OF_LIST()
    440     },
    441     .subsections = (const VMStateDescription*[]) {
    442         &vmstate_bmdma_current,
    443         &vmstate_bmdma_status,
    444         NULL
    445     }
    446 };
    447 
    448 static int ide_pci_post_load(void *opaque, int version_id)
    449 {
    450     PCIIDEState *d = opaque;
    451     int i;
    452 
    453     for(i = 0; i < 2; i++) {
    454         /* current versions always store 0/1, but older version
    455            stored bigger values. We only need last bit */
    456         d->bmdma[i].migration_retry_unit &= 1;
    457         ide_bmdma_post_load(&d->bmdma[i], -1);
    458     }
    459 
    460     return 0;
    461 }
    462 
    463 const VMStateDescription vmstate_ide_pci = {
    464     .name = "ide",
    465     .version_id = 3,
    466     .minimum_version_id = 0,
    467     .post_load = ide_pci_post_load,
    468     .fields = (VMStateField[]) {
    469         VMSTATE_PCI_DEVICE(parent_obj, PCIIDEState),
    470         VMSTATE_STRUCT_ARRAY(bmdma, PCIIDEState, 2, 0,
    471                              vmstate_bmdma, BMDMAState),
    472         VMSTATE_IDE_BUS_ARRAY(bus, PCIIDEState, 2),
    473         VMSTATE_IDE_DRIVES(bus[0].ifs, PCIIDEState),
    474         VMSTATE_IDE_DRIVES(bus[1].ifs, PCIIDEState),
    475         VMSTATE_END_OF_LIST()
    476     }
    477 };
    478 
    479 /* hd_table must contain 4 block drivers */
    480 void pci_ide_create_devs(PCIDevice *dev)
    481 {
    482     PCIIDEState *d = PCI_IDE(dev);
    483     DriveInfo *hd_table[2 * MAX_IDE_DEVS];
    484     static const int bus[4]  = { 0, 0, 1, 1 };
    485     static const int unit[4] = { 0, 1, 0, 1 };
    486     int i;
    487 
    488     ide_drive_get(hd_table, ARRAY_SIZE(hd_table));
    489     for (i = 0; i < 4; i++) {
    490         if (hd_table[i]) {
    491             ide_create_drive(d->bus + bus[i], unit[i], hd_table[i]);
    492         }
    493     }
    494 }
    495 
    496 static const struct IDEDMAOps bmdma_ops = {
    497     .start_dma = bmdma_start_dma,
    498     .prepare_buf = bmdma_prepare_buf,
    499     .rw_buf = bmdma_rw_buf,
    500     .restart_dma = bmdma_restart_dma,
    501     .set_inactive = bmdma_set_inactive,
    502     .reset = bmdma_reset,
    503 };
    504 
    505 void bmdma_init(IDEBus *bus, BMDMAState *bm, PCIIDEState *d)
    506 {
    507     if (bus->dma == &bm->dma) {
    508         return;
    509     }
    510 
    511     bm->dma.ops = &bmdma_ops;
    512     bus->dma = &bm->dma;
    513     bm->irq = bus->irq;
    514     bus->irq = qemu_allocate_irq(bmdma_irq, bm, 0);
    515     bm->pci_dev = d;
    516 }
    517 
    518 static const TypeInfo pci_ide_type_info = {
    519     .name = TYPE_PCI_IDE,
    520     .parent = TYPE_PCI_DEVICE,
    521     .instance_size = sizeof(PCIIDEState),
    522     .abstract = true,
    523     .interfaces = (InterfaceInfo[]) {
    524         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
    525         { },
    526     },
    527 };
    528 
    529 static void pci_ide_register_types(void)
    530 {
    531     type_register_static(&pci_ide_type_info);
    532 }
    533 
    534 type_init(pci_ide_register_types)