qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

xen-hvm.c (49253B)


      1 /*
      2  * Copyright (C) 2010       Citrix Ltd.
      3  *
      4  * This work is licensed under the terms of the GNU GPL, version 2.  See
      5  * the COPYING file in the top-level directory.
      6  *
      7  * Contributions after 2012-01-13 are licensed under the terms of the
      8  * GNU GPL, version 2 or (at your option) any later version.
      9  */
     10 
     11 #include "qemu/osdep.h"
     12 #include "qemu/units.h"
     13 
     14 #include "cpu.h"
     15 #include "hw/pci/pci.h"
     16 #include "hw/pci/pci_host.h"
     17 #include "hw/i386/pc.h"
     18 #include "hw/irq.h"
     19 #include "hw/hw.h"
     20 #include "hw/i386/apic-msidef.h"
     21 #include "hw/xen/xen_common.h"
     22 #include "hw/xen/xen-legacy-backend.h"
     23 #include "hw/xen/xen-bus.h"
     24 #include "hw/xen/xen-x86.h"
     25 #include "qapi/error.h"
     26 #include "qapi/qapi-commands-migration.h"
     27 #include "qemu/error-report.h"
     28 #include "qemu/main-loop.h"
     29 #include "qemu/range.h"
     30 #include "sysemu/runstate.h"
     31 #include "sysemu/sysemu.h"
     32 #include "sysemu/xen.h"
     33 #include "sysemu/xen-mapcache.h"
     34 #include "trace.h"
     35 
     36 #include <xen/hvm/ioreq.h>
     37 #include <xen/hvm/e820.h>
     38 
     39 //#define DEBUG_XEN_HVM
     40 
     41 #ifdef DEBUG_XEN_HVM
     42 #define DPRINTF(fmt, ...) \
     43     do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0)
     44 #else
     45 #define DPRINTF(fmt, ...) \
     46     do { } while (0)
     47 #endif
     48 
     49 static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi;
     50 static MemoryRegion *framebuffer;
     51 static bool xen_in_migration;
     52 
     53 /* Compatibility with older version */
     54 
     55 /* This allows QEMU to build on a system that has Xen 4.5 or earlier
     56  * installed.  This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h
     57  * needs to be included before this block and hw/xen/xen_common.h needs to
     58  * be included before xen/hvm/ioreq.h
     59  */
     60 #ifndef IOREQ_TYPE_VMWARE_PORT
     61 #define IOREQ_TYPE_VMWARE_PORT  3
     62 struct vmware_regs {
     63     uint32_t esi;
     64     uint32_t edi;
     65     uint32_t ebx;
     66     uint32_t ecx;
     67     uint32_t edx;
     68 };
     69 typedef struct vmware_regs vmware_regs_t;
     70 
     71 struct shared_vmport_iopage {
     72     struct vmware_regs vcpu_vmport_regs[1];
     73 };
     74 typedef struct shared_vmport_iopage shared_vmport_iopage_t;
     75 #endif
     76 
     77 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i)
     78 {
     79     return shared_page->vcpu_ioreq[i].vp_eport;
     80 }
     81 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu)
     82 {
     83     return &shared_page->vcpu_ioreq[vcpu];
     84 }
     85 
     86 #define BUFFER_IO_MAX_DELAY  100
     87 
     88 typedef struct XenPhysmap {
     89     hwaddr start_addr;
     90     ram_addr_t size;
     91     const char *name;
     92     hwaddr phys_offset;
     93 
     94     QLIST_ENTRY(XenPhysmap) list;
     95 } XenPhysmap;
     96 
     97 static QLIST_HEAD(, XenPhysmap) xen_physmap;
     98 
     99 typedef struct XenPciDevice {
    100     PCIDevice *pci_dev;
    101     uint32_t sbdf;
    102     QLIST_ENTRY(XenPciDevice) entry;
    103 } XenPciDevice;
    104 
    105 typedef struct XenIOState {
    106     ioservid_t ioservid;
    107     shared_iopage_t *shared_page;
    108     shared_vmport_iopage_t *shared_vmport_page;
    109     buffered_iopage_t *buffered_io_page;
    110     xenforeignmemory_resource_handle *fres;
    111     QEMUTimer *buffered_io_timer;
    112     CPUState **cpu_by_vcpu_id;
    113     /* the evtchn port for polling the notification, */
    114     evtchn_port_t *ioreq_local_port;
    115     /* evtchn remote and local ports for buffered io */
    116     evtchn_port_t bufioreq_remote_port;
    117     evtchn_port_t bufioreq_local_port;
    118     /* the evtchn fd for polling */
    119     xenevtchn_handle *xce_handle;
    120     /* which vcpu we are serving */
    121     int send_vcpu;
    122 
    123     struct xs_handle *xenstore;
    124     MemoryListener memory_listener;
    125     MemoryListener io_listener;
    126     QLIST_HEAD(, XenPciDevice) dev_list;
    127     DeviceListener device_listener;
    128     hwaddr free_phys_offset;
    129     const XenPhysmap *log_for_dirtybit;
    130     /* Buffer used by xen_sync_dirty_bitmap */
    131     unsigned long *dirty_bitmap;
    132 
    133     Notifier exit;
    134     Notifier suspend;
    135     Notifier wakeup;
    136 } XenIOState;
    137 
    138 /* Xen specific function for piix pci */
    139 
    140 int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
    141 {
    142     return irq_num + (PCI_SLOT(pci_dev->devfn) << 2);
    143 }
    144 
    145 void xen_piix3_set_irq(void *opaque, int irq_num, int level)
    146 {
    147     xen_set_pci_intx_level(xen_domid, 0, 0, irq_num >> 2,
    148                            irq_num & 3, level);
    149 }
    150 
    151 int xen_set_pci_link_route(uint8_t link, uint8_t irq)
    152 {
    153     return xendevicemodel_set_pci_link_route(xen_dmod, xen_domid, link, irq);
    154 }
    155 
    156 int xen_is_pirq_msi(uint32_t msi_data)
    157 {
    158     /* If vector is 0, the msi is remapped into a pirq, passed as
    159      * dest_id.
    160      */
    161     return ((msi_data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT) == 0;
    162 }
    163 
    164 void xen_hvm_inject_msi(uint64_t addr, uint32_t data)
    165 {
    166     xen_inject_msi(xen_domid, addr, data);
    167 }
    168 
    169 static void xen_suspend_notifier(Notifier *notifier, void *data)
    170 {
    171     xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3);
    172 }
    173 
    174 /* Xen Interrupt Controller */
    175 
    176 static void xen_set_irq(void *opaque, int irq, int level)
    177 {
    178     xen_set_isa_irq_level(xen_domid, irq, level);
    179 }
    180 
    181 qemu_irq *xen_interrupt_controller_init(void)
    182 {
    183     return qemu_allocate_irqs(xen_set_irq, NULL, 16);
    184 }
    185 
    186 /* Memory Ops */
    187 
    188 static void xen_ram_init(PCMachineState *pcms,
    189                          ram_addr_t ram_size, MemoryRegion **ram_memory_p)
    190 {
    191     X86MachineState *x86ms = X86_MACHINE(pcms);
    192     MemoryRegion *sysmem = get_system_memory();
    193     ram_addr_t block_len;
    194     uint64_t user_lowmem =
    195         object_property_get_uint(qdev_get_machine(),
    196                                  PC_MACHINE_MAX_RAM_BELOW_4G,
    197                                  &error_abort);
    198 
    199     /* Handle the machine opt max-ram-below-4g.  It is basically doing
    200      * min(xen limit, user limit).
    201      */
    202     if (!user_lowmem) {
    203         user_lowmem = HVM_BELOW_4G_RAM_END; /* default */
    204     }
    205     if (HVM_BELOW_4G_RAM_END <= user_lowmem) {
    206         user_lowmem = HVM_BELOW_4G_RAM_END;
    207     }
    208 
    209     if (ram_size >= user_lowmem) {
    210         x86ms->above_4g_mem_size = ram_size - user_lowmem;
    211         x86ms->below_4g_mem_size = user_lowmem;
    212     } else {
    213         x86ms->above_4g_mem_size = 0;
    214         x86ms->below_4g_mem_size = ram_size;
    215     }
    216     if (!x86ms->above_4g_mem_size) {
    217         block_len = ram_size;
    218     } else {
    219         /*
    220          * Xen does not allocate the memory continuously, it keeps a
    221          * hole of the size computed above or passed in.
    222          */
    223         block_len = (4 * GiB) + x86ms->above_4g_mem_size;
    224     }
    225     memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len,
    226                            &error_fatal);
    227     *ram_memory_p = &ram_memory;
    228 
    229     memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k",
    230                              &ram_memory, 0, 0xa0000);
    231     memory_region_add_subregion(sysmem, 0, &ram_640k);
    232     /* Skip of the VGA IO memory space, it will be registered later by the VGA
    233      * emulated device.
    234      *
    235      * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load
    236      * the Options ROM, so it is registered here as RAM.
    237      */
    238     memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo",
    239                              &ram_memory, 0xc0000,
    240                              x86ms->below_4g_mem_size - 0xc0000);
    241     memory_region_add_subregion(sysmem, 0xc0000, &ram_lo);
    242     if (x86ms->above_4g_mem_size > 0) {
    243         memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi",
    244                                  &ram_memory, 0x100000000ULL,
    245                                  x86ms->above_4g_mem_size);
    246         memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi);
    247     }
    248 }
    249 
    250 void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr,
    251                    Error **errp)
    252 {
    253     unsigned long nr_pfn;
    254     xen_pfn_t *pfn_list;
    255     int i;
    256 
    257     if (runstate_check(RUN_STATE_INMIGRATE)) {
    258         /* RAM already populated in Xen */
    259         fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT
    260                 " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n",
    261                 __func__, size, ram_addr);
    262         return;
    263     }
    264 
    265     if (mr == &ram_memory) {
    266         return;
    267     }
    268 
    269     trace_xen_ram_alloc(ram_addr, size);
    270 
    271     nr_pfn = size >> TARGET_PAGE_BITS;
    272     pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn);
    273 
    274     for (i = 0; i < nr_pfn; i++) {
    275         pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i;
    276     }
    277 
    278     if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) {
    279         error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT,
    280                    ram_addr);
    281     }
    282 
    283     g_free(pfn_list);
    284 }
    285 
    286 static XenPhysmap *get_physmapping(hwaddr start_addr, ram_addr_t size)
    287 {
    288     XenPhysmap *physmap = NULL;
    289 
    290     start_addr &= TARGET_PAGE_MASK;
    291 
    292     QLIST_FOREACH(physmap, &xen_physmap, list) {
    293         if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) {
    294             return physmap;
    295         }
    296     }
    297     return NULL;
    298 }
    299 
    300 static hwaddr xen_phys_offset_to_gaddr(hwaddr phys_offset, ram_addr_t size)
    301 {
    302     hwaddr addr = phys_offset & TARGET_PAGE_MASK;
    303     XenPhysmap *physmap = NULL;
    304 
    305     QLIST_FOREACH(physmap, &xen_physmap, list) {
    306         if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) {
    307             return physmap->start_addr + (phys_offset - physmap->phys_offset);
    308         }
    309     }
    310 
    311     return phys_offset;
    312 }
    313 
    314 #ifdef XEN_COMPAT_PHYSMAP
    315 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap)
    316 {
    317     char path[80], value[17];
    318 
    319     snprintf(path, sizeof(path),
    320             "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr",
    321             xen_domid, (uint64_t)physmap->phys_offset);
    322     snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->start_addr);
    323     if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
    324         return -1;
    325     }
    326     snprintf(path, sizeof(path),
    327             "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size",
    328             xen_domid, (uint64_t)physmap->phys_offset);
    329     snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->size);
    330     if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
    331         return -1;
    332     }
    333     if (physmap->name) {
    334         snprintf(path, sizeof(path),
    335                 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name",
    336                 xen_domid, (uint64_t)physmap->phys_offset);
    337         if (!xs_write(state->xenstore, 0, path,
    338                       physmap->name, strlen(physmap->name))) {
    339             return -1;
    340         }
    341     }
    342     return 0;
    343 }
    344 #else
    345 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap)
    346 {
    347     return 0;
    348 }
    349 #endif
    350 
    351 static int xen_add_to_physmap(XenIOState *state,
    352                               hwaddr start_addr,
    353                               ram_addr_t size,
    354                               MemoryRegion *mr,
    355                               hwaddr offset_within_region)
    356 {
    357     unsigned long nr_pages;
    358     int rc = 0;
    359     XenPhysmap *physmap = NULL;
    360     hwaddr pfn, start_gpfn;
    361     hwaddr phys_offset = memory_region_get_ram_addr(mr);
    362     const char *mr_name;
    363 
    364     if (get_physmapping(start_addr, size)) {
    365         return 0;
    366     }
    367     if (size <= 0) {
    368         return -1;
    369     }
    370 
    371     /* Xen can only handle a single dirty log region for now and we want
    372      * the linear framebuffer to be that region.
    373      * Avoid tracking any regions that is not videoram and avoid tracking
    374      * the legacy vga region. */
    375     if (mr == framebuffer && start_addr > 0xbffff) {
    376         goto go_physmap;
    377     }
    378     return -1;
    379 
    380 go_physmap:
    381     DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n",
    382             start_addr, start_addr + size);
    383 
    384     mr_name = memory_region_name(mr);
    385 
    386     physmap = g_new(XenPhysmap, 1);
    387 
    388     physmap->start_addr = start_addr;
    389     physmap->size = size;
    390     physmap->name = mr_name;
    391     physmap->phys_offset = phys_offset;
    392 
    393     QLIST_INSERT_HEAD(&xen_physmap, physmap, list);
    394 
    395     if (runstate_check(RUN_STATE_INMIGRATE)) {
    396         /* Now when we have a physmap entry we can replace a dummy mapping with
    397          * a real one of guest foreign memory. */
    398         uint8_t *p = xen_replace_cache_entry(phys_offset, start_addr, size);
    399         assert(p && p == memory_region_get_ram_ptr(mr));
    400 
    401         return 0;
    402     }
    403 
    404     pfn = phys_offset >> TARGET_PAGE_BITS;
    405     start_gpfn = start_addr >> TARGET_PAGE_BITS;
    406     nr_pages = size >> TARGET_PAGE_BITS;
    407     rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, nr_pages, pfn,
    408                                         start_gpfn);
    409     if (rc) {
    410         int saved_errno = errno;
    411 
    412         error_report("relocate_memory %lu pages from GFN %"HWADDR_PRIx
    413                      " to GFN %"HWADDR_PRIx" failed: %s",
    414                      nr_pages, pfn, start_gpfn, strerror(saved_errno));
    415         errno = saved_errno;
    416         return -1;
    417     }
    418 
    419     rc = xendevicemodel_pin_memory_cacheattr(xen_dmod, xen_domid,
    420                                    start_addr >> TARGET_PAGE_BITS,
    421                                    (start_addr + size - 1) >> TARGET_PAGE_BITS,
    422                                    XEN_DOMCTL_MEM_CACHEATTR_WB);
    423     if (rc) {
    424         error_report("pin_memory_cacheattr failed: %s", strerror(errno));
    425     }
    426     return xen_save_physmap(state, physmap);
    427 }
    428 
    429 static int xen_remove_from_physmap(XenIOState *state,
    430                                    hwaddr start_addr,
    431                                    ram_addr_t size)
    432 {
    433     int rc = 0;
    434     XenPhysmap *physmap = NULL;
    435     hwaddr phys_offset = 0;
    436 
    437     physmap = get_physmapping(start_addr, size);
    438     if (physmap == NULL) {
    439         return -1;
    440     }
    441 
    442     phys_offset = physmap->phys_offset;
    443     size = physmap->size;
    444 
    445     DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at "
    446             "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset);
    447 
    448     size >>= TARGET_PAGE_BITS;
    449     start_addr >>= TARGET_PAGE_BITS;
    450     phys_offset >>= TARGET_PAGE_BITS;
    451     rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, size, start_addr,
    452                                         phys_offset);
    453     if (rc) {
    454         int saved_errno = errno;
    455 
    456         error_report("relocate_memory "RAM_ADDR_FMT" pages"
    457                      " from GFN %"HWADDR_PRIx
    458                      " to GFN %"HWADDR_PRIx" failed: %s",
    459                      size, start_addr, phys_offset, strerror(saved_errno));
    460         errno = saved_errno;
    461         return -1;
    462     }
    463 
    464     QLIST_REMOVE(physmap, list);
    465     if (state->log_for_dirtybit == physmap) {
    466         state->log_for_dirtybit = NULL;
    467         g_free(state->dirty_bitmap);
    468         state->dirty_bitmap = NULL;
    469     }
    470     g_free(physmap);
    471 
    472     return 0;
    473 }
    474 
    475 static void xen_set_memory(struct MemoryListener *listener,
    476                            MemoryRegionSection *section,
    477                            bool add)
    478 {
    479     XenIOState *state = container_of(listener, XenIOState, memory_listener);
    480     hwaddr start_addr = section->offset_within_address_space;
    481     ram_addr_t size = int128_get64(section->size);
    482     bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA);
    483     hvmmem_type_t mem_type;
    484 
    485     if (section->mr == &ram_memory) {
    486         return;
    487     } else {
    488         if (add) {
    489             xen_map_memory_section(xen_domid, state->ioservid,
    490                                    section);
    491         } else {
    492             xen_unmap_memory_section(xen_domid, state->ioservid,
    493                                      section);
    494         }
    495     }
    496 
    497     if (!memory_region_is_ram(section->mr)) {
    498         return;
    499     }
    500 
    501     if (log_dirty != add) {
    502         return;
    503     }
    504 
    505     trace_xen_client_set_memory(start_addr, size, log_dirty);
    506 
    507     start_addr &= TARGET_PAGE_MASK;
    508     size = TARGET_PAGE_ALIGN(size);
    509 
    510     if (add) {
    511         if (!memory_region_is_rom(section->mr)) {
    512             xen_add_to_physmap(state, start_addr, size,
    513                                section->mr, section->offset_within_region);
    514         } else {
    515             mem_type = HVMMEM_ram_ro;
    516             if (xen_set_mem_type(xen_domid, mem_type,
    517                                  start_addr >> TARGET_PAGE_BITS,
    518                                  size >> TARGET_PAGE_BITS)) {
    519                 DPRINTF("xen_set_mem_type error, addr: "TARGET_FMT_plx"\n",
    520                         start_addr);
    521             }
    522         }
    523     } else {
    524         if (xen_remove_from_physmap(state, start_addr, size) < 0) {
    525             DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr);
    526         }
    527     }
    528 }
    529 
    530 static void xen_region_add(MemoryListener *listener,
    531                            MemoryRegionSection *section)
    532 {
    533     memory_region_ref(section->mr);
    534     xen_set_memory(listener, section, true);
    535 }
    536 
    537 static void xen_region_del(MemoryListener *listener,
    538                            MemoryRegionSection *section)
    539 {
    540     xen_set_memory(listener, section, false);
    541     memory_region_unref(section->mr);
    542 }
    543 
    544 static void xen_io_add(MemoryListener *listener,
    545                        MemoryRegionSection *section)
    546 {
    547     XenIOState *state = container_of(listener, XenIOState, io_listener);
    548     MemoryRegion *mr = section->mr;
    549 
    550     if (mr->ops == &unassigned_io_ops) {
    551         return;
    552     }
    553 
    554     memory_region_ref(mr);
    555 
    556     xen_map_io_section(xen_domid, state->ioservid, section);
    557 }
    558 
    559 static void xen_io_del(MemoryListener *listener,
    560                        MemoryRegionSection *section)
    561 {
    562     XenIOState *state = container_of(listener, XenIOState, io_listener);
    563     MemoryRegion *mr = section->mr;
    564 
    565     if (mr->ops == &unassigned_io_ops) {
    566         return;
    567     }
    568 
    569     xen_unmap_io_section(xen_domid, state->ioservid, section);
    570 
    571     memory_region_unref(mr);
    572 }
    573 
    574 static void xen_device_realize(DeviceListener *listener,
    575                                DeviceState *dev)
    576 {
    577     XenIOState *state = container_of(listener, XenIOState, device_listener);
    578 
    579     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
    580         PCIDevice *pci_dev = PCI_DEVICE(dev);
    581         XenPciDevice *xendev = g_new(XenPciDevice, 1);
    582 
    583         xendev->pci_dev = pci_dev;
    584         xendev->sbdf = PCI_BUILD_BDF(pci_dev_bus_num(pci_dev),
    585                                      pci_dev->devfn);
    586         QLIST_INSERT_HEAD(&state->dev_list, xendev, entry);
    587 
    588         xen_map_pcidev(xen_domid, state->ioservid, pci_dev);
    589     }
    590 }
    591 
    592 static void xen_device_unrealize(DeviceListener *listener,
    593                                  DeviceState *dev)
    594 {
    595     XenIOState *state = container_of(listener, XenIOState, device_listener);
    596 
    597     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
    598         PCIDevice *pci_dev = PCI_DEVICE(dev);
    599         XenPciDevice *xendev, *next;
    600 
    601         xen_unmap_pcidev(xen_domid, state->ioservid, pci_dev);
    602 
    603         QLIST_FOREACH_SAFE(xendev, &state->dev_list, entry, next) {
    604             if (xendev->pci_dev == pci_dev) {
    605                 QLIST_REMOVE(xendev, entry);
    606                 g_free(xendev);
    607                 break;
    608             }
    609         }
    610     }
    611 }
    612 
    613 static void xen_sync_dirty_bitmap(XenIOState *state,
    614                                   hwaddr start_addr,
    615                                   ram_addr_t size)
    616 {
    617     hwaddr npages = size >> TARGET_PAGE_BITS;
    618     const int width = sizeof(unsigned long) * 8;
    619     size_t bitmap_size = DIV_ROUND_UP(npages, width);
    620     int rc, i, j;
    621     const XenPhysmap *physmap = NULL;
    622 
    623     physmap = get_physmapping(start_addr, size);
    624     if (physmap == NULL) {
    625         /* not handled */
    626         return;
    627     }
    628 
    629     if (state->log_for_dirtybit == NULL) {
    630         state->log_for_dirtybit = physmap;
    631         state->dirty_bitmap = g_new(unsigned long, bitmap_size);
    632     } else if (state->log_for_dirtybit != physmap) {
    633         /* Only one range for dirty bitmap can be tracked. */
    634         return;
    635     }
    636 
    637     rc = xen_track_dirty_vram(xen_domid, start_addr >> TARGET_PAGE_BITS,
    638                               npages, state->dirty_bitmap);
    639     if (rc < 0) {
    640 #ifndef ENODATA
    641 #define ENODATA  ENOENT
    642 #endif
    643         if (errno == ENODATA) {
    644             memory_region_set_dirty(framebuffer, 0, size);
    645             DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx
    646                     ", 0x" TARGET_FMT_plx "): %s\n",
    647                     start_addr, start_addr + size, strerror(errno));
    648         }
    649         return;
    650     }
    651 
    652     for (i = 0; i < bitmap_size; i++) {
    653         unsigned long map = state->dirty_bitmap[i];
    654         while (map != 0) {
    655             j = ctzl(map);
    656             map &= ~(1ul << j);
    657             memory_region_set_dirty(framebuffer,
    658                                     (i * width + j) * TARGET_PAGE_SIZE,
    659                                     TARGET_PAGE_SIZE);
    660         };
    661     }
    662 }
    663 
    664 static void xen_log_start(MemoryListener *listener,
    665                           MemoryRegionSection *section,
    666                           int old, int new)
    667 {
    668     XenIOState *state = container_of(listener, XenIOState, memory_listener);
    669 
    670     if (new & ~old & (1 << DIRTY_MEMORY_VGA)) {
    671         xen_sync_dirty_bitmap(state, section->offset_within_address_space,
    672                               int128_get64(section->size));
    673     }
    674 }
    675 
    676 static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section,
    677                          int old, int new)
    678 {
    679     XenIOState *state = container_of(listener, XenIOState, memory_listener);
    680 
    681     if (old & ~new & (1 << DIRTY_MEMORY_VGA)) {
    682         state->log_for_dirtybit = NULL;
    683         g_free(state->dirty_bitmap);
    684         state->dirty_bitmap = NULL;
    685         /* Disable dirty bit tracking */
    686         xen_track_dirty_vram(xen_domid, 0, 0, NULL);
    687     }
    688 }
    689 
    690 static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section)
    691 {
    692     XenIOState *state = container_of(listener, XenIOState, memory_listener);
    693 
    694     xen_sync_dirty_bitmap(state, section->offset_within_address_space,
    695                           int128_get64(section->size));
    696 }
    697 
    698 static void xen_log_global_start(MemoryListener *listener)
    699 {
    700     if (xen_enabled()) {
    701         xen_in_migration = true;
    702     }
    703 }
    704 
    705 static void xen_log_global_stop(MemoryListener *listener)
    706 {
    707     xen_in_migration = false;
    708 }
    709 
    710 static MemoryListener xen_memory_listener = {
    711     .name = "xen-memory",
    712     .region_add = xen_region_add,
    713     .region_del = xen_region_del,
    714     .log_start = xen_log_start,
    715     .log_stop = xen_log_stop,
    716     .log_sync = xen_log_sync,
    717     .log_global_start = xen_log_global_start,
    718     .log_global_stop = xen_log_global_stop,
    719     .priority = 10,
    720 };
    721 
    722 static MemoryListener xen_io_listener = {
    723     .name = "xen-io",
    724     .region_add = xen_io_add,
    725     .region_del = xen_io_del,
    726     .priority = 10,
    727 };
    728 
    729 static DeviceListener xen_device_listener = {
    730     .realize = xen_device_realize,
    731     .unrealize = xen_device_unrealize,
    732 };
    733 
    734 /* get the ioreq packets from share mem */
    735 static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu)
    736 {
    737     ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu);
    738 
    739     if (req->state != STATE_IOREQ_READY) {
    740         DPRINTF("I/O request not ready: "
    741                 "%x, ptr: %x, port: %"PRIx64", "
    742                 "data: %"PRIx64", count: %u, size: %u\n",
    743                 req->state, req->data_is_ptr, req->addr,
    744                 req->data, req->count, req->size);
    745         return NULL;
    746     }
    747 
    748     xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */
    749 
    750     req->state = STATE_IOREQ_INPROCESS;
    751     return req;
    752 }
    753 
    754 /* use poll to get the port notification */
    755 /* ioreq_vec--out,the */
    756 /* retval--the number of ioreq packet */
    757 static ioreq_t *cpu_get_ioreq(XenIOState *state)
    758 {
    759     MachineState *ms = MACHINE(qdev_get_machine());
    760     unsigned int max_cpus = ms->smp.max_cpus;
    761     int i;
    762     evtchn_port_t port;
    763 
    764     port = xenevtchn_pending(state->xce_handle);
    765     if (port == state->bufioreq_local_port) {
    766         timer_mod(state->buffered_io_timer,
    767                 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
    768         return NULL;
    769     }
    770 
    771     if (port != -1) {
    772         for (i = 0; i < max_cpus; i++) {
    773             if (state->ioreq_local_port[i] == port) {
    774                 break;
    775             }
    776         }
    777 
    778         if (i == max_cpus) {
    779             hw_error("Fatal error while trying to get io event!\n");
    780         }
    781 
    782         /* unmask the wanted port again */
    783         xenevtchn_unmask(state->xce_handle, port);
    784 
    785         /* get the io packet from shared memory */
    786         state->send_vcpu = i;
    787         return cpu_get_ioreq_from_shared_memory(state, i);
    788     }
    789 
    790     /* read error or read nothing */
    791     return NULL;
    792 }
    793 
    794 static uint32_t do_inp(uint32_t addr, unsigned long size)
    795 {
    796     switch (size) {
    797         case 1:
    798             return cpu_inb(addr);
    799         case 2:
    800             return cpu_inw(addr);
    801         case 4:
    802             return cpu_inl(addr);
    803         default:
    804             hw_error("inp: bad size: %04x %lx", addr, size);
    805     }
    806 }
    807 
    808 static void do_outp(uint32_t addr,
    809         unsigned long size, uint32_t val)
    810 {
    811     switch (size) {
    812         case 1:
    813             return cpu_outb(addr, val);
    814         case 2:
    815             return cpu_outw(addr, val);
    816         case 4:
    817             return cpu_outl(addr, val);
    818         default:
    819             hw_error("outp: bad size: %04x %lx", addr, size);
    820     }
    821 }
    822 
    823 /*
    824  * Helper functions which read/write an object from/to physical guest
    825  * memory, as part of the implementation of an ioreq.
    826  *
    827  * Equivalent to
    828  *   cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i,
    829  *                          val, req->size, 0/1)
    830  * except without the integer overflow problems.
    831  */
    832 static void rw_phys_req_item(hwaddr addr,
    833                              ioreq_t *req, uint32_t i, void *val, int rw)
    834 {
    835     /* Do everything unsigned so overflow just results in a truncated result
    836      * and accesses to undesired parts of guest memory, which is up
    837      * to the guest */
    838     hwaddr offset = (hwaddr)req->size * i;
    839     if (req->df) {
    840         addr -= offset;
    841     } else {
    842         addr += offset;
    843     }
    844     cpu_physical_memory_rw(addr, val, req->size, rw);
    845 }
    846 
    847 static inline void read_phys_req_item(hwaddr addr,
    848                                       ioreq_t *req, uint32_t i, void *val)
    849 {
    850     rw_phys_req_item(addr, req, i, val, 0);
    851 }
    852 static inline void write_phys_req_item(hwaddr addr,
    853                                        ioreq_t *req, uint32_t i, void *val)
    854 {
    855     rw_phys_req_item(addr, req, i, val, 1);
    856 }
    857 
    858 
    859 static void cpu_ioreq_pio(ioreq_t *req)
    860 {
    861     uint32_t i;
    862 
    863     trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr,
    864                          req->data, req->count, req->size);
    865 
    866     if (req->size > sizeof(uint32_t)) {
    867         hw_error("PIO: bad size (%u)", req->size);
    868     }
    869 
    870     if (req->dir == IOREQ_READ) {
    871         if (!req->data_is_ptr) {
    872             req->data = do_inp(req->addr, req->size);
    873             trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr,
    874                                          req->size);
    875         } else {
    876             uint32_t tmp;
    877 
    878             for (i = 0; i < req->count; i++) {
    879                 tmp = do_inp(req->addr, req->size);
    880                 write_phys_req_item(req->data, req, i, &tmp);
    881             }
    882         }
    883     } else if (req->dir == IOREQ_WRITE) {
    884         if (!req->data_is_ptr) {
    885             trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr,
    886                                           req->size);
    887             do_outp(req->addr, req->size, req->data);
    888         } else {
    889             for (i = 0; i < req->count; i++) {
    890                 uint32_t tmp = 0;
    891 
    892                 read_phys_req_item(req->data, req, i, &tmp);
    893                 do_outp(req->addr, req->size, tmp);
    894             }
    895         }
    896     }
    897 }
    898 
    899 static void cpu_ioreq_move(ioreq_t *req)
    900 {
    901     uint32_t i;
    902 
    903     trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr,
    904                          req->data, req->count, req->size);
    905 
    906     if (req->size > sizeof(req->data)) {
    907         hw_error("MMIO: bad size (%u)", req->size);
    908     }
    909 
    910     if (!req->data_is_ptr) {
    911         if (req->dir == IOREQ_READ) {
    912             for (i = 0; i < req->count; i++) {
    913                 read_phys_req_item(req->addr, req, i, &req->data);
    914             }
    915         } else if (req->dir == IOREQ_WRITE) {
    916             for (i = 0; i < req->count; i++) {
    917                 write_phys_req_item(req->addr, req, i, &req->data);
    918             }
    919         }
    920     } else {
    921         uint64_t tmp;
    922 
    923         if (req->dir == IOREQ_READ) {
    924             for (i = 0; i < req->count; i++) {
    925                 read_phys_req_item(req->addr, req, i, &tmp);
    926                 write_phys_req_item(req->data, req, i, &tmp);
    927             }
    928         } else if (req->dir == IOREQ_WRITE) {
    929             for (i = 0; i < req->count; i++) {
    930                 read_phys_req_item(req->data, req, i, &tmp);
    931                 write_phys_req_item(req->addr, req, i, &tmp);
    932             }
    933         }
    934     }
    935 }
    936 
    937 static void cpu_ioreq_config(XenIOState *state, ioreq_t *req)
    938 {
    939     uint32_t sbdf = req->addr >> 32;
    940     uint32_t reg = req->addr;
    941     XenPciDevice *xendev;
    942 
    943     if (req->size != sizeof(uint8_t) && req->size != sizeof(uint16_t) &&
    944         req->size != sizeof(uint32_t)) {
    945         hw_error("PCI config access: bad size (%u)", req->size);
    946     }
    947 
    948     if (req->count != 1) {
    949         hw_error("PCI config access: bad count (%u)", req->count);
    950     }
    951 
    952     QLIST_FOREACH(xendev, &state->dev_list, entry) {
    953         if (xendev->sbdf != sbdf) {
    954             continue;
    955         }
    956 
    957         if (!req->data_is_ptr) {
    958             if (req->dir == IOREQ_READ) {
    959                 req->data = pci_host_config_read_common(
    960                     xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
    961                     req->size);
    962                 trace_cpu_ioreq_config_read(req, xendev->sbdf, reg,
    963                                             req->size, req->data);
    964             } else if (req->dir == IOREQ_WRITE) {
    965                 trace_cpu_ioreq_config_write(req, xendev->sbdf, reg,
    966                                              req->size, req->data);
    967                 pci_host_config_write_common(
    968                     xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
    969                     req->data, req->size);
    970             }
    971         } else {
    972             uint32_t tmp;
    973 
    974             if (req->dir == IOREQ_READ) {
    975                 tmp = pci_host_config_read_common(
    976                     xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
    977                     req->size);
    978                 trace_cpu_ioreq_config_read(req, xendev->sbdf, reg,
    979                                             req->size, tmp);
    980                 write_phys_req_item(req->data, req, 0, &tmp);
    981             } else if (req->dir == IOREQ_WRITE) {
    982                 read_phys_req_item(req->data, req, 0, &tmp);
    983                 trace_cpu_ioreq_config_write(req, xendev->sbdf, reg,
    984                                              req->size, tmp);
    985                 pci_host_config_write_common(
    986                     xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
    987                     tmp, req->size);
    988             }
    989         }
    990     }
    991 }
    992 
    993 static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req)
    994 {
    995     X86CPU *cpu;
    996     CPUX86State *env;
    997 
    998     cpu = X86_CPU(current_cpu);
    999     env = &cpu->env;
   1000     env->regs[R_EAX] = req->data;
   1001     env->regs[R_EBX] = vmport_regs->ebx;
   1002     env->regs[R_ECX] = vmport_regs->ecx;
   1003     env->regs[R_EDX] = vmport_regs->edx;
   1004     env->regs[R_ESI] = vmport_regs->esi;
   1005     env->regs[R_EDI] = vmport_regs->edi;
   1006 }
   1007 
   1008 static void regs_from_cpu(vmware_regs_t *vmport_regs)
   1009 {
   1010     X86CPU *cpu = X86_CPU(current_cpu);
   1011     CPUX86State *env = &cpu->env;
   1012 
   1013     vmport_regs->ebx = env->regs[R_EBX];
   1014     vmport_regs->ecx = env->regs[R_ECX];
   1015     vmport_regs->edx = env->regs[R_EDX];
   1016     vmport_regs->esi = env->regs[R_ESI];
   1017     vmport_regs->edi = env->regs[R_EDI];
   1018 }
   1019 
   1020 static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req)
   1021 {
   1022     vmware_regs_t *vmport_regs;
   1023 
   1024     assert(state->shared_vmport_page);
   1025     vmport_regs =
   1026         &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu];
   1027     QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs));
   1028 
   1029     current_cpu = state->cpu_by_vcpu_id[state->send_vcpu];
   1030     regs_to_cpu(vmport_regs, req);
   1031     cpu_ioreq_pio(req);
   1032     regs_from_cpu(vmport_regs);
   1033     current_cpu = NULL;
   1034 }
   1035 
   1036 static void handle_ioreq(XenIOState *state, ioreq_t *req)
   1037 {
   1038     trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr,
   1039                        req->addr, req->data, req->count, req->size);
   1040 
   1041     if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) &&
   1042             (req->size < sizeof (target_ulong))) {
   1043         req->data &= ((target_ulong) 1 << (8 * req->size)) - 1;
   1044     }
   1045 
   1046     if (req->dir == IOREQ_WRITE)
   1047         trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr,
   1048                                  req->addr, req->data, req->count, req->size);
   1049 
   1050     switch (req->type) {
   1051         case IOREQ_TYPE_PIO:
   1052             cpu_ioreq_pio(req);
   1053             break;
   1054         case IOREQ_TYPE_COPY:
   1055             cpu_ioreq_move(req);
   1056             break;
   1057         case IOREQ_TYPE_VMWARE_PORT:
   1058             handle_vmport_ioreq(state, req);
   1059             break;
   1060         case IOREQ_TYPE_TIMEOFFSET:
   1061             break;
   1062         case IOREQ_TYPE_INVALIDATE:
   1063             xen_invalidate_map_cache();
   1064             break;
   1065         case IOREQ_TYPE_PCI_CONFIG:
   1066             cpu_ioreq_config(state, req);
   1067             break;
   1068         default:
   1069             hw_error("Invalid ioreq type 0x%x\n", req->type);
   1070     }
   1071     if (req->dir == IOREQ_READ) {
   1072         trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr,
   1073                                 req->addr, req->data, req->count, req->size);
   1074     }
   1075 }
   1076 
   1077 static bool handle_buffered_iopage(XenIOState *state)
   1078 {
   1079     buffered_iopage_t *buf_page = state->buffered_io_page;
   1080     buf_ioreq_t *buf_req = NULL;
   1081     bool handled_ioreq = false;
   1082     ioreq_t req;
   1083     int qw;
   1084 
   1085     if (!buf_page) {
   1086         return 0;
   1087     }
   1088 
   1089     memset(&req, 0x00, sizeof(req));
   1090     req.state = STATE_IOREQ_READY;
   1091     req.count = 1;
   1092     req.dir = IOREQ_WRITE;
   1093 
   1094     for (;;) {
   1095         uint32_t rdptr = buf_page->read_pointer, wrptr;
   1096 
   1097         xen_rmb();
   1098         wrptr = buf_page->write_pointer;
   1099         xen_rmb();
   1100         if (rdptr != buf_page->read_pointer) {
   1101             continue;
   1102         }
   1103         if (rdptr == wrptr) {
   1104             break;
   1105         }
   1106         buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM];
   1107         req.size = 1U << buf_req->size;
   1108         req.addr = buf_req->addr;
   1109         req.data = buf_req->data;
   1110         req.type = buf_req->type;
   1111         xen_rmb();
   1112         qw = (req.size == 8);
   1113         if (qw) {
   1114             if (rdptr + 1 == wrptr) {
   1115                 hw_error("Incomplete quad word buffered ioreq");
   1116             }
   1117             buf_req = &buf_page->buf_ioreq[(rdptr + 1) %
   1118                                            IOREQ_BUFFER_SLOT_NUM];
   1119             req.data |= ((uint64_t)buf_req->data) << 32;
   1120             xen_rmb();
   1121         }
   1122 
   1123         handle_ioreq(state, &req);
   1124 
   1125         /* Only req.data may get updated by handle_ioreq(), albeit even that
   1126          * should not happen as such data would never make it to the guest (we
   1127          * can only usefully see writes here after all).
   1128          */
   1129         assert(req.state == STATE_IOREQ_READY);
   1130         assert(req.count == 1);
   1131         assert(req.dir == IOREQ_WRITE);
   1132         assert(!req.data_is_ptr);
   1133 
   1134         qatomic_add(&buf_page->read_pointer, qw + 1);
   1135         handled_ioreq = true;
   1136     }
   1137 
   1138     return handled_ioreq;
   1139 }
   1140 
   1141 static void handle_buffered_io(void *opaque)
   1142 {
   1143     XenIOState *state = opaque;
   1144 
   1145     if (handle_buffered_iopage(state)) {
   1146         timer_mod(state->buffered_io_timer,
   1147                 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
   1148     } else {
   1149         timer_del(state->buffered_io_timer);
   1150         xenevtchn_unmask(state->xce_handle, state->bufioreq_local_port);
   1151     }
   1152 }
   1153 
   1154 static void cpu_handle_ioreq(void *opaque)
   1155 {
   1156     XenIOState *state = opaque;
   1157     ioreq_t *req = cpu_get_ioreq(state);
   1158 
   1159     handle_buffered_iopage(state);
   1160     if (req) {
   1161         ioreq_t copy = *req;
   1162 
   1163         xen_rmb();
   1164         handle_ioreq(state, &copy);
   1165         req->data = copy.data;
   1166 
   1167         if (req->state != STATE_IOREQ_INPROCESS) {
   1168             fprintf(stderr, "Badness in I/O request ... not in service?!: "
   1169                     "%x, ptr: %x, port: %"PRIx64", "
   1170                     "data: %"PRIx64", count: %u, size: %u, type: %u\n",
   1171                     req->state, req->data_is_ptr, req->addr,
   1172                     req->data, req->count, req->size, req->type);
   1173             destroy_hvm_domain(false);
   1174             return;
   1175         }
   1176 
   1177         xen_wmb(); /* Update ioreq contents /then/ update state. */
   1178 
   1179         /*
   1180          * We do this before we send the response so that the tools
   1181          * have the opportunity to pick up on the reset before the
   1182          * guest resumes and does a hlt with interrupts disabled which
   1183          * causes Xen to powerdown the domain.
   1184          */
   1185         if (runstate_is_running()) {
   1186             ShutdownCause request;
   1187 
   1188             if (qemu_shutdown_requested_get()) {
   1189                 destroy_hvm_domain(false);
   1190             }
   1191             request = qemu_reset_requested_get();
   1192             if (request) {
   1193                 qemu_system_reset(request);
   1194                 destroy_hvm_domain(true);
   1195             }
   1196         }
   1197 
   1198         req->state = STATE_IORESP_READY;
   1199         xenevtchn_notify(state->xce_handle,
   1200                          state->ioreq_local_port[state->send_vcpu]);
   1201     }
   1202 }
   1203 
   1204 static void xen_main_loop_prepare(XenIOState *state)
   1205 {
   1206     int evtchn_fd = -1;
   1207 
   1208     if (state->xce_handle != NULL) {
   1209         evtchn_fd = xenevtchn_fd(state->xce_handle);
   1210     }
   1211 
   1212     state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io,
   1213                                                  state);
   1214 
   1215     if (evtchn_fd != -1) {
   1216         CPUState *cpu_state;
   1217 
   1218         DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__);
   1219         CPU_FOREACH(cpu_state) {
   1220             DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n",
   1221                     __func__, cpu_state->cpu_index, cpu_state);
   1222             state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state;
   1223         }
   1224         qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state);
   1225     }
   1226 }
   1227 
   1228 
   1229 static void xen_hvm_change_state_handler(void *opaque, bool running,
   1230                                          RunState rstate)
   1231 {
   1232     XenIOState *state = opaque;
   1233 
   1234     if (running) {
   1235         xen_main_loop_prepare(state);
   1236     }
   1237 
   1238     xen_set_ioreq_server_state(xen_domid,
   1239                                state->ioservid,
   1240                                (rstate == RUN_STATE_RUNNING));
   1241 }
   1242 
   1243 static void xen_exit_notifier(Notifier *n, void *data)
   1244 {
   1245     XenIOState *state = container_of(n, XenIOState, exit);
   1246 
   1247     xen_destroy_ioreq_server(xen_domid, state->ioservid);
   1248     if (state->fres != NULL) {
   1249         xenforeignmemory_unmap_resource(xen_fmem, state->fres);
   1250     }
   1251 
   1252     xenevtchn_close(state->xce_handle);
   1253     xs_daemon_close(state->xenstore);
   1254 }
   1255 
   1256 #ifdef XEN_COMPAT_PHYSMAP
   1257 static void xen_read_physmap(XenIOState *state)
   1258 {
   1259     XenPhysmap *physmap = NULL;
   1260     unsigned int len, num, i;
   1261     char path[80], *value = NULL;
   1262     char **entries = NULL;
   1263 
   1264     snprintf(path, sizeof(path),
   1265             "/local/domain/0/device-model/%d/physmap", xen_domid);
   1266     entries = xs_directory(state->xenstore, 0, path, &num);
   1267     if (entries == NULL)
   1268         return;
   1269 
   1270     for (i = 0; i < num; i++) {
   1271         physmap = g_new(XenPhysmap, 1);
   1272         physmap->phys_offset = strtoull(entries[i], NULL, 16);
   1273         snprintf(path, sizeof(path),
   1274                 "/local/domain/0/device-model/%d/physmap/%s/start_addr",
   1275                 xen_domid, entries[i]);
   1276         value = xs_read(state->xenstore, 0, path, &len);
   1277         if (value == NULL) {
   1278             g_free(physmap);
   1279             continue;
   1280         }
   1281         physmap->start_addr = strtoull(value, NULL, 16);
   1282         free(value);
   1283 
   1284         snprintf(path, sizeof(path),
   1285                 "/local/domain/0/device-model/%d/physmap/%s/size",
   1286                 xen_domid, entries[i]);
   1287         value = xs_read(state->xenstore, 0, path, &len);
   1288         if (value == NULL) {
   1289             g_free(physmap);
   1290             continue;
   1291         }
   1292         physmap->size = strtoull(value, NULL, 16);
   1293         free(value);
   1294 
   1295         snprintf(path, sizeof(path),
   1296                 "/local/domain/0/device-model/%d/physmap/%s/name",
   1297                 xen_domid, entries[i]);
   1298         physmap->name = xs_read(state->xenstore, 0, path, &len);
   1299 
   1300         QLIST_INSERT_HEAD(&xen_physmap, physmap, list);
   1301     }
   1302     free(entries);
   1303 }
   1304 #else
   1305 static void xen_read_physmap(XenIOState *state)
   1306 {
   1307 }
   1308 #endif
   1309 
   1310 static void xen_wakeup_notifier(Notifier *notifier, void *data)
   1311 {
   1312     xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0);
   1313 }
   1314 
   1315 static int xen_map_ioreq_server(XenIOState *state)
   1316 {
   1317     void *addr = NULL;
   1318     xen_pfn_t ioreq_pfn;
   1319     xen_pfn_t bufioreq_pfn;
   1320     evtchn_port_t bufioreq_evtchn;
   1321     int rc;
   1322 
   1323     /*
   1324      * Attempt to map using the resource API and fall back to normal
   1325      * foreign mapping if this is not supported.
   1326      */
   1327     QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_bufioreq != 0);
   1328     QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_ioreq(0) != 1);
   1329     state->fres = xenforeignmemory_map_resource(xen_fmem, xen_domid,
   1330                                          XENMEM_resource_ioreq_server,
   1331                                          state->ioservid, 0, 2,
   1332                                          &addr,
   1333                                          PROT_READ | PROT_WRITE, 0);
   1334     if (state->fres != NULL) {
   1335         trace_xen_map_resource_ioreq(state->ioservid, addr);
   1336         state->buffered_io_page = addr;
   1337         state->shared_page = addr + TARGET_PAGE_SIZE;
   1338     } else if (errno != EOPNOTSUPP) {
   1339         error_report("failed to map ioreq server resources: error %d handle=%p",
   1340                      errno, xen_xc);
   1341         return -1;
   1342     }
   1343 
   1344     rc = xen_get_ioreq_server_info(xen_domid, state->ioservid,
   1345                                    (state->shared_page == NULL) ?
   1346                                    &ioreq_pfn : NULL,
   1347                                    (state->buffered_io_page == NULL) ?
   1348                                    &bufioreq_pfn : NULL,
   1349                                    &bufioreq_evtchn);
   1350     if (rc < 0) {
   1351         error_report("failed to get ioreq server info: error %d handle=%p",
   1352                      errno, xen_xc);
   1353         return rc;
   1354     }
   1355 
   1356     if (state->shared_page == NULL) {
   1357         DPRINTF("shared page at pfn %lx\n", ioreq_pfn);
   1358 
   1359         state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid,
   1360                                                   PROT_READ | PROT_WRITE,
   1361                                                   1, &ioreq_pfn, NULL);
   1362         if (state->shared_page == NULL) {
   1363             error_report("map shared IO page returned error %d handle=%p",
   1364                          errno, xen_xc);
   1365         }
   1366     }
   1367 
   1368     if (state->buffered_io_page == NULL) {
   1369         DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn);
   1370 
   1371         state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid,
   1372                                                        PROT_READ | PROT_WRITE,
   1373                                                        1, &bufioreq_pfn,
   1374                                                        NULL);
   1375         if (state->buffered_io_page == NULL) {
   1376             error_report("map buffered IO page returned error %d", errno);
   1377             return -1;
   1378         }
   1379     }
   1380 
   1381     if (state->shared_page == NULL || state->buffered_io_page == NULL) {
   1382         return -1;
   1383     }
   1384 
   1385     DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn);
   1386 
   1387     state->bufioreq_remote_port = bufioreq_evtchn;
   1388 
   1389     return 0;
   1390 }
   1391 
   1392 void xen_hvm_init_pc(PCMachineState *pcms, MemoryRegion **ram_memory)
   1393 {
   1394     MachineState *ms = MACHINE(pcms);
   1395     unsigned int max_cpus = ms->smp.max_cpus;
   1396     int i, rc;
   1397     xen_pfn_t ioreq_pfn;
   1398     XenIOState *state;
   1399 
   1400     state = g_new0(XenIOState, 1);
   1401 
   1402     state->xce_handle = xenevtchn_open(NULL, 0);
   1403     if (state->xce_handle == NULL) {
   1404         perror("xen: event channel open");
   1405         goto err;
   1406     }
   1407 
   1408     state->xenstore = xs_daemon_open();
   1409     if (state->xenstore == NULL) {
   1410         perror("xen: xenstore open");
   1411         goto err;
   1412     }
   1413 
   1414     xen_create_ioreq_server(xen_domid, &state->ioservid);
   1415 
   1416     state->exit.notify = xen_exit_notifier;
   1417     qemu_add_exit_notifier(&state->exit);
   1418 
   1419     state->suspend.notify = xen_suspend_notifier;
   1420     qemu_register_suspend_notifier(&state->suspend);
   1421 
   1422     state->wakeup.notify = xen_wakeup_notifier;
   1423     qemu_register_wakeup_notifier(&state->wakeup);
   1424 
   1425     /*
   1426      * Register wake-up support in QMP query-current-machine API
   1427      */
   1428     qemu_register_wakeup_support();
   1429 
   1430     rc = xen_map_ioreq_server(state);
   1431     if (rc < 0) {
   1432         goto err;
   1433     }
   1434 
   1435     rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn);
   1436     if (!rc) {
   1437         DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn);
   1438         state->shared_vmport_page =
   1439             xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE,
   1440                                  1, &ioreq_pfn, NULL);
   1441         if (state->shared_vmport_page == NULL) {
   1442             error_report("map shared vmport IO page returned error %d handle=%p",
   1443                          errno, xen_xc);
   1444             goto err;
   1445         }
   1446     } else if (rc != -ENOSYS) {
   1447         error_report("get vmport regs pfn returned error %d, rc=%d",
   1448                      errno, rc);
   1449         goto err;
   1450     }
   1451 
   1452     /* Note: cpus is empty at this point in init */
   1453     state->cpu_by_vcpu_id = g_new0(CPUState *, max_cpus);
   1454 
   1455     rc = xen_set_ioreq_server_state(xen_domid, state->ioservid, true);
   1456     if (rc < 0) {
   1457         error_report("failed to enable ioreq server info: error %d handle=%p",
   1458                      errno, xen_xc);
   1459         goto err;
   1460     }
   1461 
   1462     state->ioreq_local_port = g_new0(evtchn_port_t, max_cpus);
   1463 
   1464     /* FIXME: how about if we overflow the page here? */
   1465     for (i = 0; i < max_cpus; i++) {
   1466         rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
   1467                                         xen_vcpu_eport(state->shared_page, i));
   1468         if (rc == -1) {
   1469             error_report("shared evtchn %d bind error %d", i, errno);
   1470             goto err;
   1471         }
   1472         state->ioreq_local_port[i] = rc;
   1473     }
   1474 
   1475     rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
   1476                                     state->bufioreq_remote_port);
   1477     if (rc == -1) {
   1478         error_report("buffered evtchn bind error %d", errno);
   1479         goto err;
   1480     }
   1481     state->bufioreq_local_port = rc;
   1482 
   1483     /* Init RAM management */
   1484 #ifdef XEN_COMPAT_PHYSMAP
   1485     xen_map_cache_init(xen_phys_offset_to_gaddr, state);
   1486 #else
   1487     xen_map_cache_init(NULL, state);
   1488 #endif
   1489     xen_ram_init(pcms, ms->ram_size, ram_memory);
   1490 
   1491     qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state);
   1492 
   1493     state->memory_listener = xen_memory_listener;
   1494     memory_listener_register(&state->memory_listener, &address_space_memory);
   1495     state->log_for_dirtybit = NULL;
   1496 
   1497     state->io_listener = xen_io_listener;
   1498     memory_listener_register(&state->io_listener, &address_space_io);
   1499 
   1500     state->device_listener = xen_device_listener;
   1501     QLIST_INIT(&state->dev_list);
   1502     device_listener_register(&state->device_listener);
   1503 
   1504     xen_bus_init();
   1505 
   1506     /* Initialize backend core & drivers */
   1507     if (xen_be_init() != 0) {
   1508         error_report("xen backend core setup failed");
   1509         goto err;
   1510     }
   1511     xen_be_register_common();
   1512 
   1513     QLIST_INIT(&xen_physmap);
   1514     xen_read_physmap(state);
   1515 
   1516     /* Disable ACPI build because Xen handles it */
   1517     pcms->acpi_build_enabled = false;
   1518 
   1519     return;
   1520 
   1521 err:
   1522     error_report("xen hardware virtual machine initialisation failed");
   1523     exit(1);
   1524 }
   1525 
   1526 void destroy_hvm_domain(bool reboot)
   1527 {
   1528     xc_interface *xc_handle;
   1529     int sts;
   1530     int rc;
   1531 
   1532     unsigned int reason = reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff;
   1533 
   1534     if (xen_dmod) {
   1535         rc = xendevicemodel_shutdown(xen_dmod, xen_domid, reason);
   1536         if (!rc) {
   1537             return;
   1538         }
   1539         if (errno != ENOTTY /* old Xen */) {
   1540             perror("xendevicemodel_shutdown failed");
   1541         }
   1542         /* well, try the old thing then */
   1543     }
   1544 
   1545     xc_handle = xc_interface_open(0, 0, 0);
   1546     if (xc_handle == NULL) {
   1547         fprintf(stderr, "Cannot acquire xenctrl handle\n");
   1548     } else {
   1549         sts = xc_domain_shutdown(xc_handle, xen_domid, reason);
   1550         if (sts != 0) {
   1551             fprintf(stderr, "xc_domain_shutdown failed to issue %s, "
   1552                     "sts %d, %s\n", reboot ? "reboot" : "poweroff",
   1553                     sts, strerror(errno));
   1554         } else {
   1555             fprintf(stderr, "Issued domain %d %s\n", xen_domid,
   1556                     reboot ? "reboot" : "poweroff");
   1557         }
   1558         xc_interface_close(xc_handle);
   1559     }
   1560 }
   1561 
   1562 void xen_register_framebuffer(MemoryRegion *mr)
   1563 {
   1564     framebuffer = mr;
   1565 }
   1566 
   1567 void xen_shutdown_fatal_error(const char *fmt, ...)
   1568 {
   1569     va_list ap;
   1570 
   1571     va_start(ap, fmt);
   1572     vfprintf(stderr, fmt, ap);
   1573     va_end(ap);
   1574     fprintf(stderr, "Will destroy the domain.\n");
   1575     /* destroy the domain */
   1576     qemu_system_shutdown_request(SHUTDOWN_CAUSE_HOST_ERROR);
   1577 }
   1578 
   1579 void xen_hvm_modified_memory(ram_addr_t start, ram_addr_t length)
   1580 {
   1581     if (unlikely(xen_in_migration)) {
   1582         int rc;
   1583         ram_addr_t start_pfn, nb_pages;
   1584 
   1585         start = xen_phys_offset_to_gaddr(start, length);
   1586 
   1587         if (length == 0) {
   1588             length = TARGET_PAGE_SIZE;
   1589         }
   1590         start_pfn = start >> TARGET_PAGE_BITS;
   1591         nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS)
   1592             - start_pfn;
   1593         rc = xen_modified_memory(xen_domid, start_pfn, nb_pages);
   1594         if (rc) {
   1595             fprintf(stderr,
   1596                     "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n",
   1597                     __func__, start, nb_pages, errno, strerror(errno));
   1598         }
   1599     }
   1600 }
   1601 
   1602 void qmp_xen_set_global_dirty_log(bool enable, Error **errp)
   1603 {
   1604     if (enable) {
   1605         memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
   1606     } else {
   1607         memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
   1608     }
   1609 }