qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

intel_iommu.c (135828B)


      1 /*
      2  * QEMU emulation of an Intel IOMMU (VT-d)
      3  *   (DMA Remapping device)
      4  *
      5  * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
      6  * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
      7  *
      8  * This program is free software; you can redistribute it and/or modify
      9  * it under the terms of the GNU General Public License as published by
     10  * the Free Software Foundation; either version 2 of the License, or
     11  * (at your option) any later version.
     12 
     13  * This program is distributed in the hope that it will be useful,
     14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     16  * GNU General Public License for more details.
     17 
     18  * You should have received a copy of the GNU General Public License along
     19  * with this program; if not, see <http://www.gnu.org/licenses/>.
     20  */
     21 
     22 #include "qemu/osdep.h"
     23 #include "qemu/error-report.h"
     24 #include "qemu/main-loop.h"
     25 #include "qapi/error.h"
     26 #include "hw/sysbus.h"
     27 #include "intel_iommu_internal.h"
     28 #include "hw/pci/pci.h"
     29 #include "hw/pci/pci_bus.h"
     30 #include "hw/qdev-properties.h"
     31 #include "hw/i386/pc.h"
     32 #include "hw/i386/apic-msidef.h"
     33 #include "hw/i386/x86-iommu.h"
     34 #include "hw/pci-host/q35.h"
     35 #include "sysemu/kvm.h"
     36 #include "sysemu/dma.h"
     37 #include "sysemu/sysemu.h"
     38 #include "hw/i386/apic_internal.h"
     39 #include "kvm/kvm_i386.h"
     40 #include "migration/vmstate.h"
     41 #include "trace.h"
     42 
     43 /* context entry operations */
     44 #define VTD_CE_GET_RID2PASID(ce) \
     45     ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
     46 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \
     47     ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
     48 
     49 /* pe operations */
     50 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
     51 #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
     52 
     53 /*
     54  * PCI bus number (or SID) is not reliable since the device is usaully
     55  * initalized before guest can configure the PCI bridge
     56  * (SECONDARY_BUS_NUMBER).
     57  */
     58 struct vtd_as_key {
     59     PCIBus *bus;
     60     uint8_t devfn;
     61     uint32_t pasid;
     62 };
     63 
     64 struct vtd_iotlb_key {
     65     uint64_t gfn;
     66     uint32_t pasid;
     67     uint32_t level;
     68     uint16_t sid;
     69 };
     70 
     71 static void vtd_address_space_refresh_all(IntelIOMMUState *s);
     72 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
     73 
     74 static void vtd_panic_require_caching_mode(void)
     75 {
     76     error_report("We need to set caching-mode=on for intel-iommu to enable "
     77                  "device assignment with IOMMU protection.");
     78     exit(1);
     79 }
     80 
     81 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
     82                             uint64_t wmask, uint64_t w1cmask)
     83 {
     84     stq_le_p(&s->csr[addr], val);
     85     stq_le_p(&s->wmask[addr], wmask);
     86     stq_le_p(&s->w1cmask[addr], w1cmask);
     87 }
     88 
     89 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
     90 {
     91     stq_le_p(&s->womask[addr], mask);
     92 }
     93 
     94 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
     95                             uint32_t wmask, uint32_t w1cmask)
     96 {
     97     stl_le_p(&s->csr[addr], val);
     98     stl_le_p(&s->wmask[addr], wmask);
     99     stl_le_p(&s->w1cmask[addr], w1cmask);
    100 }
    101 
    102 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
    103 {
    104     stl_le_p(&s->womask[addr], mask);
    105 }
    106 
    107 /* "External" get/set operations */
    108 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
    109 {
    110     uint64_t oldval = ldq_le_p(&s->csr[addr]);
    111     uint64_t wmask = ldq_le_p(&s->wmask[addr]);
    112     uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
    113     stq_le_p(&s->csr[addr],
    114              ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
    115 }
    116 
    117 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
    118 {
    119     uint32_t oldval = ldl_le_p(&s->csr[addr]);
    120     uint32_t wmask = ldl_le_p(&s->wmask[addr]);
    121     uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
    122     stl_le_p(&s->csr[addr],
    123              ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
    124 }
    125 
    126 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
    127 {
    128     uint64_t val = ldq_le_p(&s->csr[addr]);
    129     uint64_t womask = ldq_le_p(&s->womask[addr]);
    130     return val & ~womask;
    131 }
    132 
    133 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
    134 {
    135     uint32_t val = ldl_le_p(&s->csr[addr]);
    136     uint32_t womask = ldl_le_p(&s->womask[addr]);
    137     return val & ~womask;
    138 }
    139 
    140 /* "Internal" get/set operations */
    141 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
    142 {
    143     return ldq_le_p(&s->csr[addr]);
    144 }
    145 
    146 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
    147 {
    148     return ldl_le_p(&s->csr[addr]);
    149 }
    150 
    151 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
    152 {
    153     stq_le_p(&s->csr[addr], val);
    154 }
    155 
    156 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
    157                                         uint32_t clear, uint32_t mask)
    158 {
    159     uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
    160     stl_le_p(&s->csr[addr], new_val);
    161     return new_val;
    162 }
    163 
    164 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
    165                                         uint64_t clear, uint64_t mask)
    166 {
    167     uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
    168     stq_le_p(&s->csr[addr], new_val);
    169     return new_val;
    170 }
    171 
    172 static inline void vtd_iommu_lock(IntelIOMMUState *s)
    173 {
    174     qemu_mutex_lock(&s->iommu_lock);
    175 }
    176 
    177 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
    178 {
    179     qemu_mutex_unlock(&s->iommu_lock);
    180 }
    181 
    182 static void vtd_update_scalable_state(IntelIOMMUState *s)
    183 {
    184     uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
    185 
    186     if (s->scalable_mode) {
    187         s->root_scalable = val & VTD_RTADDR_SMT;
    188     }
    189 }
    190 
    191 static void vtd_update_iq_dw(IntelIOMMUState *s)
    192 {
    193     uint64_t val = vtd_get_quad_raw(s, DMAR_IQA_REG);
    194 
    195     if (s->ecap & VTD_ECAP_SMTS &&
    196         val & VTD_IQA_DW_MASK) {
    197         s->iq_dw = true;
    198     } else {
    199         s->iq_dw = false;
    200     }
    201 }
    202 
    203 /* Whether the address space needs to notify new mappings */
    204 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
    205 {
    206     return as->notifier_flags & IOMMU_NOTIFIER_MAP;
    207 }
    208 
    209 /* GHashTable functions */
    210 static gboolean vtd_iotlb_equal(gconstpointer v1, gconstpointer v2)
    211 {
    212     const struct vtd_iotlb_key *key1 = v1;
    213     const struct vtd_iotlb_key *key2 = v2;
    214 
    215     return key1->sid == key2->sid &&
    216            key1->pasid == key2->pasid &&
    217            key1->level == key2->level &&
    218            key1->gfn == key2->gfn;
    219 }
    220 
    221 static guint vtd_iotlb_hash(gconstpointer v)
    222 {
    223     const struct vtd_iotlb_key *key = v;
    224 
    225     return key->gfn | ((key->sid) << VTD_IOTLB_SID_SHIFT) |
    226            (key->level) << VTD_IOTLB_LVL_SHIFT |
    227            (key->pasid) << VTD_IOTLB_PASID_SHIFT;
    228 }
    229 
    230 static gboolean vtd_as_equal(gconstpointer v1, gconstpointer v2)
    231 {
    232     const struct vtd_as_key *key1 = v1;
    233     const struct vtd_as_key *key2 = v2;
    234 
    235     return (key1->bus == key2->bus) && (key1->devfn == key2->devfn) &&
    236            (key1->pasid == key2->pasid);
    237 }
    238 
    239 /*
    240  * Note that we use pointer to PCIBus as the key, so hashing/shifting
    241  * based on the pointer value is intended. Note that we deal with
    242  * collisions through vtd_as_equal().
    243  */
    244 static guint vtd_as_hash(gconstpointer v)
    245 {
    246     const struct vtd_as_key *key = v;
    247     guint value = (guint)(uintptr_t)key->bus;
    248 
    249     return (guint)(value << 8 | key->devfn);
    250 }
    251 
    252 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
    253                                           gpointer user_data)
    254 {
    255     VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
    256     uint16_t domain_id = *(uint16_t *)user_data;
    257     return entry->domain_id == domain_id;
    258 }
    259 
    260 /* The shift of an addr for a certain level of paging structure */
    261 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
    262 {
    263     assert(level != 0);
    264     return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
    265 }
    266 
    267 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
    268 {
    269     return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
    270 }
    271 
    272 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
    273                                         gpointer user_data)
    274 {
    275     VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
    276     VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
    277     uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
    278     uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
    279     return (entry->domain_id == info->domain_id) &&
    280             (((entry->gfn & info->mask) == gfn) ||
    281              (entry->gfn == gfn_tlb));
    282 }
    283 
    284 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
    285  * IntelIOMMUState to 1.  Must be called with IOMMU lock held.
    286  */
    287 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
    288 {
    289     VTDAddressSpace *vtd_as;
    290     GHashTableIter as_it;
    291 
    292     trace_vtd_context_cache_reset();
    293 
    294     g_hash_table_iter_init(&as_it, s->vtd_address_spaces);
    295 
    296     while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) {
    297         vtd_as->context_cache_entry.context_cache_gen = 0;
    298     }
    299     s->context_cache_gen = 1;
    300 }
    301 
    302 /* Must be called with IOMMU lock held. */
    303 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
    304 {
    305     assert(s->iotlb);
    306     g_hash_table_remove_all(s->iotlb);
    307 }
    308 
    309 static void vtd_reset_iotlb(IntelIOMMUState *s)
    310 {
    311     vtd_iommu_lock(s);
    312     vtd_reset_iotlb_locked(s);
    313     vtd_iommu_unlock(s);
    314 }
    315 
    316 static void vtd_reset_caches(IntelIOMMUState *s)
    317 {
    318     vtd_iommu_lock(s);
    319     vtd_reset_iotlb_locked(s);
    320     vtd_reset_context_cache_locked(s);
    321     vtd_iommu_unlock(s);
    322 }
    323 
    324 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
    325 {
    326     return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
    327 }
    328 
    329 /* Must be called with IOMMU lock held */
    330 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
    331                                        uint32_t pasid, hwaddr addr)
    332 {
    333     struct vtd_iotlb_key key;
    334     VTDIOTLBEntry *entry;
    335     int level;
    336 
    337     for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
    338         key.gfn = vtd_get_iotlb_gfn(addr, level);
    339         key.level = level;
    340         key.sid = source_id;
    341         key.pasid = pasid;
    342         entry = g_hash_table_lookup(s->iotlb, &key);
    343         if (entry) {
    344             goto out;
    345         }
    346     }
    347 
    348 out:
    349     return entry;
    350 }
    351 
    352 /* Must be with IOMMU lock held */
    353 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
    354                              uint16_t domain_id, hwaddr addr, uint64_t slpte,
    355                              uint8_t access_flags, uint32_t level,
    356                              uint32_t pasid)
    357 {
    358     VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
    359     struct vtd_iotlb_key *key = g_malloc(sizeof(*key));
    360     uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
    361 
    362     trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
    363     if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
    364         trace_vtd_iotlb_reset("iotlb exceeds size limit");
    365         vtd_reset_iotlb_locked(s);
    366     }
    367 
    368     entry->gfn = gfn;
    369     entry->domain_id = domain_id;
    370     entry->slpte = slpte;
    371     entry->access_flags = access_flags;
    372     entry->mask = vtd_slpt_level_page_mask(level);
    373     entry->pasid = pasid;
    374 
    375     key->gfn = gfn;
    376     key->sid = source_id;
    377     key->level = level;
    378     key->pasid = pasid;
    379 
    380     g_hash_table_replace(s->iotlb, key, entry);
    381 }
    382 
    383 /* Given the reg addr of both the message data and address, generate an
    384  * interrupt via MSI.
    385  */
    386 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
    387                                    hwaddr mesg_data_reg)
    388 {
    389     MSIMessage msi;
    390 
    391     assert(mesg_data_reg < DMAR_REG_SIZE);
    392     assert(mesg_addr_reg < DMAR_REG_SIZE);
    393 
    394     msi.address = vtd_get_long_raw(s, mesg_addr_reg);
    395     msi.data = vtd_get_long_raw(s, mesg_data_reg);
    396 
    397     trace_vtd_irq_generate(msi.address, msi.data);
    398 
    399     apic_get_class()->send_msi(&msi);
    400 }
    401 
    402 /* Generate a fault event to software via MSI if conditions are met.
    403  * Notice that the value of FSTS_REG being passed to it should be the one
    404  * before any update.
    405  */
    406 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
    407 {
    408     if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
    409         pre_fsts & VTD_FSTS_IQE) {
    410         error_report_once("There are previous interrupt conditions "
    411                           "to be serviced by software, fault event "
    412                           "is not generated");
    413         return;
    414     }
    415     vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
    416     if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
    417         error_report_once("Interrupt Mask set, irq is not generated");
    418     } else {
    419         vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
    420         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
    421     }
    422 }
    423 
    424 /* Check if the Fault (F) field of the Fault Recording Register referenced by
    425  * @index is Set.
    426  */
    427 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
    428 {
    429     /* Each reg is 128-bit */
    430     hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
    431     addr += 8; /* Access the high 64-bit half */
    432 
    433     assert(index < DMAR_FRCD_REG_NR);
    434 
    435     return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
    436 }
    437 
    438 /* Update the PPF field of Fault Status Register.
    439  * Should be called whenever change the F field of any fault recording
    440  * registers.
    441  */
    442 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
    443 {
    444     uint32_t i;
    445     uint32_t ppf_mask = 0;
    446 
    447     for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
    448         if (vtd_is_frcd_set(s, i)) {
    449             ppf_mask = VTD_FSTS_PPF;
    450             break;
    451         }
    452     }
    453     vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
    454     trace_vtd_fsts_ppf(!!ppf_mask);
    455 }
    456 
    457 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
    458 {
    459     /* Each reg is 128-bit */
    460     hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
    461     addr += 8; /* Access the high 64-bit half */
    462 
    463     assert(index < DMAR_FRCD_REG_NR);
    464 
    465     vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
    466     vtd_update_fsts_ppf(s);
    467 }
    468 
    469 /* Must not update F field now, should be done later */
    470 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
    471                             uint16_t source_id, hwaddr addr,
    472                             VTDFaultReason fault, bool is_write,
    473                             bool is_pasid, uint32_t pasid)
    474 {
    475     uint64_t hi = 0, lo;
    476     hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
    477 
    478     assert(index < DMAR_FRCD_REG_NR);
    479 
    480     lo = VTD_FRCD_FI(addr);
    481     hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault) |
    482          VTD_FRCD_PV(pasid) | VTD_FRCD_PP(is_pasid);
    483     if (!is_write) {
    484         hi |= VTD_FRCD_T;
    485     }
    486     vtd_set_quad_raw(s, frcd_reg_addr, lo);
    487     vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
    488 
    489     trace_vtd_frr_new(index, hi, lo);
    490 }
    491 
    492 /* Try to collapse multiple pending faults from the same requester */
    493 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
    494 {
    495     uint32_t i;
    496     uint64_t frcd_reg;
    497     hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
    498 
    499     for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
    500         frcd_reg = vtd_get_quad_raw(s, addr);
    501         if ((frcd_reg & VTD_FRCD_F) &&
    502             ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
    503             return true;
    504         }
    505         addr += 16; /* 128-bit for each */
    506     }
    507     return false;
    508 }
    509 
    510 /* Log and report an DMAR (address translation) fault to software */
    511 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
    512                                   hwaddr addr, VTDFaultReason fault,
    513                                   bool is_write, bool is_pasid,
    514                                   uint32_t pasid)
    515 {
    516     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
    517 
    518     assert(fault < VTD_FR_MAX);
    519 
    520     trace_vtd_dmar_fault(source_id, fault, addr, is_write);
    521 
    522     if (fsts_reg & VTD_FSTS_PFO) {
    523         error_report_once("New fault is not recorded due to "
    524                           "Primary Fault Overflow");
    525         return;
    526     }
    527 
    528     if (vtd_try_collapse_fault(s, source_id)) {
    529         error_report_once("New fault is not recorded due to "
    530                           "compression of faults");
    531         return;
    532     }
    533 
    534     if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
    535         error_report_once("Next Fault Recording Reg is used, "
    536                           "new fault is not recorded, set PFO field");
    537         vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
    538         return;
    539     }
    540 
    541     vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault,
    542                     is_write, is_pasid, pasid);
    543 
    544     if (fsts_reg & VTD_FSTS_PPF) {
    545         error_report_once("There are pending faults already, "
    546                           "fault event is not generated");
    547         vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
    548         s->next_frcd_reg++;
    549         if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
    550             s->next_frcd_reg = 0;
    551         }
    552     } else {
    553         vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
    554                                 VTD_FSTS_FRI(s->next_frcd_reg));
    555         vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
    556         s->next_frcd_reg++;
    557         if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
    558             s->next_frcd_reg = 0;
    559         }
    560         /* This case actually cause the PPF to be Set.
    561          * So generate fault event (interrupt).
    562          */
    563          vtd_generate_fault_event(s, fsts_reg);
    564     }
    565 }
    566 
    567 /* Handle Invalidation Queue Errors of queued invalidation interface error
    568  * conditions.
    569  */
    570 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
    571 {
    572     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
    573 
    574     vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
    575     vtd_generate_fault_event(s, fsts_reg);
    576 }
    577 
    578 /* Set the IWC field and try to generate an invalidation completion interrupt */
    579 static void vtd_generate_completion_event(IntelIOMMUState *s)
    580 {
    581     if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
    582         trace_vtd_inv_desc_wait_irq("One pending, skip current");
    583         return;
    584     }
    585     vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
    586     vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
    587     if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
    588         trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
    589                                     "new event not generated");
    590         return;
    591     } else {
    592         /* Generate the interrupt event */
    593         trace_vtd_inv_desc_wait_irq("Generating complete event");
    594         vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
    595         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
    596     }
    597 }
    598 
    599 static inline bool vtd_root_entry_present(IntelIOMMUState *s,
    600                                           VTDRootEntry *re,
    601                                           uint8_t devfn)
    602 {
    603     if (s->root_scalable && devfn > UINT8_MAX / 2) {
    604         return re->hi & VTD_ROOT_ENTRY_P;
    605     }
    606 
    607     return re->lo & VTD_ROOT_ENTRY_P;
    608 }
    609 
    610 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
    611                               VTDRootEntry *re)
    612 {
    613     dma_addr_t addr;
    614 
    615     addr = s->root + index * sizeof(*re);
    616     if (dma_memory_read(&address_space_memory, addr,
    617                         re, sizeof(*re), MEMTXATTRS_UNSPECIFIED)) {
    618         re->lo = 0;
    619         return -VTD_FR_ROOT_TABLE_INV;
    620     }
    621     re->lo = le64_to_cpu(re->lo);
    622     re->hi = le64_to_cpu(re->hi);
    623     return 0;
    624 }
    625 
    626 static inline bool vtd_ce_present(VTDContextEntry *context)
    627 {
    628     return context->lo & VTD_CONTEXT_ENTRY_P;
    629 }
    630 
    631 static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
    632                                            VTDRootEntry *re,
    633                                            uint8_t index,
    634                                            VTDContextEntry *ce)
    635 {
    636     dma_addr_t addr, ce_size;
    637 
    638     /* we have checked that root entry is present */
    639     ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
    640               VTD_CTX_ENTRY_LEGACY_SIZE;
    641 
    642     if (s->root_scalable && index > UINT8_MAX / 2) {
    643         index = index & (~VTD_DEVFN_CHECK_MASK);
    644         addr = re->hi & VTD_ROOT_ENTRY_CTP;
    645     } else {
    646         addr = re->lo & VTD_ROOT_ENTRY_CTP;
    647     }
    648 
    649     addr = addr + index * ce_size;
    650     if (dma_memory_read(&address_space_memory, addr,
    651                         ce, ce_size, MEMTXATTRS_UNSPECIFIED)) {
    652         return -VTD_FR_CONTEXT_TABLE_INV;
    653     }
    654 
    655     ce->lo = le64_to_cpu(ce->lo);
    656     ce->hi = le64_to_cpu(ce->hi);
    657     if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
    658         ce->val[2] = le64_to_cpu(ce->val[2]);
    659         ce->val[3] = le64_to_cpu(ce->val[3]);
    660     }
    661     return 0;
    662 }
    663 
    664 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
    665 {
    666     return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
    667 }
    668 
    669 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
    670 {
    671     return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
    672 }
    673 
    674 /* Whether the pte indicates the address of the page frame */
    675 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
    676 {
    677     return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
    678 }
    679 
    680 /* Get the content of a spte located in @base_addr[@index] */
    681 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
    682 {
    683     uint64_t slpte;
    684 
    685     assert(index < VTD_SL_PT_ENTRY_NR);
    686 
    687     if (dma_memory_read(&address_space_memory,
    688                         base_addr + index * sizeof(slpte),
    689                         &slpte, sizeof(slpte), MEMTXATTRS_UNSPECIFIED)) {
    690         slpte = (uint64_t)-1;
    691         return slpte;
    692     }
    693     slpte = le64_to_cpu(slpte);
    694     return slpte;
    695 }
    696 
    697 /* Given an iova and the level of paging structure, return the offset
    698  * of current level.
    699  */
    700 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
    701 {
    702     return (iova >> vtd_slpt_level_shift(level)) &
    703             ((1ULL << VTD_SL_LEVEL_BITS) - 1);
    704 }
    705 
    706 /* Check Capability Register to see if the @level of page-table is supported */
    707 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
    708 {
    709     return VTD_CAP_SAGAW_MASK & s->cap &
    710            (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
    711 }
    712 
    713 /* Return true if check passed, otherwise false */
    714 static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
    715                                      VTDPASIDEntry *pe)
    716 {
    717     switch (VTD_PE_GET_TYPE(pe)) {
    718     case VTD_SM_PASID_ENTRY_FLT:
    719     case VTD_SM_PASID_ENTRY_SLT:
    720     case VTD_SM_PASID_ENTRY_NESTED:
    721         break;
    722     case VTD_SM_PASID_ENTRY_PT:
    723         if (!x86_iommu->pt_supported) {
    724             return false;
    725         }
    726         break;
    727     default:
    728         /* Unknown type */
    729         return false;
    730     }
    731     return true;
    732 }
    733 
    734 static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire)
    735 {
    736     return pdire->val & 1;
    737 }
    738 
    739 /**
    740  * Caller of this function should check present bit if wants
    741  * to use pdir entry for further usage except for fpd bit check.
    742  */
    743 static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,
    744                                          uint32_t pasid,
    745                                          VTDPASIDDirEntry *pdire)
    746 {
    747     uint32_t index;
    748     dma_addr_t addr, entry_size;
    749 
    750     index = VTD_PASID_DIR_INDEX(pasid);
    751     entry_size = VTD_PASID_DIR_ENTRY_SIZE;
    752     addr = pasid_dir_base + index * entry_size;
    753     if (dma_memory_read(&address_space_memory, addr,
    754                         pdire, entry_size, MEMTXATTRS_UNSPECIFIED)) {
    755         return -VTD_FR_PASID_TABLE_INV;
    756     }
    757 
    758     return 0;
    759 }
    760 
    761 static inline bool vtd_pe_present(VTDPASIDEntry *pe)
    762 {
    763     return pe->val[0] & VTD_PASID_ENTRY_P;
    764 }
    765 
    766 static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s,
    767                                           uint32_t pasid,
    768                                           dma_addr_t addr,
    769                                           VTDPASIDEntry *pe)
    770 {
    771     uint32_t index;
    772     dma_addr_t entry_size;
    773     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
    774 
    775     index = VTD_PASID_TABLE_INDEX(pasid);
    776     entry_size = VTD_PASID_ENTRY_SIZE;
    777     addr = addr + index * entry_size;
    778     if (dma_memory_read(&address_space_memory, addr,
    779                         pe, entry_size, MEMTXATTRS_UNSPECIFIED)) {
    780         return -VTD_FR_PASID_TABLE_INV;
    781     }
    782 
    783     /* Do translation type check */
    784     if (!vtd_pe_type_check(x86_iommu, pe)) {
    785         return -VTD_FR_PASID_TABLE_INV;
    786     }
    787 
    788     if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
    789         return -VTD_FR_PASID_TABLE_INV;
    790     }
    791 
    792     return 0;
    793 }
    794 
    795 /**
    796  * Caller of this function should check present bit if wants
    797  * to use pasid entry for further usage except for fpd bit check.
    798  */
    799 static int vtd_get_pe_from_pdire(IntelIOMMUState *s,
    800                                  uint32_t pasid,
    801                                  VTDPASIDDirEntry *pdire,
    802                                  VTDPASIDEntry *pe)
    803 {
    804     dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
    805 
    806     return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe);
    807 }
    808 
    809 /**
    810  * This function gets a pasid entry from a specified pasid
    811  * table (includes dir and leaf table) with a specified pasid.
    812  * Sanity check should be done to ensure return a present
    813  * pasid entry to caller.
    814  */
    815 static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s,
    816                                        dma_addr_t pasid_dir_base,
    817                                        uint32_t pasid,
    818                                        VTDPASIDEntry *pe)
    819 {
    820     int ret;
    821     VTDPASIDDirEntry pdire;
    822 
    823     ret = vtd_get_pdire_from_pdir_table(pasid_dir_base,
    824                                         pasid, &pdire);
    825     if (ret) {
    826         return ret;
    827     }
    828 
    829     if (!vtd_pdire_present(&pdire)) {
    830         return -VTD_FR_PASID_TABLE_INV;
    831     }
    832 
    833     ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe);
    834     if (ret) {
    835         return ret;
    836     }
    837 
    838     if (!vtd_pe_present(pe)) {
    839         return -VTD_FR_PASID_TABLE_INV;
    840     }
    841 
    842     return 0;
    843 }
    844 
    845 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
    846                                       VTDContextEntry *ce,
    847                                       VTDPASIDEntry *pe,
    848                                       uint32_t pasid)
    849 {
    850     dma_addr_t pasid_dir_base;
    851     int ret = 0;
    852 
    853     if (pasid == PCI_NO_PASID) {
    854         pasid = VTD_CE_GET_RID2PASID(ce);
    855     }
    856     pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
    857     ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe);
    858 
    859     return ret;
    860 }
    861 
    862 static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
    863                                 VTDContextEntry *ce,
    864                                 bool *pe_fpd_set,
    865                                 uint32_t pasid)
    866 {
    867     int ret;
    868     dma_addr_t pasid_dir_base;
    869     VTDPASIDDirEntry pdire;
    870     VTDPASIDEntry pe;
    871 
    872     if (pasid == PCI_NO_PASID) {
    873         pasid = VTD_CE_GET_RID2PASID(ce);
    874     }
    875     pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
    876 
    877     /*
    878      * No present bit check since fpd is meaningful even
    879      * if the present bit is clear.
    880      */
    881     ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire);
    882     if (ret) {
    883         return ret;
    884     }
    885 
    886     if (pdire.val & VTD_PASID_DIR_FPD) {
    887         *pe_fpd_set = true;
    888         return 0;
    889     }
    890 
    891     if (!vtd_pdire_present(&pdire)) {
    892         return -VTD_FR_PASID_TABLE_INV;
    893     }
    894 
    895     /*
    896      * No present bit check since fpd is meaningful even
    897      * if the present bit is clear.
    898      */
    899     ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe);
    900     if (ret) {
    901         return ret;
    902     }
    903 
    904     if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
    905         *pe_fpd_set = true;
    906     }
    907 
    908     return 0;
    909 }
    910 
    911 /* Get the page-table level that hardware should use for the second-level
    912  * page-table walk from the Address Width field of context-entry.
    913  */
    914 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
    915 {
    916     return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
    917 }
    918 
    919 static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
    920                                    VTDContextEntry *ce,
    921                                    uint32_t pasid)
    922 {
    923     VTDPASIDEntry pe;
    924 
    925     if (s->root_scalable) {
    926         vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
    927         return VTD_PE_GET_LEVEL(&pe);
    928     }
    929 
    930     return vtd_ce_get_level(ce);
    931 }
    932 
    933 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
    934 {
    935     return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
    936 }
    937 
    938 static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
    939                                   VTDContextEntry *ce,
    940                                   uint32_t pasid)
    941 {
    942     VTDPASIDEntry pe;
    943 
    944     if (s->root_scalable) {
    945         vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
    946         return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
    947     }
    948 
    949     return vtd_ce_get_agaw(ce);
    950 }
    951 
    952 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
    953 {
    954     return ce->lo & VTD_CONTEXT_ENTRY_TT;
    955 }
    956 
    957 /* Only for Legacy Mode. Return true if check passed, otherwise false */
    958 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
    959                                      VTDContextEntry *ce)
    960 {
    961     switch (vtd_ce_get_type(ce)) {
    962     case VTD_CONTEXT_TT_MULTI_LEVEL:
    963         /* Always supported */
    964         break;
    965     case VTD_CONTEXT_TT_DEV_IOTLB:
    966         if (!x86_iommu->dt_supported) {
    967             error_report_once("%s: DT specified but not supported", __func__);
    968             return false;
    969         }
    970         break;
    971     case VTD_CONTEXT_TT_PASS_THROUGH:
    972         if (!x86_iommu->pt_supported) {
    973             error_report_once("%s: PT specified but not supported", __func__);
    974             return false;
    975         }
    976         break;
    977     default:
    978         /* Unknown type */
    979         error_report_once("%s: unknown ce type: %"PRIu32, __func__,
    980                           vtd_ce_get_type(ce));
    981         return false;
    982     }
    983     return true;
    984 }
    985 
    986 static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
    987                                       VTDContextEntry *ce, uint8_t aw,
    988                                       uint32_t pasid)
    989 {
    990     uint32_t ce_agaw = vtd_get_iova_agaw(s, ce, pasid);
    991     return 1ULL << MIN(ce_agaw, aw);
    992 }
    993 
    994 /* Return true if IOVA passes range check, otherwise false. */
    995 static inline bool vtd_iova_range_check(IntelIOMMUState *s,
    996                                         uint64_t iova, VTDContextEntry *ce,
    997                                         uint8_t aw, uint32_t pasid)
    998 {
    999     /*
   1000      * Check if @iova is above 2^X-1, where X is the minimum of MGAW
   1001      * in CAP_REG and AW in context-entry.
   1002      */
   1003     return !(iova & ~(vtd_iova_limit(s, ce, aw, pasid) - 1));
   1004 }
   1005 
   1006 static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
   1007                                           VTDContextEntry *ce,
   1008                                           uint32_t pasid)
   1009 {
   1010     VTDPASIDEntry pe;
   1011 
   1012     if (s->root_scalable) {
   1013         vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
   1014         return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
   1015     }
   1016 
   1017     return vtd_ce_get_slpt_base(ce);
   1018 }
   1019 
   1020 /*
   1021  * Rsvd field masks for spte:
   1022  *     vtd_spte_rsvd 4k pages
   1023  *     vtd_spte_rsvd_large large pages
   1024  */
   1025 static uint64_t vtd_spte_rsvd[5];
   1026 static uint64_t vtd_spte_rsvd_large[5];
   1027 
   1028 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
   1029 {
   1030     uint64_t rsvd_mask = vtd_spte_rsvd[level];
   1031 
   1032     if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) &&
   1033         (slpte & VTD_SL_PT_PAGE_SIZE_MASK)) {
   1034         /* large page */
   1035         rsvd_mask = vtd_spte_rsvd_large[level];
   1036     }
   1037 
   1038     return slpte & rsvd_mask;
   1039 }
   1040 
   1041 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
   1042  * of the translation, can be used for deciding the size of large page.
   1043  */
   1044 static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
   1045                              uint64_t iova, bool is_write,
   1046                              uint64_t *slptep, uint32_t *slpte_level,
   1047                              bool *reads, bool *writes, uint8_t aw_bits,
   1048                              uint32_t pasid)
   1049 {
   1050     dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
   1051     uint32_t level = vtd_get_iova_level(s, ce, pasid);
   1052     uint32_t offset;
   1053     uint64_t slpte;
   1054     uint64_t access_right_check;
   1055     uint64_t xlat, size;
   1056 
   1057     if (!vtd_iova_range_check(s, iova, ce, aw_bits, pasid)) {
   1058         error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ","
   1059                           "pasid=0x%" PRIx32 ")", __func__, iova, pasid);
   1060         return -VTD_FR_ADDR_BEYOND_MGAW;
   1061     }
   1062 
   1063     /* FIXME: what is the Atomics request here? */
   1064     access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
   1065 
   1066     while (true) {
   1067         offset = vtd_iova_level_offset(iova, level);
   1068         slpte = vtd_get_slpte(addr, offset);
   1069 
   1070         if (slpte == (uint64_t)-1) {
   1071             error_report_once("%s: detected read error on DMAR slpte "
   1072                               "(iova=0x%" PRIx64 ", pasid=0x%" PRIx32 ")",
   1073                               __func__, iova, pasid);
   1074             if (level == vtd_get_iova_level(s, ce, pasid)) {
   1075                 /* Invalid programming of context-entry */
   1076                 return -VTD_FR_CONTEXT_ENTRY_INV;
   1077             } else {
   1078                 return -VTD_FR_PAGING_ENTRY_INV;
   1079             }
   1080         }
   1081         *reads = (*reads) && (slpte & VTD_SL_R);
   1082         *writes = (*writes) && (slpte & VTD_SL_W);
   1083         if (!(slpte & access_right_check)) {
   1084             error_report_once("%s: detected slpte permission error "
   1085                               "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
   1086                               "slpte=0x%" PRIx64 ", write=%d, pasid=0x%"
   1087                               PRIx32 ")", __func__, iova, level,
   1088                               slpte, is_write, pasid);
   1089             return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
   1090         }
   1091         if (vtd_slpte_nonzero_rsvd(slpte, level)) {
   1092             error_report_once("%s: detected splte reserve non-zero "
   1093                               "iova=0x%" PRIx64 ", level=0x%" PRIx32
   1094                               "slpte=0x%" PRIx64 ", pasid=0x%" PRIX32 ")",
   1095                               __func__, iova, level, slpte, pasid);
   1096             return -VTD_FR_PAGING_ENTRY_RSVD;
   1097         }
   1098 
   1099         if (vtd_is_last_slpte(slpte, level)) {
   1100             *slptep = slpte;
   1101             *slpte_level = level;
   1102             break;
   1103         }
   1104         addr = vtd_get_slpte_addr(slpte, aw_bits);
   1105         level--;
   1106     }
   1107 
   1108     xlat = vtd_get_slpte_addr(*slptep, aw_bits);
   1109     size = ~vtd_slpt_level_page_mask(level) + 1;
   1110 
   1111     /*
   1112      * From VT-d spec 3.14: Untranslated requests and translation
   1113      * requests that result in an address in the interrupt range will be
   1114      * blocked with condition code LGN.4 or SGN.8.
   1115      */
   1116     if ((xlat > VTD_INTERRUPT_ADDR_LAST ||
   1117          xlat + size - 1 < VTD_INTERRUPT_ADDR_FIRST)) {
   1118         return 0;
   1119     } else {
   1120         error_report_once("%s: xlat address is in interrupt range "
   1121                           "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
   1122                           "slpte=0x%" PRIx64 ", write=%d, "
   1123                           "xlat=0x%" PRIx64 ", size=0x%" PRIx64 ", "
   1124                           "pasid=0x%" PRIx32 ")",
   1125                           __func__, iova, level, slpte, is_write,
   1126                           xlat, size, pasid);
   1127         return s->scalable_mode ? -VTD_FR_SM_INTERRUPT_ADDR :
   1128                                   -VTD_FR_INTERRUPT_ADDR;
   1129     }
   1130 }
   1131 
   1132 typedef int (*vtd_page_walk_hook)(IOMMUTLBEvent *event, void *private);
   1133 
   1134 /**
   1135  * Constant information used during page walking
   1136  *
   1137  * @hook_fn: hook func to be called when detected page
   1138  * @private: private data to be passed into hook func
   1139  * @notify_unmap: whether we should notify invalid entries
   1140  * @as: VT-d address space of the device
   1141  * @aw: maximum address width
   1142  * @domain: domain ID of the page walk
   1143  */
   1144 typedef struct {
   1145     VTDAddressSpace *as;
   1146     vtd_page_walk_hook hook_fn;
   1147     void *private;
   1148     bool notify_unmap;
   1149     uint8_t aw;
   1150     uint16_t domain_id;
   1151 } vtd_page_walk_info;
   1152 
   1153 static int vtd_page_walk_one(IOMMUTLBEvent *event, vtd_page_walk_info *info)
   1154 {
   1155     VTDAddressSpace *as = info->as;
   1156     vtd_page_walk_hook hook_fn = info->hook_fn;
   1157     void *private = info->private;
   1158     IOMMUTLBEntry *entry = &event->entry;
   1159     DMAMap target = {
   1160         .iova = entry->iova,
   1161         .size = entry->addr_mask,
   1162         .translated_addr = entry->translated_addr,
   1163         .perm = entry->perm,
   1164     };
   1165     const DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
   1166 
   1167     if (event->type == IOMMU_NOTIFIER_UNMAP && !info->notify_unmap) {
   1168         trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
   1169         return 0;
   1170     }
   1171 
   1172     assert(hook_fn);
   1173 
   1174     /* Update local IOVA mapped ranges */
   1175     if (event->type == IOMMU_NOTIFIER_MAP) {
   1176         if (mapped) {
   1177             /* If it's exactly the same translation, skip */
   1178             if (!memcmp(mapped, &target, sizeof(target))) {
   1179                 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
   1180                                                  entry->translated_addr);
   1181                 return 0;
   1182             } else {
   1183                 /*
   1184                  * Translation changed.  Normally this should not
   1185                  * happen, but it can happen when with buggy guest
   1186                  * OSes.  Note that there will be a small window that
   1187                  * we don't have map at all.  But that's the best
   1188                  * effort we can do.  The ideal way to emulate this is
   1189                  * atomically modify the PTE to follow what has
   1190                  * changed, but we can't.  One example is that vfio
   1191                  * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
   1192                  * interface to modify a mapping (meanwhile it seems
   1193                  * meaningless to even provide one).  Anyway, let's
   1194                  * mark this as a TODO in case one day we'll have
   1195                  * a better solution.
   1196                  */
   1197                 IOMMUAccessFlags cache_perm = entry->perm;
   1198                 int ret;
   1199 
   1200                 /* Emulate an UNMAP */
   1201                 event->type = IOMMU_NOTIFIER_UNMAP;
   1202                 entry->perm = IOMMU_NONE;
   1203                 trace_vtd_page_walk_one(info->domain_id,
   1204                                         entry->iova,
   1205                                         entry->translated_addr,
   1206                                         entry->addr_mask,
   1207                                         entry->perm);
   1208                 ret = hook_fn(event, private);
   1209                 if (ret) {
   1210                     return ret;
   1211                 }
   1212                 /* Drop any existing mapping */
   1213                 iova_tree_remove(as->iova_tree, target);
   1214                 /* Recover the correct type */
   1215                 event->type = IOMMU_NOTIFIER_MAP;
   1216                 entry->perm = cache_perm;
   1217             }
   1218         }
   1219         iova_tree_insert(as->iova_tree, &target);
   1220     } else {
   1221         if (!mapped) {
   1222             /* Skip since we didn't map this range at all */
   1223             trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
   1224             return 0;
   1225         }
   1226         iova_tree_remove(as->iova_tree, target);
   1227     }
   1228 
   1229     trace_vtd_page_walk_one(info->domain_id, entry->iova,
   1230                             entry->translated_addr, entry->addr_mask,
   1231                             entry->perm);
   1232     return hook_fn(event, private);
   1233 }
   1234 
   1235 /**
   1236  * vtd_page_walk_level - walk over specific level for IOVA range
   1237  *
   1238  * @addr: base GPA addr to start the walk
   1239  * @start: IOVA range start address
   1240  * @end: IOVA range end address (start <= addr < end)
   1241  * @read: whether parent level has read permission
   1242  * @write: whether parent level has write permission
   1243  * @info: constant information for the page walk
   1244  */
   1245 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
   1246                                uint64_t end, uint32_t level, bool read,
   1247                                bool write, vtd_page_walk_info *info)
   1248 {
   1249     bool read_cur, write_cur, entry_valid;
   1250     uint32_t offset;
   1251     uint64_t slpte;
   1252     uint64_t subpage_size, subpage_mask;
   1253     IOMMUTLBEvent event;
   1254     uint64_t iova = start;
   1255     uint64_t iova_next;
   1256     int ret = 0;
   1257 
   1258     trace_vtd_page_walk_level(addr, level, start, end);
   1259 
   1260     subpage_size = 1ULL << vtd_slpt_level_shift(level);
   1261     subpage_mask = vtd_slpt_level_page_mask(level);
   1262 
   1263     while (iova < end) {
   1264         iova_next = (iova & subpage_mask) + subpage_size;
   1265 
   1266         offset = vtd_iova_level_offset(iova, level);
   1267         slpte = vtd_get_slpte(addr, offset);
   1268 
   1269         if (slpte == (uint64_t)-1) {
   1270             trace_vtd_page_walk_skip_read(iova, iova_next);
   1271             goto next;
   1272         }
   1273 
   1274         if (vtd_slpte_nonzero_rsvd(slpte, level)) {
   1275             trace_vtd_page_walk_skip_reserve(iova, iova_next);
   1276             goto next;
   1277         }
   1278 
   1279         /* Permissions are stacked with parents' */
   1280         read_cur = read && (slpte & VTD_SL_R);
   1281         write_cur = write && (slpte & VTD_SL_W);
   1282 
   1283         /*
   1284          * As long as we have either read/write permission, this is a
   1285          * valid entry. The rule works for both page entries and page
   1286          * table entries.
   1287          */
   1288         entry_valid = read_cur | write_cur;
   1289 
   1290         if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
   1291             /*
   1292              * This is a valid PDE (or even bigger than PDE).  We need
   1293              * to walk one further level.
   1294              */
   1295             ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
   1296                                       iova, MIN(iova_next, end), level - 1,
   1297                                       read_cur, write_cur, info);
   1298         } else {
   1299             /*
   1300              * This means we are either:
   1301              *
   1302              * (1) the real page entry (either 4K page, or huge page)
   1303              * (2) the whole range is invalid
   1304              *
   1305              * In either case, we send an IOTLB notification down.
   1306              */
   1307             event.entry.target_as = &address_space_memory;
   1308             event.entry.iova = iova & subpage_mask;
   1309             event.entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
   1310             event.entry.addr_mask = ~subpage_mask;
   1311             /* NOTE: this is only meaningful if entry_valid == true */
   1312             event.entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
   1313             event.type = event.entry.perm ? IOMMU_NOTIFIER_MAP :
   1314                                             IOMMU_NOTIFIER_UNMAP;
   1315             ret = vtd_page_walk_one(&event, info);
   1316         }
   1317 
   1318         if (ret < 0) {
   1319             return ret;
   1320         }
   1321 
   1322 next:
   1323         iova = iova_next;
   1324     }
   1325 
   1326     return 0;
   1327 }
   1328 
   1329 /**
   1330  * vtd_page_walk - walk specific IOVA range, and call the hook
   1331  *
   1332  * @s: intel iommu state
   1333  * @ce: context entry to walk upon
   1334  * @start: IOVA address to start the walk
   1335  * @end: IOVA range end address (start <= addr < end)
   1336  * @info: page walking information struct
   1337  */
   1338 static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
   1339                          uint64_t start, uint64_t end,
   1340                          vtd_page_walk_info *info,
   1341                          uint32_t pasid)
   1342 {
   1343     dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
   1344     uint32_t level = vtd_get_iova_level(s, ce, pasid);
   1345 
   1346     if (!vtd_iova_range_check(s, start, ce, info->aw, pasid)) {
   1347         return -VTD_FR_ADDR_BEYOND_MGAW;
   1348     }
   1349 
   1350     if (!vtd_iova_range_check(s, end, ce, info->aw, pasid)) {
   1351         /* Fix end so that it reaches the maximum */
   1352         end = vtd_iova_limit(s, ce, info->aw, pasid);
   1353     }
   1354 
   1355     return vtd_page_walk_level(addr, start, end, level, true, true, info);
   1356 }
   1357 
   1358 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
   1359                                           VTDRootEntry *re)
   1360 {
   1361     /* Legacy Mode reserved bits check */
   1362     if (!s->root_scalable &&
   1363         (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
   1364         goto rsvd_err;
   1365 
   1366     /* Scalable Mode reserved bits check */
   1367     if (s->root_scalable &&
   1368         ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
   1369          (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
   1370         goto rsvd_err;
   1371 
   1372     return 0;
   1373 
   1374 rsvd_err:
   1375     error_report_once("%s: invalid root entry: hi=0x%"PRIx64
   1376                       ", lo=0x%"PRIx64,
   1377                       __func__, re->hi, re->lo);
   1378     return -VTD_FR_ROOT_ENTRY_RSVD;
   1379 }
   1380 
   1381 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
   1382                                                     VTDContextEntry *ce)
   1383 {
   1384     if (!s->root_scalable &&
   1385         (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
   1386          ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
   1387         error_report_once("%s: invalid context entry: hi=%"PRIx64
   1388                           ", lo=%"PRIx64" (reserved nonzero)",
   1389                           __func__, ce->hi, ce->lo);
   1390         return -VTD_FR_CONTEXT_ENTRY_RSVD;
   1391     }
   1392 
   1393     if (s->root_scalable &&
   1394         (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
   1395          ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
   1396          ce->val[2] ||
   1397          ce->val[3])) {
   1398         error_report_once("%s: invalid context entry: val[3]=%"PRIx64
   1399                           ", val[2]=%"PRIx64
   1400                           ", val[1]=%"PRIx64
   1401                           ", val[0]=%"PRIx64" (reserved nonzero)",
   1402                           __func__, ce->val[3], ce->val[2],
   1403                           ce->val[1], ce->val[0]);
   1404         return -VTD_FR_CONTEXT_ENTRY_RSVD;
   1405     }
   1406 
   1407     return 0;
   1408 }
   1409 
   1410 static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
   1411                                   VTDContextEntry *ce)
   1412 {
   1413     VTDPASIDEntry pe;
   1414 
   1415     /*
   1416      * Make sure in Scalable Mode, a present context entry
   1417      * has valid rid2pasid setting, which includes valid
   1418      * rid2pasid field and corresponding pasid entry setting
   1419      */
   1420     return vtd_ce_get_rid2pasid_entry(s, ce, &pe, PCI_NO_PASID);
   1421 }
   1422 
   1423 /* Map a device to its corresponding domain (context-entry) */
   1424 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
   1425                                     uint8_t devfn, VTDContextEntry *ce)
   1426 {
   1427     VTDRootEntry re;
   1428     int ret_fr;
   1429     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
   1430 
   1431     ret_fr = vtd_get_root_entry(s, bus_num, &re);
   1432     if (ret_fr) {
   1433         return ret_fr;
   1434     }
   1435 
   1436     if (!vtd_root_entry_present(s, &re, devfn)) {
   1437         /* Not error - it's okay we don't have root entry. */
   1438         trace_vtd_re_not_present(bus_num);
   1439         return -VTD_FR_ROOT_ENTRY_P;
   1440     }
   1441 
   1442     ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
   1443     if (ret_fr) {
   1444         return ret_fr;
   1445     }
   1446 
   1447     ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
   1448     if (ret_fr) {
   1449         return ret_fr;
   1450     }
   1451 
   1452     if (!vtd_ce_present(ce)) {
   1453         /* Not error - it's okay we don't have context entry. */
   1454         trace_vtd_ce_not_present(bus_num, devfn);
   1455         return -VTD_FR_CONTEXT_ENTRY_P;
   1456     }
   1457 
   1458     ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
   1459     if (ret_fr) {
   1460         return ret_fr;
   1461     }
   1462 
   1463     /* Check if the programming of context-entry is valid */
   1464     if (!s->root_scalable &&
   1465         !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
   1466         error_report_once("%s: invalid context entry: hi=%"PRIx64
   1467                           ", lo=%"PRIx64" (level %d not supported)",
   1468                           __func__, ce->hi, ce->lo,
   1469                           vtd_ce_get_level(ce));
   1470         return -VTD_FR_CONTEXT_ENTRY_INV;
   1471     }
   1472 
   1473     if (!s->root_scalable) {
   1474         /* Do translation type check */
   1475         if (!vtd_ce_type_check(x86_iommu, ce)) {
   1476             /* Errors dumped in vtd_ce_type_check() */
   1477             return -VTD_FR_CONTEXT_ENTRY_INV;
   1478         }
   1479     } else {
   1480         /*
   1481          * Check if the programming of context-entry.rid2pasid
   1482          * and corresponding pasid setting is valid, and thus
   1483          * avoids to check pasid entry fetching result in future
   1484          * helper function calling.
   1485          */
   1486         ret_fr = vtd_ce_rid2pasid_check(s, ce);
   1487         if (ret_fr) {
   1488             return ret_fr;
   1489         }
   1490     }
   1491 
   1492     return 0;
   1493 }
   1494 
   1495 static int vtd_sync_shadow_page_hook(IOMMUTLBEvent *event,
   1496                                      void *private)
   1497 {
   1498     memory_region_notify_iommu(private, 0, *event);
   1499     return 0;
   1500 }
   1501 
   1502 static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
   1503                                   VTDContextEntry *ce,
   1504                                   uint32_t pasid)
   1505 {
   1506     VTDPASIDEntry pe;
   1507 
   1508     if (s->root_scalable) {
   1509         vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
   1510         return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
   1511     }
   1512 
   1513     return VTD_CONTEXT_ENTRY_DID(ce->hi);
   1514 }
   1515 
   1516 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
   1517                                             VTDContextEntry *ce,
   1518                                             hwaddr addr, hwaddr size)
   1519 {
   1520     IntelIOMMUState *s = vtd_as->iommu_state;
   1521     vtd_page_walk_info info = {
   1522         .hook_fn = vtd_sync_shadow_page_hook,
   1523         .private = (void *)&vtd_as->iommu,
   1524         .notify_unmap = true,
   1525         .aw = s->aw_bits,
   1526         .as = vtd_as,
   1527         .domain_id = vtd_get_domain_id(s, ce, vtd_as->pasid),
   1528     };
   1529 
   1530     return vtd_page_walk(s, ce, addr, addr + size, &info, vtd_as->pasid);
   1531 }
   1532 
   1533 static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
   1534 {
   1535     int ret;
   1536     VTDContextEntry ce;
   1537     IOMMUNotifier *n;
   1538 
   1539     if (!(vtd_as->iommu.iommu_notify_flags & IOMMU_NOTIFIER_IOTLB_EVENTS)) {
   1540         return 0;
   1541     }
   1542 
   1543     ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
   1544                                    pci_bus_num(vtd_as->bus),
   1545                                    vtd_as->devfn, &ce);
   1546     if (ret) {
   1547         if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
   1548             /*
   1549              * It's a valid scenario to have a context entry that is
   1550              * not present.  For example, when a device is removed
   1551              * from an existing domain then the context entry will be
   1552              * zeroed by the guest before it was put into another
   1553              * domain.  When this happens, instead of synchronizing
   1554              * the shadow pages we should invalidate all existing
   1555              * mappings and notify the backends.
   1556              */
   1557             IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
   1558                 vtd_address_space_unmap(vtd_as, n);
   1559             }
   1560             ret = 0;
   1561         }
   1562         return ret;
   1563     }
   1564 
   1565     return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
   1566 }
   1567 
   1568 /*
   1569  * Check if specific device is configured to bypass address
   1570  * translation for DMA requests. In Scalable Mode, bypass
   1571  * 1st-level translation or 2nd-level translation, it depends
   1572  * on PGTT setting.
   1573  */
   1574 static bool vtd_dev_pt_enabled(IntelIOMMUState *s, VTDContextEntry *ce,
   1575                                uint32_t pasid)
   1576 {
   1577     VTDPASIDEntry pe;
   1578     int ret;
   1579 
   1580     if (s->root_scalable) {
   1581         ret = vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
   1582         if (ret) {
   1583             /*
   1584              * This error is guest triggerable. We should assumt PT
   1585              * not enabled for safety.
   1586              */
   1587             return false;
   1588         }
   1589         return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
   1590     }
   1591 
   1592     return (vtd_ce_get_type(ce) == VTD_CONTEXT_TT_PASS_THROUGH);
   1593 
   1594 }
   1595 
   1596 static bool vtd_as_pt_enabled(VTDAddressSpace *as)
   1597 {
   1598     IntelIOMMUState *s;
   1599     VTDContextEntry ce;
   1600 
   1601     assert(as);
   1602 
   1603     s = as->iommu_state;
   1604     if (vtd_dev_to_context_entry(s, pci_bus_num(as->bus), as->devfn,
   1605                                  &ce)) {
   1606         /*
   1607          * Possibly failed to parse the context entry for some reason
   1608          * (e.g., during init, or any guest configuration errors on
   1609          * context entries). We should assume PT not enabled for
   1610          * safety.
   1611          */
   1612         return false;
   1613     }
   1614 
   1615     return vtd_dev_pt_enabled(s, &ce, as->pasid);
   1616 }
   1617 
   1618 /* Return whether the device is using IOMMU translation. */
   1619 static bool vtd_switch_address_space(VTDAddressSpace *as)
   1620 {
   1621     bool use_iommu, pt;
   1622     /* Whether we need to take the BQL on our own */
   1623     bool take_bql = !qemu_mutex_iothread_locked();
   1624 
   1625     assert(as);
   1626 
   1627     use_iommu = as->iommu_state->dmar_enabled && !vtd_as_pt_enabled(as);
   1628     pt = as->iommu_state->dmar_enabled && vtd_as_pt_enabled(as);
   1629 
   1630     trace_vtd_switch_address_space(pci_bus_num(as->bus),
   1631                                    VTD_PCI_SLOT(as->devfn),
   1632                                    VTD_PCI_FUNC(as->devfn),
   1633                                    use_iommu);
   1634 
   1635     /*
   1636      * It's possible that we reach here without BQL, e.g., when called
   1637      * from vtd_pt_enable_fast_path(). However the memory APIs need
   1638      * it. We'd better make sure we have had it already, or, take it.
   1639      */
   1640     if (take_bql) {
   1641         qemu_mutex_lock_iothread();
   1642     }
   1643 
   1644     /* Turn off first then on the other */
   1645     if (use_iommu) {
   1646         memory_region_set_enabled(&as->nodmar, false);
   1647         memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
   1648         /*
   1649          * vt-d spec v3.4 3.14:
   1650          *
   1651          * """
   1652          * Requests-with-PASID with input address in range 0xFEEx_xxxx
   1653          * are translated normally like any other request-with-PASID
   1654          * through DMA-remapping hardware.
   1655          * """
   1656          *
   1657          * Need to disable ir for as with PASID.
   1658          */
   1659         if (as->pasid != PCI_NO_PASID) {
   1660             memory_region_set_enabled(&as->iommu_ir, false);
   1661         } else {
   1662             memory_region_set_enabled(&as->iommu_ir, true);
   1663         }
   1664     } else {
   1665         memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
   1666         memory_region_set_enabled(&as->nodmar, true);
   1667     }
   1668 
   1669     /*
   1670      * vtd-spec v3.4 3.14:
   1671      *
   1672      * """
   1673      * Requests-with-PASID with input address in range 0xFEEx_xxxx are
   1674      * translated normally like any other request-with-PASID through
   1675      * DMA-remapping hardware. However, if such a request is processed
   1676      * using pass-through translation, it will be blocked as described
   1677      * in the paragraph below.
   1678      *
   1679      * Software must not program paging-structure entries to remap any
   1680      * address to the interrupt address range. Untranslated requests
   1681      * and translation requests that result in an address in the
   1682      * interrupt range will be blocked with condition code LGN.4 or
   1683      * SGN.8.
   1684      * """
   1685      *
   1686      * We enable per as memory region (iommu_ir_fault) for catching
   1687      * the tranlsation for interrupt range through PASID + PT.
   1688      */
   1689     if (pt && as->pasid != PCI_NO_PASID) {
   1690         memory_region_set_enabled(&as->iommu_ir_fault, true);
   1691     } else {
   1692         memory_region_set_enabled(&as->iommu_ir_fault, false);
   1693     }
   1694 
   1695     if (take_bql) {
   1696         qemu_mutex_unlock_iothread();
   1697     }
   1698 
   1699     return use_iommu;
   1700 }
   1701 
   1702 static void vtd_switch_address_space_all(IntelIOMMUState *s)
   1703 {
   1704     VTDAddressSpace *vtd_as;
   1705     GHashTableIter iter;
   1706 
   1707     g_hash_table_iter_init(&iter, s->vtd_address_spaces);
   1708     while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_as)) {
   1709         vtd_switch_address_space(vtd_as);
   1710     }
   1711 }
   1712 
   1713 static const bool vtd_qualified_faults[] = {
   1714     [VTD_FR_RESERVED] = false,
   1715     [VTD_FR_ROOT_ENTRY_P] = false,
   1716     [VTD_FR_CONTEXT_ENTRY_P] = true,
   1717     [VTD_FR_CONTEXT_ENTRY_INV] = true,
   1718     [VTD_FR_ADDR_BEYOND_MGAW] = true,
   1719     [VTD_FR_WRITE] = true,
   1720     [VTD_FR_READ] = true,
   1721     [VTD_FR_PAGING_ENTRY_INV] = true,
   1722     [VTD_FR_ROOT_TABLE_INV] = false,
   1723     [VTD_FR_CONTEXT_TABLE_INV] = false,
   1724     [VTD_FR_INTERRUPT_ADDR] = true,
   1725     [VTD_FR_ROOT_ENTRY_RSVD] = false,
   1726     [VTD_FR_PAGING_ENTRY_RSVD] = true,
   1727     [VTD_FR_CONTEXT_ENTRY_TT] = true,
   1728     [VTD_FR_PASID_TABLE_INV] = false,
   1729     [VTD_FR_SM_INTERRUPT_ADDR] = true,
   1730     [VTD_FR_MAX] = false,
   1731 };
   1732 
   1733 /* To see if a fault condition is "qualified", which is reported to software
   1734  * only if the FPD field in the context-entry used to process the faulting
   1735  * request is 0.
   1736  */
   1737 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
   1738 {
   1739     return vtd_qualified_faults[fault];
   1740 }
   1741 
   1742 static inline bool vtd_is_interrupt_addr(hwaddr addr)
   1743 {
   1744     return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
   1745 }
   1746 
   1747 static gboolean vtd_find_as_by_sid(gpointer key, gpointer value,
   1748                                    gpointer user_data)
   1749 {
   1750     struct vtd_as_key *as_key = (struct vtd_as_key *)key;
   1751     uint16_t target_sid = *(uint16_t *)user_data;
   1752     uint16_t sid = PCI_BUILD_BDF(pci_bus_num(as_key->bus), as_key->devfn);
   1753     return sid == target_sid;
   1754 }
   1755 
   1756 static VTDAddressSpace *vtd_get_as_by_sid(IntelIOMMUState *s, uint16_t sid)
   1757 {
   1758     uint8_t bus_num = PCI_BUS_NUM(sid);
   1759     VTDAddressSpace *vtd_as = s->vtd_as_cache[bus_num];
   1760 
   1761     if (vtd_as &&
   1762         (sid == PCI_BUILD_BDF(pci_bus_num(vtd_as->bus), vtd_as->devfn))) {
   1763         return vtd_as;
   1764     }
   1765 
   1766     vtd_as = g_hash_table_find(s->vtd_address_spaces, vtd_find_as_by_sid, &sid);
   1767     s->vtd_as_cache[bus_num] = vtd_as;
   1768 
   1769     return vtd_as;
   1770 }
   1771 
   1772 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
   1773 {
   1774     VTDAddressSpace *vtd_as;
   1775     bool success = false;
   1776 
   1777     vtd_as = vtd_get_as_by_sid(s, source_id);
   1778     if (!vtd_as) {
   1779         goto out;
   1780     }
   1781 
   1782     if (vtd_switch_address_space(vtd_as) == false) {
   1783         /* We switched off IOMMU region successfully. */
   1784         success = true;
   1785     }
   1786 
   1787 out:
   1788     trace_vtd_pt_enable_fast_path(source_id, success);
   1789 }
   1790 
   1791 static void vtd_report_fault(IntelIOMMUState *s,
   1792                              int err, bool is_fpd_set,
   1793                              uint16_t source_id,
   1794                              hwaddr addr,
   1795                              bool is_write,
   1796                              bool is_pasid,
   1797                              uint32_t pasid)
   1798 {
   1799     if (is_fpd_set && vtd_is_qualified_fault(err)) {
   1800         trace_vtd_fault_disabled();
   1801     } else {
   1802         vtd_report_dmar_fault(s, source_id, addr, err, is_write,
   1803                               is_pasid, pasid);
   1804     }
   1805 }
   1806 
   1807 /* Map dev to context-entry then do a paging-structures walk to do a iommu
   1808  * translation.
   1809  *
   1810  * Called from RCU critical section.
   1811  *
   1812  * @bus_num: The bus number
   1813  * @devfn: The devfn, which is the  combined of device and function number
   1814  * @is_write: The access is a write operation
   1815  * @entry: IOMMUTLBEntry that contain the addr to be translated and result
   1816  *
   1817  * Returns true if translation is successful, otherwise false.
   1818  */
   1819 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
   1820                                    uint8_t devfn, hwaddr addr, bool is_write,
   1821                                    IOMMUTLBEntry *entry)
   1822 {
   1823     IntelIOMMUState *s = vtd_as->iommu_state;
   1824     VTDContextEntry ce;
   1825     uint8_t bus_num = pci_bus_num(bus);
   1826     VTDContextCacheEntry *cc_entry;
   1827     uint64_t slpte, page_mask;
   1828     uint32_t level, pasid = vtd_as->pasid;
   1829     uint16_t source_id = PCI_BUILD_BDF(bus_num, devfn);
   1830     int ret_fr;
   1831     bool is_fpd_set = false;
   1832     bool reads = true;
   1833     bool writes = true;
   1834     uint8_t access_flags;
   1835     bool rid2pasid = (pasid == PCI_NO_PASID) && s->root_scalable;
   1836     VTDIOTLBEntry *iotlb_entry;
   1837 
   1838     /*
   1839      * We have standalone memory region for interrupt addresses, we
   1840      * should never receive translation requests in this region.
   1841      */
   1842     assert(!vtd_is_interrupt_addr(addr));
   1843 
   1844     vtd_iommu_lock(s);
   1845 
   1846     cc_entry = &vtd_as->context_cache_entry;
   1847 
   1848     /* Try to fetch slpte form IOTLB, we don't need RID2PASID logic */
   1849     if (!rid2pasid) {
   1850         iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr);
   1851         if (iotlb_entry) {
   1852             trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
   1853                                      iotlb_entry->domain_id);
   1854             slpte = iotlb_entry->slpte;
   1855             access_flags = iotlb_entry->access_flags;
   1856             page_mask = iotlb_entry->mask;
   1857             goto out;
   1858         }
   1859     }
   1860 
   1861     /* Try to fetch context-entry from cache first */
   1862     if (cc_entry->context_cache_gen == s->context_cache_gen) {
   1863         trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
   1864                                cc_entry->context_entry.lo,
   1865                                cc_entry->context_cache_gen);
   1866         ce = cc_entry->context_entry;
   1867         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
   1868         if (!is_fpd_set && s->root_scalable) {
   1869             ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid);
   1870             if (ret_fr) {
   1871                 vtd_report_fault(s, -ret_fr, is_fpd_set,
   1872                                  source_id, addr, is_write,
   1873                                  false, 0);
   1874                 goto error;
   1875             }
   1876         }
   1877     } else {
   1878         ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
   1879         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
   1880         if (!ret_fr && !is_fpd_set && s->root_scalable) {
   1881             ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid);
   1882         }
   1883         if (ret_fr) {
   1884             vtd_report_fault(s, -ret_fr, is_fpd_set,
   1885                              source_id, addr, is_write,
   1886                              false, 0);
   1887             goto error;
   1888         }
   1889         /* Update context-cache */
   1890         trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
   1891                                   cc_entry->context_cache_gen,
   1892                                   s->context_cache_gen);
   1893         cc_entry->context_entry = ce;
   1894         cc_entry->context_cache_gen = s->context_cache_gen;
   1895     }
   1896 
   1897     if (rid2pasid) {
   1898         pasid = VTD_CE_GET_RID2PASID(&ce);
   1899     }
   1900 
   1901     /*
   1902      * We don't need to translate for pass-through context entries.
   1903      * Also, let's ignore IOTLB caching as well for PT devices.
   1904      */
   1905     if (vtd_dev_pt_enabled(s, &ce, pasid)) {
   1906         entry->iova = addr & VTD_PAGE_MASK_4K;
   1907         entry->translated_addr = entry->iova;
   1908         entry->addr_mask = ~VTD_PAGE_MASK_4K;
   1909         entry->perm = IOMMU_RW;
   1910         trace_vtd_translate_pt(source_id, entry->iova);
   1911 
   1912         /*
   1913          * When this happens, it means firstly caching-mode is not
   1914          * enabled, and this is the first passthrough translation for
   1915          * the device. Let's enable the fast path for passthrough.
   1916          *
   1917          * When passthrough is disabled again for the device, we can
   1918          * capture it via the context entry invalidation, then the
   1919          * IOMMU region can be swapped back.
   1920          */
   1921         vtd_pt_enable_fast_path(s, source_id);
   1922         vtd_iommu_unlock(s);
   1923         return true;
   1924     }
   1925 
   1926     /* Try to fetch slpte form IOTLB for RID2PASID slow path */
   1927     if (rid2pasid) {
   1928         iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr);
   1929         if (iotlb_entry) {
   1930             trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
   1931                                      iotlb_entry->domain_id);
   1932             slpte = iotlb_entry->slpte;
   1933             access_flags = iotlb_entry->access_flags;
   1934             page_mask = iotlb_entry->mask;
   1935             goto out;
   1936         }
   1937     }
   1938 
   1939     ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
   1940                                &reads, &writes, s->aw_bits, pasid);
   1941     if (ret_fr) {
   1942         vtd_report_fault(s, -ret_fr, is_fpd_set, source_id,
   1943                          addr, is_write, pasid != PCI_NO_PASID, pasid);
   1944         goto error;
   1945     }
   1946 
   1947     page_mask = vtd_slpt_level_page_mask(level);
   1948     access_flags = IOMMU_ACCESS_FLAG(reads, writes);
   1949     vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce, pasid),
   1950                      addr, slpte, access_flags, level, pasid);
   1951 out:
   1952     vtd_iommu_unlock(s);
   1953     entry->iova = addr & page_mask;
   1954     entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
   1955     entry->addr_mask = ~page_mask;
   1956     entry->perm = access_flags;
   1957     return true;
   1958 
   1959 error:
   1960     vtd_iommu_unlock(s);
   1961     entry->iova = 0;
   1962     entry->translated_addr = 0;
   1963     entry->addr_mask = 0;
   1964     entry->perm = IOMMU_NONE;
   1965     return false;
   1966 }
   1967 
   1968 static void vtd_root_table_setup(IntelIOMMUState *s)
   1969 {
   1970     s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
   1971     s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
   1972 
   1973     vtd_update_scalable_state(s);
   1974 
   1975     trace_vtd_reg_dmar_root(s->root, s->root_scalable);
   1976 }
   1977 
   1978 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
   1979                                uint32_t index, uint32_t mask)
   1980 {
   1981     x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
   1982 }
   1983 
   1984 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
   1985 {
   1986     uint64_t value = 0;
   1987     value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
   1988     s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
   1989     s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
   1990     s->intr_eime = value & VTD_IRTA_EIME;
   1991 
   1992     /* Notify global invalidation */
   1993     vtd_iec_notify_all(s, true, 0, 0);
   1994 
   1995     trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
   1996 }
   1997 
   1998 static void vtd_iommu_replay_all(IntelIOMMUState *s)
   1999 {
   2000     VTDAddressSpace *vtd_as;
   2001 
   2002     QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
   2003         vtd_sync_shadow_page_table(vtd_as);
   2004     }
   2005 }
   2006 
   2007 static void vtd_context_global_invalidate(IntelIOMMUState *s)
   2008 {
   2009     trace_vtd_inv_desc_cc_global();
   2010     /* Protects context cache */
   2011     vtd_iommu_lock(s);
   2012     s->context_cache_gen++;
   2013     if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
   2014         vtd_reset_context_cache_locked(s);
   2015     }
   2016     vtd_iommu_unlock(s);
   2017     vtd_address_space_refresh_all(s);
   2018     /*
   2019      * From VT-d spec 6.5.2.1, a global context entry invalidation
   2020      * should be followed by a IOTLB global invalidation, so we should
   2021      * be safe even without this. Hoewever, let's replay the region as
   2022      * well to be safer, and go back here when we need finer tunes for
   2023      * VT-d emulation codes.
   2024      */
   2025     vtd_iommu_replay_all(s);
   2026 }
   2027 
   2028 /* Do a context-cache device-selective invalidation.
   2029  * @func_mask: FM field after shifting
   2030  */
   2031 static void vtd_context_device_invalidate(IntelIOMMUState *s,
   2032                                           uint16_t source_id,
   2033                                           uint16_t func_mask)
   2034 {
   2035     GHashTableIter as_it;
   2036     uint16_t mask;
   2037     VTDAddressSpace *vtd_as;
   2038     uint8_t bus_n, devfn;
   2039 
   2040     trace_vtd_inv_desc_cc_devices(source_id, func_mask);
   2041 
   2042     switch (func_mask & 3) {
   2043     case 0:
   2044         mask = 0;   /* No bits in the SID field masked */
   2045         break;
   2046     case 1:
   2047         mask = 4;   /* Mask bit 2 in the SID field */
   2048         break;
   2049     case 2:
   2050         mask = 6;   /* Mask bit 2:1 in the SID field */
   2051         break;
   2052     case 3:
   2053         mask = 7;   /* Mask bit 2:0 in the SID field */
   2054         break;
   2055     default:
   2056         g_assert_not_reached();
   2057     }
   2058     mask = ~mask;
   2059 
   2060     bus_n = VTD_SID_TO_BUS(source_id);
   2061     devfn = VTD_SID_TO_DEVFN(source_id);
   2062 
   2063     g_hash_table_iter_init(&as_it, s->vtd_address_spaces);
   2064     while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) {
   2065         if ((pci_bus_num(vtd_as->bus) == bus_n) &&
   2066             (vtd_as->devfn & mask) == (devfn & mask)) {
   2067             trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(vtd_as->devfn),
   2068                                          VTD_PCI_FUNC(vtd_as->devfn));
   2069             vtd_iommu_lock(s);
   2070             vtd_as->context_cache_entry.context_cache_gen = 0;
   2071             vtd_iommu_unlock(s);
   2072             /*
   2073              * Do switch address space when needed, in case if the
   2074              * device passthrough bit is switched.
   2075              */
   2076             vtd_switch_address_space(vtd_as);
   2077             /*
   2078              * So a device is moving out of (or moving into) a
   2079              * domain, resync the shadow page table.
   2080              * This won't bring bad even if we have no such
   2081              * notifier registered - the IOMMU notification
   2082              * framework will skip MAP notifications if that
   2083              * happened.
   2084              */
   2085             vtd_sync_shadow_page_table(vtd_as);
   2086         }
   2087     }
   2088 }
   2089 
   2090 /* Context-cache invalidation
   2091  * Returns the Context Actual Invalidation Granularity.
   2092  * @val: the content of the CCMD_REG
   2093  */
   2094 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
   2095 {
   2096     uint64_t caig;
   2097     uint64_t type = val & VTD_CCMD_CIRG_MASK;
   2098 
   2099     switch (type) {
   2100     case VTD_CCMD_DOMAIN_INVL:
   2101         /* Fall through */
   2102     case VTD_CCMD_GLOBAL_INVL:
   2103         caig = VTD_CCMD_GLOBAL_INVL_A;
   2104         vtd_context_global_invalidate(s);
   2105         break;
   2106 
   2107     case VTD_CCMD_DEVICE_INVL:
   2108         caig = VTD_CCMD_DEVICE_INVL_A;
   2109         vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
   2110         break;
   2111 
   2112     default:
   2113         error_report_once("%s: invalid context: 0x%" PRIx64,
   2114                           __func__, val);
   2115         caig = 0;
   2116     }
   2117     return caig;
   2118 }
   2119 
   2120 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
   2121 {
   2122     trace_vtd_inv_desc_iotlb_global();
   2123     vtd_reset_iotlb(s);
   2124     vtd_iommu_replay_all(s);
   2125 }
   2126 
   2127 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
   2128 {
   2129     VTDContextEntry ce;
   2130     VTDAddressSpace *vtd_as;
   2131 
   2132     trace_vtd_inv_desc_iotlb_domain(domain_id);
   2133 
   2134     vtd_iommu_lock(s);
   2135     g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
   2136                                 &domain_id);
   2137     vtd_iommu_unlock(s);
   2138 
   2139     QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
   2140         if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
   2141                                       vtd_as->devfn, &ce) &&
   2142             domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
   2143             vtd_sync_shadow_page_table(vtd_as);
   2144         }
   2145     }
   2146 }
   2147 
   2148 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
   2149                                            uint16_t domain_id, hwaddr addr,
   2150                                              uint8_t am, uint32_t pasid)
   2151 {
   2152     VTDAddressSpace *vtd_as;
   2153     VTDContextEntry ce;
   2154     int ret;
   2155     hwaddr size = (1 << am) * VTD_PAGE_SIZE;
   2156 
   2157     QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
   2158         if (pasid != PCI_NO_PASID && pasid != vtd_as->pasid) {
   2159             continue;
   2160         }
   2161         ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
   2162                                        vtd_as->devfn, &ce);
   2163         if (!ret && domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
   2164             if (vtd_as_has_map_notifier(vtd_as)) {
   2165                 /*
   2166                  * As long as we have MAP notifications registered in
   2167                  * any of our IOMMU notifiers, we need to sync the
   2168                  * shadow page table.
   2169                  */
   2170                 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
   2171             } else {
   2172                 /*
   2173                  * For UNMAP-only notifiers, we don't need to walk the
   2174                  * page tables.  We just deliver the PSI down to
   2175                  * invalidate caches.
   2176                  */
   2177                 IOMMUTLBEvent event = {
   2178                     .type = IOMMU_NOTIFIER_UNMAP,
   2179                     .entry = {
   2180                         .target_as = &address_space_memory,
   2181                         .iova = addr,
   2182                         .translated_addr = 0,
   2183                         .addr_mask = size - 1,
   2184                         .perm = IOMMU_NONE,
   2185                     },
   2186                 };
   2187                 memory_region_notify_iommu(&vtd_as->iommu, 0, event);
   2188             }
   2189         }
   2190     }
   2191 }
   2192 
   2193 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
   2194                                       hwaddr addr, uint8_t am)
   2195 {
   2196     VTDIOTLBPageInvInfo info;
   2197 
   2198     trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
   2199 
   2200     assert(am <= VTD_MAMV);
   2201     info.domain_id = domain_id;
   2202     info.addr = addr;
   2203     info.mask = ~((1 << am) - 1);
   2204     vtd_iommu_lock(s);
   2205     g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
   2206     vtd_iommu_unlock(s);
   2207     vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am, PCI_NO_PASID);
   2208 }
   2209 
   2210 /* Flush IOTLB
   2211  * Returns the IOTLB Actual Invalidation Granularity.
   2212  * @val: the content of the IOTLB_REG
   2213  */
   2214 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
   2215 {
   2216     uint64_t iaig;
   2217     uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
   2218     uint16_t domain_id;
   2219     hwaddr addr;
   2220     uint8_t am;
   2221 
   2222     switch (type) {
   2223     case VTD_TLB_GLOBAL_FLUSH:
   2224         iaig = VTD_TLB_GLOBAL_FLUSH_A;
   2225         vtd_iotlb_global_invalidate(s);
   2226         break;
   2227 
   2228     case VTD_TLB_DSI_FLUSH:
   2229         domain_id = VTD_TLB_DID(val);
   2230         iaig = VTD_TLB_DSI_FLUSH_A;
   2231         vtd_iotlb_domain_invalidate(s, domain_id);
   2232         break;
   2233 
   2234     case VTD_TLB_PSI_FLUSH:
   2235         domain_id = VTD_TLB_DID(val);
   2236         addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
   2237         am = VTD_IVA_AM(addr);
   2238         addr = VTD_IVA_ADDR(addr);
   2239         if (am > VTD_MAMV) {
   2240             error_report_once("%s: address mask overflow: 0x%" PRIx64,
   2241                               __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
   2242             iaig = 0;
   2243             break;
   2244         }
   2245         iaig = VTD_TLB_PSI_FLUSH_A;
   2246         vtd_iotlb_page_invalidate(s, domain_id, addr, am);
   2247         break;
   2248 
   2249     default:
   2250         error_report_once("%s: invalid granularity: 0x%" PRIx64,
   2251                           __func__, val);
   2252         iaig = 0;
   2253     }
   2254     return iaig;
   2255 }
   2256 
   2257 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
   2258 
   2259 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
   2260 {
   2261     return s->qi_enabled && (s->iq_tail == s->iq_head) &&
   2262            (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
   2263 }
   2264 
   2265 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
   2266 {
   2267     uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
   2268 
   2269     trace_vtd_inv_qi_enable(en);
   2270 
   2271     if (en) {
   2272         s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
   2273         /* 2^(x+8) entries */
   2274         s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
   2275         s->qi_enabled = true;
   2276         trace_vtd_inv_qi_setup(s->iq, s->iq_size);
   2277         /* Ok - report back to driver */
   2278         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
   2279 
   2280         if (s->iq_tail != 0) {
   2281             /*
   2282              * This is a spec violation but Windows guests are known to set up
   2283              * Queued Invalidation this way so we allow the write and process
   2284              * Invalidation Descriptors right away.
   2285              */
   2286             trace_vtd_warn_invalid_qi_tail(s->iq_tail);
   2287             if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
   2288                 vtd_fetch_inv_desc(s);
   2289             }
   2290         }
   2291     } else {
   2292         if (vtd_queued_inv_disable_check(s)) {
   2293             /* disable Queued Invalidation */
   2294             vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
   2295             s->iq_head = 0;
   2296             s->qi_enabled = false;
   2297             /* Ok - report back to driver */
   2298             vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
   2299         } else {
   2300             error_report_once("%s: detected improper state when disable QI "
   2301                               "(head=0x%x, tail=0x%x, last_type=%d)",
   2302                               __func__,
   2303                               s->iq_head, s->iq_tail, s->iq_last_desc_type);
   2304         }
   2305     }
   2306 }
   2307 
   2308 /* Set Root Table Pointer */
   2309 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
   2310 {
   2311     vtd_root_table_setup(s);
   2312     /* Ok - report back to driver */
   2313     vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
   2314     vtd_reset_caches(s);
   2315     vtd_address_space_refresh_all(s);
   2316 }
   2317 
   2318 /* Set Interrupt Remap Table Pointer */
   2319 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
   2320 {
   2321     vtd_interrupt_remap_table_setup(s);
   2322     /* Ok - report back to driver */
   2323     vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
   2324 }
   2325 
   2326 /* Handle Translation Enable/Disable */
   2327 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
   2328 {
   2329     if (s->dmar_enabled == en) {
   2330         return;
   2331     }
   2332 
   2333     trace_vtd_dmar_enable(en);
   2334 
   2335     if (en) {
   2336         s->dmar_enabled = true;
   2337         /* Ok - report back to driver */
   2338         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
   2339     } else {
   2340         s->dmar_enabled = false;
   2341 
   2342         /* Clear the index of Fault Recording Register */
   2343         s->next_frcd_reg = 0;
   2344         /* Ok - report back to driver */
   2345         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
   2346     }
   2347 
   2348     vtd_reset_caches(s);
   2349     vtd_address_space_refresh_all(s);
   2350 }
   2351 
   2352 /* Handle Interrupt Remap Enable/Disable */
   2353 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
   2354 {
   2355     trace_vtd_ir_enable(en);
   2356 
   2357     if (en) {
   2358         s->intr_enabled = true;
   2359         /* Ok - report back to driver */
   2360         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
   2361     } else {
   2362         s->intr_enabled = false;
   2363         /* Ok - report back to driver */
   2364         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
   2365     }
   2366 }
   2367 
   2368 /* Handle write to Global Command Register */
   2369 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
   2370 {
   2371     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
   2372     uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
   2373     uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
   2374     uint32_t changed = status ^ val;
   2375 
   2376     trace_vtd_reg_write_gcmd(status, val);
   2377     if ((changed & VTD_GCMD_TE) && s->dma_translation) {
   2378         /* Translation enable/disable */
   2379         vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
   2380     }
   2381     if (val & VTD_GCMD_SRTP) {
   2382         /* Set/update the root-table pointer */
   2383         vtd_handle_gcmd_srtp(s);
   2384     }
   2385     if (changed & VTD_GCMD_QIE) {
   2386         /* Queued Invalidation Enable */
   2387         vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
   2388     }
   2389     if (val & VTD_GCMD_SIRTP) {
   2390         /* Set/update the interrupt remapping root-table pointer */
   2391         vtd_handle_gcmd_sirtp(s);
   2392     }
   2393     if ((changed & VTD_GCMD_IRE) &&
   2394         x86_iommu_ir_supported(x86_iommu)) {
   2395         /* Interrupt remap enable/disable */
   2396         vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
   2397     }
   2398 }
   2399 
   2400 /* Handle write to Context Command Register */
   2401 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
   2402 {
   2403     uint64_t ret;
   2404     uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
   2405 
   2406     /* Context-cache invalidation request */
   2407     if (val & VTD_CCMD_ICC) {
   2408         if (s->qi_enabled) {
   2409             error_report_once("Queued Invalidation enabled, "
   2410                               "should not use register-based invalidation");
   2411             return;
   2412         }
   2413         ret = vtd_context_cache_invalidate(s, val);
   2414         /* Invalidation completed. Change something to show */
   2415         vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
   2416         ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
   2417                                       ret);
   2418     }
   2419 }
   2420 
   2421 /* Handle write to IOTLB Invalidation Register */
   2422 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
   2423 {
   2424     uint64_t ret;
   2425     uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
   2426 
   2427     /* IOTLB invalidation request */
   2428     if (val & VTD_TLB_IVT) {
   2429         if (s->qi_enabled) {
   2430             error_report_once("Queued Invalidation enabled, "
   2431                               "should not use register-based invalidation");
   2432             return;
   2433         }
   2434         ret = vtd_iotlb_flush(s, val);
   2435         /* Invalidation completed. Change something to show */
   2436         vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
   2437         ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
   2438                                       VTD_TLB_FLUSH_GRANU_MASK_A, ret);
   2439     }
   2440 }
   2441 
   2442 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
   2443 static bool vtd_get_inv_desc(IntelIOMMUState *s,
   2444                              VTDInvDesc *inv_desc)
   2445 {
   2446     dma_addr_t base_addr = s->iq;
   2447     uint32_t offset = s->iq_head;
   2448     uint32_t dw = s->iq_dw ? 32 : 16;
   2449     dma_addr_t addr = base_addr + offset * dw;
   2450 
   2451     if (dma_memory_read(&address_space_memory, addr,
   2452                         inv_desc, dw, MEMTXATTRS_UNSPECIFIED)) {
   2453         error_report_once("Read INV DESC failed.");
   2454         return false;
   2455     }
   2456     inv_desc->lo = le64_to_cpu(inv_desc->lo);
   2457     inv_desc->hi = le64_to_cpu(inv_desc->hi);
   2458     if (dw == 32) {
   2459         inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
   2460         inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
   2461     }
   2462     return true;
   2463 }
   2464 
   2465 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
   2466 {
   2467     if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
   2468         (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
   2469         error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
   2470                           " (reserved nonzero)", __func__, inv_desc->hi,
   2471                           inv_desc->lo);
   2472         return false;
   2473     }
   2474     if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
   2475         /* Status Write */
   2476         uint32_t status_data = (uint32_t)(inv_desc->lo >>
   2477                                VTD_INV_DESC_WAIT_DATA_SHIFT);
   2478 
   2479         assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
   2480 
   2481         /* FIXME: need to be masked with HAW? */
   2482         dma_addr_t status_addr = inv_desc->hi;
   2483         trace_vtd_inv_desc_wait_sw(status_addr, status_data);
   2484         status_data = cpu_to_le32(status_data);
   2485         if (dma_memory_write(&address_space_memory, status_addr,
   2486                              &status_data, sizeof(status_data),
   2487                              MEMTXATTRS_UNSPECIFIED)) {
   2488             trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
   2489             return false;
   2490         }
   2491     } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
   2492         /* Interrupt flag */
   2493         vtd_generate_completion_event(s);
   2494     } else {
   2495         error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
   2496                           " (unknown type)", __func__, inv_desc->hi,
   2497                           inv_desc->lo);
   2498         return false;
   2499     }
   2500     return true;
   2501 }
   2502 
   2503 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
   2504                                            VTDInvDesc *inv_desc)
   2505 {
   2506     uint16_t sid, fmask;
   2507 
   2508     if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
   2509         error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
   2510                           " (reserved nonzero)", __func__, inv_desc->hi,
   2511                           inv_desc->lo);
   2512         return false;
   2513     }
   2514     switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
   2515     case VTD_INV_DESC_CC_DOMAIN:
   2516         trace_vtd_inv_desc_cc_domain(
   2517             (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
   2518         /* Fall through */
   2519     case VTD_INV_DESC_CC_GLOBAL:
   2520         vtd_context_global_invalidate(s);
   2521         break;
   2522 
   2523     case VTD_INV_DESC_CC_DEVICE:
   2524         sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
   2525         fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
   2526         vtd_context_device_invalidate(s, sid, fmask);
   2527         break;
   2528 
   2529     default:
   2530         error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
   2531                           " (invalid type)", __func__, inv_desc->hi,
   2532                           inv_desc->lo);
   2533         return false;
   2534     }
   2535     return true;
   2536 }
   2537 
   2538 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
   2539 {
   2540     uint16_t domain_id;
   2541     uint8_t am;
   2542     hwaddr addr;
   2543 
   2544     if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
   2545         (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
   2546         error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
   2547                           ", lo=0x%"PRIx64" (reserved bits unzero)",
   2548                           __func__, inv_desc->hi, inv_desc->lo);
   2549         return false;
   2550     }
   2551 
   2552     switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
   2553     case VTD_INV_DESC_IOTLB_GLOBAL:
   2554         vtd_iotlb_global_invalidate(s);
   2555         break;
   2556 
   2557     case VTD_INV_DESC_IOTLB_DOMAIN:
   2558         domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
   2559         vtd_iotlb_domain_invalidate(s, domain_id);
   2560         break;
   2561 
   2562     case VTD_INV_DESC_IOTLB_PAGE:
   2563         domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
   2564         addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
   2565         am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
   2566         if (am > VTD_MAMV) {
   2567             error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
   2568                               ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)",
   2569                               __func__, inv_desc->hi, inv_desc->lo,
   2570                               am, (unsigned)VTD_MAMV);
   2571             return false;
   2572         }
   2573         vtd_iotlb_page_invalidate(s, domain_id, addr, am);
   2574         break;
   2575 
   2576     default:
   2577         error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
   2578                           ", lo=0x%"PRIx64" (type mismatch: 0x%llx)",
   2579                           __func__, inv_desc->hi, inv_desc->lo,
   2580                           inv_desc->lo & VTD_INV_DESC_IOTLB_G);
   2581         return false;
   2582     }
   2583     return true;
   2584 }
   2585 
   2586 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
   2587                                      VTDInvDesc *inv_desc)
   2588 {
   2589     trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
   2590                            inv_desc->iec.index,
   2591                            inv_desc->iec.index_mask);
   2592 
   2593     vtd_iec_notify_all(s, !inv_desc->iec.granularity,
   2594                        inv_desc->iec.index,
   2595                        inv_desc->iec.index_mask);
   2596     return true;
   2597 }
   2598 
   2599 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
   2600                                           VTDInvDesc *inv_desc)
   2601 {
   2602     VTDAddressSpace *vtd_dev_as;
   2603     IOMMUTLBEvent event;
   2604     hwaddr addr;
   2605     uint64_t sz;
   2606     uint16_t sid;
   2607     bool size;
   2608 
   2609     addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
   2610     sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
   2611     size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
   2612 
   2613     if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
   2614         (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
   2615         error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
   2616                           ", lo=%"PRIx64" (reserved nonzero)", __func__,
   2617                           inv_desc->hi, inv_desc->lo);
   2618         return false;
   2619     }
   2620 
   2621     /*
   2622      * Using sid is OK since the guest should have finished the
   2623      * initialization of both the bus and device.
   2624      */
   2625     vtd_dev_as = vtd_get_as_by_sid(s, sid);
   2626     if (!vtd_dev_as) {
   2627         goto done;
   2628     }
   2629 
   2630     /* According to ATS spec table 2.4:
   2631      * S = 0, bits 15:12 = xxxx     range size: 4K
   2632      * S = 1, bits 15:12 = xxx0     range size: 8K
   2633      * S = 1, bits 15:12 = xx01     range size: 16K
   2634      * S = 1, bits 15:12 = x011     range size: 32K
   2635      * S = 1, bits 15:12 = 0111     range size: 64K
   2636      * ...
   2637      */
   2638     if (size) {
   2639         sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
   2640         addr &= ~(sz - 1);
   2641     } else {
   2642         sz = VTD_PAGE_SIZE;
   2643     }
   2644 
   2645     event.type = IOMMU_NOTIFIER_DEVIOTLB_UNMAP;
   2646     event.entry.target_as = &vtd_dev_as->as;
   2647     event.entry.addr_mask = sz - 1;
   2648     event.entry.iova = addr;
   2649     event.entry.perm = IOMMU_NONE;
   2650     event.entry.translated_addr = 0;
   2651     memory_region_notify_iommu(&vtd_dev_as->iommu, 0, event);
   2652 
   2653 done:
   2654     return true;
   2655 }
   2656 
   2657 static bool vtd_process_inv_desc(IntelIOMMUState *s)
   2658 {
   2659     VTDInvDesc inv_desc;
   2660     uint8_t desc_type;
   2661 
   2662     trace_vtd_inv_qi_head(s->iq_head);
   2663     if (!vtd_get_inv_desc(s, &inv_desc)) {
   2664         s->iq_last_desc_type = VTD_INV_DESC_NONE;
   2665         return false;
   2666     }
   2667 
   2668     desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
   2669     /* FIXME: should update at first or at last? */
   2670     s->iq_last_desc_type = desc_type;
   2671 
   2672     switch (desc_type) {
   2673     case VTD_INV_DESC_CC:
   2674         trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
   2675         if (!vtd_process_context_cache_desc(s, &inv_desc)) {
   2676             return false;
   2677         }
   2678         break;
   2679 
   2680     case VTD_INV_DESC_IOTLB:
   2681         trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
   2682         if (!vtd_process_iotlb_desc(s, &inv_desc)) {
   2683             return false;
   2684         }
   2685         break;
   2686 
   2687     /*
   2688      * TODO: the entity of below two cases will be implemented in future series.
   2689      * To make guest (which integrates scalable mode support patch set in
   2690      * iommu driver) work, just return true is enough so far.
   2691      */
   2692     case VTD_INV_DESC_PC:
   2693         break;
   2694 
   2695     case VTD_INV_DESC_PIOTLB:
   2696         break;
   2697 
   2698     case VTD_INV_DESC_WAIT:
   2699         trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
   2700         if (!vtd_process_wait_desc(s, &inv_desc)) {
   2701             return false;
   2702         }
   2703         break;
   2704 
   2705     case VTD_INV_DESC_IEC:
   2706         trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
   2707         if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
   2708             return false;
   2709         }
   2710         break;
   2711 
   2712     case VTD_INV_DESC_DEVICE:
   2713         trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
   2714         if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
   2715             return false;
   2716         }
   2717         break;
   2718 
   2719     default:
   2720         error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
   2721                           " (unknown type)", __func__, inv_desc.hi,
   2722                           inv_desc.lo);
   2723         return false;
   2724     }
   2725     s->iq_head++;
   2726     if (s->iq_head == s->iq_size) {
   2727         s->iq_head = 0;
   2728     }
   2729     return true;
   2730 }
   2731 
   2732 /* Try to fetch and process more Invalidation Descriptors */
   2733 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
   2734 {
   2735     int qi_shift;
   2736 
   2737     /* Refer to 10.4.23 of VT-d spec 3.0 */
   2738     qi_shift = s->iq_dw ? VTD_IQH_QH_SHIFT_5 : VTD_IQH_QH_SHIFT_4;
   2739 
   2740     trace_vtd_inv_qi_fetch();
   2741 
   2742     if (s->iq_tail >= s->iq_size) {
   2743         /* Detects an invalid Tail pointer */
   2744         error_report_once("%s: detected invalid QI tail "
   2745                           "(tail=0x%x, size=0x%x)",
   2746                           __func__, s->iq_tail, s->iq_size);
   2747         vtd_handle_inv_queue_error(s);
   2748         return;
   2749     }
   2750     while (s->iq_head != s->iq_tail) {
   2751         if (!vtd_process_inv_desc(s)) {
   2752             /* Invalidation Queue Errors */
   2753             vtd_handle_inv_queue_error(s);
   2754             break;
   2755         }
   2756         /* Must update the IQH_REG in time */
   2757         vtd_set_quad_raw(s, DMAR_IQH_REG,
   2758                          (((uint64_t)(s->iq_head)) << qi_shift) &
   2759                          VTD_IQH_QH_MASK);
   2760     }
   2761 }
   2762 
   2763 /* Handle write to Invalidation Queue Tail Register */
   2764 static void vtd_handle_iqt_write(IntelIOMMUState *s)
   2765 {
   2766     uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
   2767 
   2768     if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
   2769         error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
   2770                           __func__, val);
   2771         return;
   2772     }
   2773     s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
   2774     trace_vtd_inv_qi_tail(s->iq_tail);
   2775 
   2776     if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
   2777         /* Process Invalidation Queue here */
   2778         vtd_fetch_inv_desc(s);
   2779     }
   2780 }
   2781 
   2782 static void vtd_handle_fsts_write(IntelIOMMUState *s)
   2783 {
   2784     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
   2785     uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
   2786     uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
   2787 
   2788     if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
   2789         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
   2790         trace_vtd_fsts_clear_ip();
   2791     }
   2792     /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
   2793      * Descriptors if there are any when Queued Invalidation is enabled?
   2794      */
   2795 }
   2796 
   2797 static void vtd_handle_fectl_write(IntelIOMMUState *s)
   2798 {
   2799     uint32_t fectl_reg;
   2800     /* FIXME: when software clears the IM field, check the IP field. But do we
   2801      * need to compare the old value and the new value to conclude that
   2802      * software clears the IM field? Or just check if the IM field is zero?
   2803      */
   2804     fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
   2805 
   2806     trace_vtd_reg_write_fectl(fectl_reg);
   2807 
   2808     if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
   2809         vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
   2810         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
   2811     }
   2812 }
   2813 
   2814 static void vtd_handle_ics_write(IntelIOMMUState *s)
   2815 {
   2816     uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
   2817     uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
   2818 
   2819     if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
   2820         trace_vtd_reg_ics_clear_ip();
   2821         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
   2822     }
   2823 }
   2824 
   2825 static void vtd_handle_iectl_write(IntelIOMMUState *s)
   2826 {
   2827     uint32_t iectl_reg;
   2828     /* FIXME: when software clears the IM field, check the IP field. But do we
   2829      * need to compare the old value and the new value to conclude that
   2830      * software clears the IM field? Or just check if the IM field is zero?
   2831      */
   2832     iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
   2833 
   2834     trace_vtd_reg_write_iectl(iectl_reg);
   2835 
   2836     if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
   2837         vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
   2838         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
   2839     }
   2840 }
   2841 
   2842 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
   2843 {
   2844     IntelIOMMUState *s = opaque;
   2845     uint64_t val;
   2846 
   2847     trace_vtd_reg_read(addr, size);
   2848 
   2849     if (addr + size > DMAR_REG_SIZE) {
   2850         error_report_once("%s: MMIO over range: addr=0x%" PRIx64
   2851                           " size=0x%x", __func__, addr, size);
   2852         return (uint64_t)-1;
   2853     }
   2854 
   2855     switch (addr) {
   2856     /* Root Table Address Register, 64-bit */
   2857     case DMAR_RTADDR_REG:
   2858         val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
   2859         if (size == 4) {
   2860             val = val & ((1ULL << 32) - 1);
   2861         }
   2862         break;
   2863 
   2864     case DMAR_RTADDR_REG_HI:
   2865         assert(size == 4);
   2866         val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32;
   2867         break;
   2868 
   2869     /* Invalidation Queue Address Register, 64-bit */
   2870     case DMAR_IQA_REG:
   2871         val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
   2872         if (size == 4) {
   2873             val = val & ((1ULL << 32) - 1);
   2874         }
   2875         break;
   2876 
   2877     case DMAR_IQA_REG_HI:
   2878         assert(size == 4);
   2879         val = s->iq >> 32;
   2880         break;
   2881 
   2882     default:
   2883         if (size == 4) {
   2884             val = vtd_get_long(s, addr);
   2885         } else {
   2886             val = vtd_get_quad(s, addr);
   2887         }
   2888     }
   2889 
   2890     return val;
   2891 }
   2892 
   2893 static void vtd_mem_write(void *opaque, hwaddr addr,
   2894                           uint64_t val, unsigned size)
   2895 {
   2896     IntelIOMMUState *s = opaque;
   2897 
   2898     trace_vtd_reg_write(addr, size, val);
   2899 
   2900     if (addr + size > DMAR_REG_SIZE) {
   2901         error_report_once("%s: MMIO over range: addr=0x%" PRIx64
   2902                           " size=0x%x", __func__, addr, size);
   2903         return;
   2904     }
   2905 
   2906     switch (addr) {
   2907     /* Global Command Register, 32-bit */
   2908     case DMAR_GCMD_REG:
   2909         vtd_set_long(s, addr, val);
   2910         vtd_handle_gcmd_write(s);
   2911         break;
   2912 
   2913     /* Context Command Register, 64-bit */
   2914     case DMAR_CCMD_REG:
   2915         if (size == 4) {
   2916             vtd_set_long(s, addr, val);
   2917         } else {
   2918             vtd_set_quad(s, addr, val);
   2919             vtd_handle_ccmd_write(s);
   2920         }
   2921         break;
   2922 
   2923     case DMAR_CCMD_REG_HI:
   2924         assert(size == 4);
   2925         vtd_set_long(s, addr, val);
   2926         vtd_handle_ccmd_write(s);
   2927         break;
   2928 
   2929     /* IOTLB Invalidation Register, 64-bit */
   2930     case DMAR_IOTLB_REG:
   2931         if (size == 4) {
   2932             vtd_set_long(s, addr, val);
   2933         } else {
   2934             vtd_set_quad(s, addr, val);
   2935             vtd_handle_iotlb_write(s);
   2936         }
   2937         break;
   2938 
   2939     case DMAR_IOTLB_REG_HI:
   2940         assert(size == 4);
   2941         vtd_set_long(s, addr, val);
   2942         vtd_handle_iotlb_write(s);
   2943         break;
   2944 
   2945     /* Invalidate Address Register, 64-bit */
   2946     case DMAR_IVA_REG:
   2947         if (size == 4) {
   2948             vtd_set_long(s, addr, val);
   2949         } else {
   2950             vtd_set_quad(s, addr, val);
   2951         }
   2952         break;
   2953 
   2954     case DMAR_IVA_REG_HI:
   2955         assert(size == 4);
   2956         vtd_set_long(s, addr, val);
   2957         break;
   2958 
   2959     /* Fault Status Register, 32-bit */
   2960     case DMAR_FSTS_REG:
   2961         assert(size == 4);
   2962         vtd_set_long(s, addr, val);
   2963         vtd_handle_fsts_write(s);
   2964         break;
   2965 
   2966     /* Fault Event Control Register, 32-bit */
   2967     case DMAR_FECTL_REG:
   2968         assert(size == 4);
   2969         vtd_set_long(s, addr, val);
   2970         vtd_handle_fectl_write(s);
   2971         break;
   2972 
   2973     /* Fault Event Data Register, 32-bit */
   2974     case DMAR_FEDATA_REG:
   2975         assert(size == 4);
   2976         vtd_set_long(s, addr, val);
   2977         break;
   2978 
   2979     /* Fault Event Address Register, 32-bit */
   2980     case DMAR_FEADDR_REG:
   2981         if (size == 4) {
   2982             vtd_set_long(s, addr, val);
   2983         } else {
   2984             /*
   2985              * While the register is 32-bit only, some guests (Xen...) write to
   2986              * it with 64-bit.
   2987              */
   2988             vtd_set_quad(s, addr, val);
   2989         }
   2990         break;
   2991 
   2992     /* Fault Event Upper Address Register, 32-bit */
   2993     case DMAR_FEUADDR_REG:
   2994         assert(size == 4);
   2995         vtd_set_long(s, addr, val);
   2996         break;
   2997 
   2998     /* Protected Memory Enable Register, 32-bit */
   2999     case DMAR_PMEN_REG:
   3000         assert(size == 4);
   3001         vtd_set_long(s, addr, val);
   3002         break;
   3003 
   3004     /* Root Table Address Register, 64-bit */
   3005     case DMAR_RTADDR_REG:
   3006         if (size == 4) {
   3007             vtd_set_long(s, addr, val);
   3008         } else {
   3009             vtd_set_quad(s, addr, val);
   3010         }
   3011         break;
   3012 
   3013     case DMAR_RTADDR_REG_HI:
   3014         assert(size == 4);
   3015         vtd_set_long(s, addr, val);
   3016         break;
   3017 
   3018     /* Invalidation Queue Tail Register, 64-bit */
   3019     case DMAR_IQT_REG:
   3020         if (size == 4) {
   3021             vtd_set_long(s, addr, val);
   3022         } else {
   3023             vtd_set_quad(s, addr, val);
   3024         }
   3025         vtd_handle_iqt_write(s);
   3026         break;
   3027 
   3028     case DMAR_IQT_REG_HI:
   3029         assert(size == 4);
   3030         vtd_set_long(s, addr, val);
   3031         /* 19:63 of IQT_REG is RsvdZ, do nothing here */
   3032         break;
   3033 
   3034     /* Invalidation Queue Address Register, 64-bit */
   3035     case DMAR_IQA_REG:
   3036         if (size == 4) {
   3037             vtd_set_long(s, addr, val);
   3038         } else {
   3039             vtd_set_quad(s, addr, val);
   3040         }
   3041         vtd_update_iq_dw(s);
   3042         break;
   3043 
   3044     case DMAR_IQA_REG_HI:
   3045         assert(size == 4);
   3046         vtd_set_long(s, addr, val);
   3047         break;
   3048 
   3049     /* Invalidation Completion Status Register, 32-bit */
   3050     case DMAR_ICS_REG:
   3051         assert(size == 4);
   3052         vtd_set_long(s, addr, val);
   3053         vtd_handle_ics_write(s);
   3054         break;
   3055 
   3056     /* Invalidation Event Control Register, 32-bit */
   3057     case DMAR_IECTL_REG:
   3058         assert(size == 4);
   3059         vtd_set_long(s, addr, val);
   3060         vtd_handle_iectl_write(s);
   3061         break;
   3062 
   3063     /* Invalidation Event Data Register, 32-bit */
   3064     case DMAR_IEDATA_REG:
   3065         assert(size == 4);
   3066         vtd_set_long(s, addr, val);
   3067         break;
   3068 
   3069     /* Invalidation Event Address Register, 32-bit */
   3070     case DMAR_IEADDR_REG:
   3071         assert(size == 4);
   3072         vtd_set_long(s, addr, val);
   3073         break;
   3074 
   3075     /* Invalidation Event Upper Address Register, 32-bit */
   3076     case DMAR_IEUADDR_REG:
   3077         assert(size == 4);
   3078         vtd_set_long(s, addr, val);
   3079         break;
   3080 
   3081     /* Fault Recording Registers, 128-bit */
   3082     case DMAR_FRCD_REG_0_0:
   3083         if (size == 4) {
   3084             vtd_set_long(s, addr, val);
   3085         } else {
   3086             vtd_set_quad(s, addr, val);
   3087         }
   3088         break;
   3089 
   3090     case DMAR_FRCD_REG_0_1:
   3091         assert(size == 4);
   3092         vtd_set_long(s, addr, val);
   3093         break;
   3094 
   3095     case DMAR_FRCD_REG_0_2:
   3096         if (size == 4) {
   3097             vtd_set_long(s, addr, val);
   3098         } else {
   3099             vtd_set_quad(s, addr, val);
   3100             /* May clear bit 127 (Fault), update PPF */
   3101             vtd_update_fsts_ppf(s);
   3102         }
   3103         break;
   3104 
   3105     case DMAR_FRCD_REG_0_3:
   3106         assert(size == 4);
   3107         vtd_set_long(s, addr, val);
   3108         /* May clear bit 127 (Fault), update PPF */
   3109         vtd_update_fsts_ppf(s);
   3110         break;
   3111 
   3112     case DMAR_IRTA_REG:
   3113         if (size == 4) {
   3114             vtd_set_long(s, addr, val);
   3115         } else {
   3116             vtd_set_quad(s, addr, val);
   3117         }
   3118         break;
   3119 
   3120     case DMAR_IRTA_REG_HI:
   3121         assert(size == 4);
   3122         vtd_set_long(s, addr, val);
   3123         break;
   3124 
   3125     default:
   3126         if (size == 4) {
   3127             vtd_set_long(s, addr, val);
   3128         } else {
   3129             vtd_set_quad(s, addr, val);
   3130         }
   3131     }
   3132 }
   3133 
   3134 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
   3135                                          IOMMUAccessFlags flag, int iommu_idx)
   3136 {
   3137     VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
   3138     IntelIOMMUState *s = vtd_as->iommu_state;
   3139     IOMMUTLBEntry iotlb = {
   3140         /* We'll fill in the rest later. */
   3141         .target_as = &address_space_memory,
   3142     };
   3143     bool success;
   3144 
   3145     if (likely(s->dmar_enabled)) {
   3146         success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
   3147                                          addr, flag & IOMMU_WO, &iotlb);
   3148     } else {
   3149         /* DMAR disabled, passthrough, use 4k-page*/
   3150         iotlb.iova = addr & VTD_PAGE_MASK_4K;
   3151         iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
   3152         iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
   3153         iotlb.perm = IOMMU_RW;
   3154         success = true;
   3155     }
   3156 
   3157     if (likely(success)) {
   3158         trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
   3159                                  VTD_PCI_SLOT(vtd_as->devfn),
   3160                                  VTD_PCI_FUNC(vtd_as->devfn),
   3161                                  iotlb.iova, iotlb.translated_addr,
   3162                                  iotlb.addr_mask);
   3163     } else {
   3164         error_report_once("%s: detected translation failure "
   3165                           "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
   3166                           __func__, pci_bus_num(vtd_as->bus),
   3167                           VTD_PCI_SLOT(vtd_as->devfn),
   3168                           VTD_PCI_FUNC(vtd_as->devfn),
   3169                           addr);
   3170     }
   3171 
   3172     return iotlb;
   3173 }
   3174 
   3175 static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
   3176                                          IOMMUNotifierFlag old,
   3177                                          IOMMUNotifierFlag new,
   3178                                          Error **errp)
   3179 {
   3180     VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
   3181     IntelIOMMUState *s = vtd_as->iommu_state;
   3182 
   3183     /* TODO: add support for VFIO and vhost users */
   3184     if (s->snoop_control) {
   3185         error_setg_errno(errp, ENOTSUP,
   3186                          "Snoop Control with vhost or VFIO is not supported");
   3187         return -ENOTSUP;
   3188     }
   3189 
   3190     /* Update per-address-space notifier flags */
   3191     vtd_as->notifier_flags = new;
   3192 
   3193     if (old == IOMMU_NOTIFIER_NONE) {
   3194         QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
   3195     } else if (new == IOMMU_NOTIFIER_NONE) {
   3196         QLIST_REMOVE(vtd_as, next);
   3197     }
   3198     return 0;
   3199 }
   3200 
   3201 static int vtd_post_load(void *opaque, int version_id)
   3202 {
   3203     IntelIOMMUState *iommu = opaque;
   3204 
   3205     /*
   3206      * We don't need to migrate the root_scalable because we can
   3207      * simply do the calculation after the loading is complete.  We
   3208      * can actually do similar things with root, dmar_enabled, etc.
   3209      * however since we've had them already so we'd better keep them
   3210      * for compatibility of migration.
   3211      */
   3212     vtd_update_scalable_state(iommu);
   3213 
   3214     vtd_update_iq_dw(iommu);
   3215 
   3216     /*
   3217      * Memory regions are dynamically turned on/off depending on
   3218      * context entry configurations from the guest. After migration,
   3219      * we need to make sure the memory regions are still correct.
   3220      */
   3221     vtd_switch_address_space_all(iommu);
   3222 
   3223     return 0;
   3224 }
   3225 
   3226 static const VMStateDescription vtd_vmstate = {
   3227     .name = "iommu-intel",
   3228     .version_id = 1,
   3229     .minimum_version_id = 1,
   3230     .priority = MIG_PRI_IOMMU,
   3231     .post_load = vtd_post_load,
   3232     .fields = (VMStateField[]) {
   3233         VMSTATE_UINT64(root, IntelIOMMUState),
   3234         VMSTATE_UINT64(intr_root, IntelIOMMUState),
   3235         VMSTATE_UINT64(iq, IntelIOMMUState),
   3236         VMSTATE_UINT32(intr_size, IntelIOMMUState),
   3237         VMSTATE_UINT16(iq_head, IntelIOMMUState),
   3238         VMSTATE_UINT16(iq_tail, IntelIOMMUState),
   3239         VMSTATE_UINT16(iq_size, IntelIOMMUState),
   3240         VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
   3241         VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
   3242         VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
   3243         VMSTATE_UNUSED(1),      /* bool root_extended is obsolete by VT-d */
   3244         VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
   3245         VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
   3246         VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
   3247         VMSTATE_BOOL(intr_eime, IntelIOMMUState),
   3248         VMSTATE_END_OF_LIST()
   3249     }
   3250 };
   3251 
   3252 static const MemoryRegionOps vtd_mem_ops = {
   3253     .read = vtd_mem_read,
   3254     .write = vtd_mem_write,
   3255     .endianness = DEVICE_LITTLE_ENDIAN,
   3256     .impl = {
   3257         .min_access_size = 4,
   3258         .max_access_size = 8,
   3259     },
   3260     .valid = {
   3261         .min_access_size = 4,
   3262         .max_access_size = 8,
   3263     },
   3264 };
   3265 
   3266 static Property vtd_properties[] = {
   3267     DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
   3268     DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
   3269                             ON_OFF_AUTO_AUTO),
   3270     DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
   3271     DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
   3272                       VTD_HOST_ADDRESS_WIDTH),
   3273     DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
   3274     DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
   3275     DEFINE_PROP_BOOL("snoop-control", IntelIOMMUState, snoop_control, false),
   3276     DEFINE_PROP_BOOL("x-pasid-mode", IntelIOMMUState, pasid, false),
   3277     DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
   3278     DEFINE_PROP_BOOL("dma-translation", IntelIOMMUState, dma_translation, true),
   3279     DEFINE_PROP_END_OF_LIST(),
   3280 };
   3281 
   3282 /* Read IRTE entry with specific index */
   3283 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
   3284                         VTD_IR_TableEntry *entry, uint16_t sid)
   3285 {
   3286     static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
   3287         {0xffff, 0xfffb, 0xfff9, 0xfff8};
   3288     dma_addr_t addr = 0x00;
   3289     uint16_t mask, source_id;
   3290     uint8_t bus, bus_max, bus_min;
   3291 
   3292     if (index >= iommu->intr_size) {
   3293         error_report_once("%s: index too large: ind=0x%x",
   3294                           __func__, index);
   3295         return -VTD_FR_IR_INDEX_OVER;
   3296     }
   3297 
   3298     addr = iommu->intr_root + index * sizeof(*entry);
   3299     if (dma_memory_read(&address_space_memory, addr,
   3300                         entry, sizeof(*entry), MEMTXATTRS_UNSPECIFIED)) {
   3301         error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
   3302                           __func__, index, addr);
   3303         return -VTD_FR_IR_ROOT_INVAL;
   3304     }
   3305 
   3306     trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
   3307                           le64_to_cpu(entry->data[0]));
   3308 
   3309     if (!entry->irte.present) {
   3310         error_report_once("%s: detected non-present IRTE "
   3311                           "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
   3312                           __func__, index, le64_to_cpu(entry->data[1]),
   3313                           le64_to_cpu(entry->data[0]));
   3314         return -VTD_FR_IR_ENTRY_P;
   3315     }
   3316 
   3317     if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
   3318         entry->irte.__reserved_2) {
   3319         error_report_once("%s: detected non-zero reserved IRTE "
   3320                           "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
   3321                           __func__, index, le64_to_cpu(entry->data[1]),
   3322                           le64_to_cpu(entry->data[0]));
   3323         return -VTD_FR_IR_IRTE_RSVD;
   3324     }
   3325 
   3326     if (sid != X86_IOMMU_SID_INVALID) {
   3327         /* Validate IRTE SID */
   3328         source_id = le32_to_cpu(entry->irte.source_id);
   3329         switch (entry->irte.sid_vtype) {
   3330         case VTD_SVT_NONE:
   3331             break;
   3332 
   3333         case VTD_SVT_ALL:
   3334             mask = vtd_svt_mask[entry->irte.sid_q];
   3335             if ((source_id & mask) != (sid & mask)) {
   3336                 error_report_once("%s: invalid IRTE SID "
   3337                                   "(index=%u, sid=%u, source_id=%u)",
   3338                                   __func__, index, sid, source_id);
   3339                 return -VTD_FR_IR_SID_ERR;
   3340             }
   3341             break;
   3342 
   3343         case VTD_SVT_BUS:
   3344             bus_max = source_id >> 8;
   3345             bus_min = source_id & 0xff;
   3346             bus = sid >> 8;
   3347             if (bus > bus_max || bus < bus_min) {
   3348                 error_report_once("%s: invalid SVT_BUS "
   3349                                   "(index=%u, bus=%u, min=%u, max=%u)",
   3350                                   __func__, index, bus, bus_min, bus_max);
   3351                 return -VTD_FR_IR_SID_ERR;
   3352             }
   3353             break;
   3354 
   3355         default:
   3356             error_report_once("%s: detected invalid IRTE SVT "
   3357                               "(index=%u, type=%d)", __func__,
   3358                               index, entry->irte.sid_vtype);
   3359             /* Take this as verification failure. */
   3360             return -VTD_FR_IR_SID_ERR;
   3361         }
   3362     }
   3363 
   3364     return 0;
   3365 }
   3366 
   3367 /* Fetch IRQ information of specific IR index */
   3368 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
   3369                              X86IOMMUIrq *irq, uint16_t sid)
   3370 {
   3371     VTD_IR_TableEntry irte = {};
   3372     int ret = 0;
   3373 
   3374     ret = vtd_irte_get(iommu, index, &irte, sid);
   3375     if (ret) {
   3376         return ret;
   3377     }
   3378 
   3379     irq->trigger_mode = irte.irte.trigger_mode;
   3380     irq->vector = irte.irte.vector;
   3381     irq->delivery_mode = irte.irte.delivery_mode;
   3382     irq->dest = le32_to_cpu(irte.irte.dest_id);
   3383     if (!iommu->intr_eime) {
   3384 #define  VTD_IR_APIC_DEST_MASK         (0xff00ULL)
   3385 #define  VTD_IR_APIC_DEST_SHIFT        (8)
   3386         irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
   3387             VTD_IR_APIC_DEST_SHIFT;
   3388     }
   3389     irq->dest_mode = irte.irte.dest_mode;
   3390     irq->redir_hint = irte.irte.redir_hint;
   3391 
   3392     trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
   3393                        irq->delivery_mode, irq->dest, irq->dest_mode);
   3394 
   3395     return 0;
   3396 }
   3397 
   3398 /* Interrupt remapping for MSI/MSI-X entry */
   3399 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
   3400                                    MSIMessage *origin,
   3401                                    MSIMessage *translated,
   3402                                    uint16_t sid)
   3403 {
   3404     int ret = 0;
   3405     VTD_IR_MSIAddress addr;
   3406     uint16_t index;
   3407     X86IOMMUIrq irq = {};
   3408 
   3409     assert(origin && translated);
   3410 
   3411     trace_vtd_ir_remap_msi_req(origin->address, origin->data);
   3412 
   3413     if (!iommu || !iommu->intr_enabled) {
   3414         memcpy(translated, origin, sizeof(*origin));
   3415         goto out;
   3416     }
   3417 
   3418     if (origin->address & VTD_MSI_ADDR_HI_MASK) {
   3419         error_report_once("%s: MSI address high 32 bits non-zero detected: "
   3420                           "address=0x%" PRIx64, __func__, origin->address);
   3421         return -VTD_FR_IR_REQ_RSVD;
   3422     }
   3423 
   3424     addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
   3425     if (addr.addr.__head != 0xfee) {
   3426         error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
   3427                           __func__, addr.data);
   3428         return -VTD_FR_IR_REQ_RSVD;
   3429     }
   3430 
   3431     /* This is compatible mode. */
   3432     if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
   3433         memcpy(translated, origin, sizeof(*origin));
   3434         goto out;
   3435     }
   3436 
   3437     index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
   3438 
   3439 #define  VTD_IR_MSI_DATA_SUBHANDLE       (0x0000ffff)
   3440 #define  VTD_IR_MSI_DATA_RESERVED        (0xffff0000)
   3441 
   3442     if (addr.addr.sub_valid) {
   3443         /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
   3444         index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
   3445     }
   3446 
   3447     ret = vtd_remap_irq_get(iommu, index, &irq, sid);
   3448     if (ret) {
   3449         return ret;
   3450     }
   3451 
   3452     if (addr.addr.sub_valid) {
   3453         trace_vtd_ir_remap_type("MSI");
   3454         if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
   3455             error_report_once("%s: invalid IR MSI "
   3456                               "(sid=%u, address=0x%" PRIx64
   3457                               ", data=0x%" PRIx32 ")",
   3458                               __func__, sid, origin->address, origin->data);
   3459             return -VTD_FR_IR_REQ_RSVD;
   3460         }
   3461     } else {
   3462         uint8_t vector = origin->data & 0xff;
   3463         uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
   3464 
   3465         trace_vtd_ir_remap_type("IOAPIC");
   3466         /* IOAPIC entry vector should be aligned with IRTE vector
   3467          * (see vt-d spec 5.1.5.1). */
   3468         if (vector != irq.vector) {
   3469             trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
   3470         }
   3471 
   3472         /* The Trigger Mode field must match the Trigger Mode in the IRTE.
   3473          * (see vt-d spec 5.1.5.1). */
   3474         if (trigger_mode != irq.trigger_mode) {
   3475             trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
   3476                                       irq.trigger_mode);
   3477         }
   3478     }
   3479 
   3480     /*
   3481      * We'd better keep the last two bits, assuming that guest OS
   3482      * might modify it. Keep it does not hurt after all.
   3483      */
   3484     irq.msi_addr_last_bits = addr.addr.__not_care;
   3485 
   3486     /* Translate X86IOMMUIrq to MSI message */
   3487     x86_iommu_irq_to_msi_message(&irq, translated);
   3488 
   3489 out:
   3490     trace_vtd_ir_remap_msi(origin->address, origin->data,
   3491                            translated->address, translated->data);
   3492     return 0;
   3493 }
   3494 
   3495 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
   3496                          MSIMessage *dst, uint16_t sid)
   3497 {
   3498     return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
   3499                                    src, dst, sid);
   3500 }
   3501 
   3502 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
   3503                                    uint64_t *data, unsigned size,
   3504                                    MemTxAttrs attrs)
   3505 {
   3506     return MEMTX_OK;
   3507 }
   3508 
   3509 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
   3510                                     uint64_t value, unsigned size,
   3511                                     MemTxAttrs attrs)
   3512 {
   3513     int ret = 0;
   3514     MSIMessage from = {}, to = {};
   3515     uint16_t sid = X86_IOMMU_SID_INVALID;
   3516 
   3517     from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
   3518     from.data = (uint32_t) value;
   3519 
   3520     if (!attrs.unspecified) {
   3521         /* We have explicit Source ID */
   3522         sid = attrs.requester_id;
   3523     }
   3524 
   3525     ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
   3526     if (ret) {
   3527         /* TODO: report error */
   3528         /* Drop this interrupt */
   3529         return MEMTX_ERROR;
   3530     }
   3531 
   3532     apic_get_class()->send_msi(&to);
   3533 
   3534     return MEMTX_OK;
   3535 }
   3536 
   3537 static const MemoryRegionOps vtd_mem_ir_ops = {
   3538     .read_with_attrs = vtd_mem_ir_read,
   3539     .write_with_attrs = vtd_mem_ir_write,
   3540     .endianness = DEVICE_LITTLE_ENDIAN,
   3541     .impl = {
   3542         .min_access_size = 4,
   3543         .max_access_size = 4,
   3544     },
   3545     .valid = {
   3546         .min_access_size = 4,
   3547         .max_access_size = 4,
   3548     },
   3549 };
   3550 
   3551 static void vtd_report_ir_illegal_access(VTDAddressSpace *vtd_as,
   3552                                          hwaddr addr, bool is_write)
   3553 {
   3554     IntelIOMMUState *s = vtd_as->iommu_state;
   3555     uint8_t bus_n = pci_bus_num(vtd_as->bus);
   3556     uint16_t sid = PCI_BUILD_BDF(bus_n, vtd_as->devfn);
   3557     bool is_fpd_set = false;
   3558     VTDContextEntry ce;
   3559 
   3560     assert(vtd_as->pasid != PCI_NO_PASID);
   3561 
   3562     /* Try out best to fetch FPD, we can't do anything more */
   3563     if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
   3564         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
   3565         if (!is_fpd_set && s->root_scalable) {
   3566             vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, vtd_as->pasid);
   3567         }
   3568     }
   3569 
   3570     vtd_report_fault(s, VTD_FR_SM_INTERRUPT_ADDR,
   3571                      is_fpd_set, sid, addr, is_write,
   3572                      true, vtd_as->pasid);
   3573 }
   3574 
   3575 static MemTxResult vtd_mem_ir_fault_read(void *opaque, hwaddr addr,
   3576                                          uint64_t *data, unsigned size,
   3577                                          MemTxAttrs attrs)
   3578 {
   3579     vtd_report_ir_illegal_access(opaque, addr, false);
   3580 
   3581     return MEMTX_ERROR;
   3582 }
   3583 
   3584 static MemTxResult vtd_mem_ir_fault_write(void *opaque, hwaddr addr,
   3585                                           uint64_t value, unsigned size,
   3586                                           MemTxAttrs attrs)
   3587 {
   3588     vtd_report_ir_illegal_access(opaque, addr, true);
   3589 
   3590     return MEMTX_ERROR;
   3591 }
   3592 
   3593 static const MemoryRegionOps vtd_mem_ir_fault_ops = {
   3594     .read_with_attrs = vtd_mem_ir_fault_read,
   3595     .write_with_attrs = vtd_mem_ir_fault_write,
   3596     .endianness = DEVICE_LITTLE_ENDIAN,
   3597     .impl = {
   3598         .min_access_size = 1,
   3599         .max_access_size = 8,
   3600     },
   3601     .valid = {
   3602         .min_access_size = 1,
   3603         .max_access_size = 8,
   3604     },
   3605 };
   3606 
   3607 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus,
   3608                                  int devfn, unsigned int pasid)
   3609 {
   3610     /*
   3611      * We can't simply use sid here since the bus number might not be
   3612      * initialized by the guest.
   3613      */
   3614     struct vtd_as_key key = {
   3615         .bus = bus,
   3616         .devfn = devfn,
   3617         .pasid = pasid,
   3618     };
   3619     VTDAddressSpace *vtd_dev_as;
   3620     char name[128];
   3621 
   3622     vtd_dev_as = g_hash_table_lookup(s->vtd_address_spaces, &key);
   3623     if (!vtd_dev_as) {
   3624         struct vtd_as_key *new_key = g_malloc(sizeof(*new_key));
   3625 
   3626         new_key->bus = bus;
   3627         new_key->devfn = devfn;
   3628         new_key->pasid = pasid;
   3629 
   3630         if (pasid == PCI_NO_PASID) {
   3631             snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
   3632                      PCI_FUNC(devfn));
   3633         } else {
   3634             snprintf(name, sizeof(name), "vtd-%02x.%x-pasid-%x", PCI_SLOT(devfn),
   3635                      PCI_FUNC(devfn), pasid);
   3636         }
   3637 
   3638         vtd_dev_as = g_new0(VTDAddressSpace, 1);
   3639 
   3640         vtd_dev_as->bus = bus;
   3641         vtd_dev_as->devfn = (uint8_t)devfn;
   3642         vtd_dev_as->pasid = pasid;
   3643         vtd_dev_as->iommu_state = s;
   3644         vtd_dev_as->context_cache_entry.context_cache_gen = 0;
   3645         vtd_dev_as->iova_tree = iova_tree_new();
   3646 
   3647         memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
   3648         address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
   3649 
   3650         /*
   3651          * Build the DMAR-disabled container with aliases to the
   3652          * shared MRs.  Note that aliasing to a shared memory region
   3653          * could help the memory API to detect same FlatViews so we
   3654          * can have devices to share the same FlatView when DMAR is
   3655          * disabled (either by not providing "intel_iommu=on" or with
   3656          * "iommu=pt").  It will greatly reduce the total number of
   3657          * FlatViews of the system hence VM runs faster.
   3658          */
   3659         memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
   3660                                  "vtd-nodmar", &s->mr_nodmar, 0,
   3661                                  memory_region_size(&s->mr_nodmar));
   3662 
   3663         /*
   3664          * Build the per-device DMAR-enabled container.
   3665          *
   3666          * TODO: currently we have per-device IOMMU memory region only
   3667          * because we have per-device IOMMU notifiers for devices.  If
   3668          * one day we can abstract the IOMMU notifiers out of the
   3669          * memory regions then we can also share the same memory
   3670          * region here just like what we've done above with the nodmar
   3671          * region.
   3672          */
   3673         strcat(name, "-dmar");
   3674         memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
   3675                                  TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
   3676                                  name, UINT64_MAX);
   3677         memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
   3678                                  &s->mr_ir, 0, memory_region_size(&s->mr_ir));
   3679         memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
   3680                                             VTD_INTERRUPT_ADDR_FIRST,
   3681                                             &vtd_dev_as->iommu_ir, 1);
   3682 
   3683         /*
   3684          * This region is used for catching fault to access interrupt
   3685          * range via passthrough + PASID. See also
   3686          * vtd_switch_address_space(). We can't use alias since we
   3687          * need to know the sid which is valid for MSI who uses
   3688          * bus_master_as (see msi_send_message()).
   3689          */
   3690         memory_region_init_io(&vtd_dev_as->iommu_ir_fault, OBJECT(s),
   3691                               &vtd_mem_ir_fault_ops, vtd_dev_as, "vtd-no-ir",
   3692                               VTD_INTERRUPT_ADDR_SIZE);
   3693         /*
   3694          * Hook to root since when PT is enabled vtd_dev_as->iommu
   3695          * will be disabled.
   3696          */
   3697         memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->root),
   3698                                             VTD_INTERRUPT_ADDR_FIRST,
   3699                                             &vtd_dev_as->iommu_ir_fault, 2);
   3700 
   3701         /*
   3702          * Hook both the containers under the root container, we
   3703          * switch between DMAR & noDMAR by enable/disable
   3704          * corresponding sub-containers
   3705          */
   3706         memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
   3707                                             MEMORY_REGION(&vtd_dev_as->iommu),
   3708                                             0);
   3709         memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
   3710                                             &vtd_dev_as->nodmar, 0);
   3711 
   3712         vtd_switch_address_space(vtd_dev_as);
   3713 
   3714         g_hash_table_insert(s->vtd_address_spaces, new_key, vtd_dev_as);
   3715     }
   3716     return vtd_dev_as;
   3717 }
   3718 
   3719 /* Unmap the whole range in the notifier's scope. */
   3720 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
   3721 {
   3722     hwaddr size, remain;
   3723     hwaddr start = n->start;
   3724     hwaddr end = n->end;
   3725     IntelIOMMUState *s = as->iommu_state;
   3726     DMAMap map;
   3727 
   3728     /*
   3729      * Note: all the codes in this function has a assumption that IOVA
   3730      * bits are no more than VTD_MGAW bits (which is restricted by
   3731      * VT-d spec), otherwise we need to consider overflow of 64 bits.
   3732      */
   3733 
   3734     if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
   3735         /*
   3736          * Don't need to unmap regions that is bigger than the whole
   3737          * VT-d supported address space size
   3738          */
   3739         end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
   3740     }
   3741 
   3742     assert(start <= end);
   3743     size = remain = end - start + 1;
   3744 
   3745     while (remain >= VTD_PAGE_SIZE) {
   3746         IOMMUTLBEvent event;
   3747         uint64_t mask = dma_aligned_pow2_mask(start, end, s->aw_bits);
   3748         uint64_t size = mask + 1;
   3749 
   3750         assert(size);
   3751 
   3752         event.type = IOMMU_NOTIFIER_UNMAP;
   3753         event.entry.iova = start;
   3754         event.entry.addr_mask = mask;
   3755         event.entry.target_as = &address_space_memory;
   3756         event.entry.perm = IOMMU_NONE;
   3757         /* This field is meaningless for unmap */
   3758         event.entry.translated_addr = 0;
   3759 
   3760         memory_region_notify_iommu_one(n, &event);
   3761 
   3762         start += size;
   3763         remain -= size;
   3764     }
   3765 
   3766     assert(!remain);
   3767 
   3768     trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
   3769                              VTD_PCI_SLOT(as->devfn),
   3770                              VTD_PCI_FUNC(as->devfn),
   3771                              n->start, size);
   3772 
   3773     map.iova = n->start;
   3774     map.size = size;
   3775     iova_tree_remove(as->iova_tree, map);
   3776 }
   3777 
   3778 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
   3779 {
   3780     VTDAddressSpace *vtd_as;
   3781     IOMMUNotifier *n;
   3782 
   3783     QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
   3784         IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
   3785             vtd_address_space_unmap(vtd_as, n);
   3786         }
   3787     }
   3788 }
   3789 
   3790 static void vtd_address_space_refresh_all(IntelIOMMUState *s)
   3791 {
   3792     vtd_address_space_unmap_all(s);
   3793     vtd_switch_address_space_all(s);
   3794 }
   3795 
   3796 static int vtd_replay_hook(IOMMUTLBEvent *event, void *private)
   3797 {
   3798     memory_region_notify_iommu_one(private, event);
   3799     return 0;
   3800 }
   3801 
   3802 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
   3803 {
   3804     VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
   3805     IntelIOMMUState *s = vtd_as->iommu_state;
   3806     uint8_t bus_n = pci_bus_num(vtd_as->bus);
   3807     VTDContextEntry ce;
   3808 
   3809     /*
   3810      * The replay can be triggered by either a invalidation or a newly
   3811      * created entry. No matter what, we release existing mappings
   3812      * (it means flushing caches for UNMAP-only registers).
   3813      */
   3814     vtd_address_space_unmap(vtd_as, n);
   3815 
   3816     if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
   3817         trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
   3818                                   "legacy mode",
   3819                                   bus_n, PCI_SLOT(vtd_as->devfn),
   3820                                   PCI_FUNC(vtd_as->devfn),
   3821                                   vtd_get_domain_id(s, &ce, vtd_as->pasid),
   3822                                   ce.hi, ce.lo);
   3823         if (vtd_as_has_map_notifier(vtd_as)) {
   3824             /* This is required only for MAP typed notifiers */
   3825             vtd_page_walk_info info = {
   3826                 .hook_fn = vtd_replay_hook,
   3827                 .private = (void *)n,
   3828                 .notify_unmap = false,
   3829                 .aw = s->aw_bits,
   3830                 .as = vtd_as,
   3831                 .domain_id = vtd_get_domain_id(s, &ce, vtd_as->pasid),
   3832             };
   3833 
   3834             vtd_page_walk(s, &ce, 0, ~0ULL, &info, vtd_as->pasid);
   3835         }
   3836     } else {
   3837         trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
   3838                                     PCI_FUNC(vtd_as->devfn));
   3839     }
   3840 
   3841     return;
   3842 }
   3843 
   3844 /* Do the initialization. It will also be called when reset, so pay
   3845  * attention when adding new initialization stuff.
   3846  */
   3847 static void vtd_init(IntelIOMMUState *s)
   3848 {
   3849     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
   3850 
   3851     memset(s->csr, 0, DMAR_REG_SIZE);
   3852     memset(s->wmask, 0, DMAR_REG_SIZE);
   3853     memset(s->w1cmask, 0, DMAR_REG_SIZE);
   3854     memset(s->womask, 0, DMAR_REG_SIZE);
   3855 
   3856     s->root = 0;
   3857     s->root_scalable = false;
   3858     s->dmar_enabled = false;
   3859     s->intr_enabled = false;
   3860     s->iq_head = 0;
   3861     s->iq_tail = 0;
   3862     s->iq = 0;
   3863     s->iq_size = 0;
   3864     s->qi_enabled = false;
   3865     s->iq_last_desc_type = VTD_INV_DESC_NONE;
   3866     s->iq_dw = false;
   3867     s->next_frcd_reg = 0;
   3868     s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
   3869              VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
   3870              VTD_CAP_MGAW(s->aw_bits);
   3871     if (s->dma_drain) {
   3872         s->cap |= VTD_CAP_DRAIN;
   3873     }
   3874     if (s->dma_translation) {
   3875             if (s->aw_bits >= VTD_HOST_AW_39BIT) {
   3876                     s->cap |= VTD_CAP_SAGAW_39bit;
   3877             }
   3878             if (s->aw_bits >= VTD_HOST_AW_48BIT) {
   3879                     s->cap |= VTD_CAP_SAGAW_48bit;
   3880             }
   3881     }
   3882     s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
   3883 
   3884     /*
   3885      * Rsvd field masks for spte
   3886      */
   3887     vtd_spte_rsvd[0] = ~0ULL;
   3888     vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits,
   3889                                                   x86_iommu->dt_supported);
   3890     vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
   3891     vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
   3892     vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
   3893 
   3894     vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits,
   3895                                                          x86_iommu->dt_supported);
   3896     vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits,
   3897                                                          x86_iommu->dt_supported);
   3898 
   3899     if (s->scalable_mode || s->snoop_control) {
   3900         vtd_spte_rsvd[1] &= ~VTD_SPTE_SNP;
   3901         vtd_spte_rsvd_large[2] &= ~VTD_SPTE_SNP;
   3902         vtd_spte_rsvd_large[3] &= ~VTD_SPTE_SNP;
   3903     }
   3904 
   3905     if (x86_iommu_ir_supported(x86_iommu)) {
   3906         s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
   3907         if (s->intr_eim == ON_OFF_AUTO_ON) {
   3908             s->ecap |= VTD_ECAP_EIM;
   3909         }
   3910         assert(s->intr_eim != ON_OFF_AUTO_AUTO);
   3911     }
   3912 
   3913     if (x86_iommu->dt_supported) {
   3914         s->ecap |= VTD_ECAP_DT;
   3915     }
   3916 
   3917     if (x86_iommu->pt_supported) {
   3918         s->ecap |= VTD_ECAP_PT;
   3919     }
   3920 
   3921     if (s->caching_mode) {
   3922         s->cap |= VTD_CAP_CM;
   3923     }
   3924 
   3925     /* TODO: read cap/ecap from host to decide which cap to be exposed. */
   3926     if (s->scalable_mode) {
   3927         s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
   3928     }
   3929 
   3930     if (s->snoop_control) {
   3931         s->ecap |= VTD_ECAP_SC;
   3932     }
   3933 
   3934     if (s->pasid) {
   3935         s->ecap |= VTD_ECAP_PASID;
   3936     }
   3937 
   3938     vtd_reset_caches(s);
   3939 
   3940     /* Define registers with default values and bit semantics */
   3941     vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
   3942     vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
   3943     vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
   3944     vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
   3945     vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
   3946     vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
   3947     vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
   3948     vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
   3949     vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
   3950 
   3951     /* Advanced Fault Logging not supported */
   3952     vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
   3953     vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
   3954     vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
   3955     vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
   3956 
   3957     /* Treated as RsvdZ when EIM in ECAP_REG is not supported
   3958      * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
   3959      */
   3960     vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
   3961 
   3962     /* Treated as RO for implementations that PLMR and PHMR fields reported
   3963      * as Clear in the CAP_REG.
   3964      * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
   3965      */
   3966     vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
   3967 
   3968     vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
   3969     vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
   3970     vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
   3971     vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
   3972     vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
   3973     vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
   3974     vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
   3975     /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
   3976     vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
   3977 
   3978     /* IOTLB registers */
   3979     vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
   3980     vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
   3981     vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
   3982 
   3983     /* Fault Recording Registers, 128-bit */
   3984     vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
   3985     vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
   3986 
   3987     /*
   3988      * Interrupt remapping registers.
   3989      */
   3990     vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
   3991 }
   3992 
   3993 /* Should not reset address_spaces when reset because devices will still use
   3994  * the address space they got at first (won't ask the bus again).
   3995  */
   3996 static void vtd_reset(DeviceState *dev)
   3997 {
   3998     IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
   3999 
   4000     vtd_init(s);
   4001     vtd_address_space_refresh_all(s);
   4002 }
   4003 
   4004 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
   4005 {
   4006     IntelIOMMUState *s = opaque;
   4007     VTDAddressSpace *vtd_as;
   4008 
   4009     assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
   4010 
   4011     vtd_as = vtd_find_add_as(s, bus, devfn, PCI_NO_PASID);
   4012     return &vtd_as->as;
   4013 }
   4014 
   4015 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
   4016 {
   4017     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
   4018 
   4019     if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
   4020         error_setg(errp, "eim=on cannot be selected without intremap=on");
   4021         return false;
   4022     }
   4023 
   4024     if (s->intr_eim == ON_OFF_AUTO_AUTO) {
   4025         s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
   4026                       && x86_iommu_ir_supported(x86_iommu) ?
   4027                                               ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
   4028     }
   4029     if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
   4030         if (!kvm_irqchip_is_split()) {
   4031             error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
   4032             return false;
   4033         }
   4034         if (!kvm_enable_x2apic()) {
   4035             error_setg(errp, "eim=on requires support on the KVM side"
   4036                              "(X2APIC_API, first shipped in v4.7)");
   4037             return false;
   4038         }
   4039     }
   4040 
   4041     /* Currently only address widths supported are 39 and 48 bits */
   4042     if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
   4043         (s->aw_bits != VTD_HOST_AW_48BIT)) {
   4044         error_setg(errp, "Supported values for aw-bits are: %d, %d",
   4045                    VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
   4046         return false;
   4047     }
   4048 
   4049     if (s->scalable_mode && !s->dma_drain) {
   4050         error_setg(errp, "Need to set dma_drain for scalable mode");
   4051         return false;
   4052     }
   4053 
   4054     if (s->pasid && !s->scalable_mode) {
   4055         error_setg(errp, "Need to set scalable mode for PASID");
   4056         return false;
   4057     }
   4058 
   4059     return true;
   4060 }
   4061 
   4062 static int vtd_machine_done_notify_one(Object *child, void *unused)
   4063 {
   4064     IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
   4065 
   4066     /*
   4067      * We hard-coded here because vfio-pci is the only special case
   4068      * here.  Let's be more elegant in the future when we can, but so
   4069      * far there seems to be no better way.
   4070      */
   4071     if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
   4072         vtd_panic_require_caching_mode();
   4073     }
   4074 
   4075     return 0;
   4076 }
   4077 
   4078 static void vtd_machine_done_hook(Notifier *notifier, void *unused)
   4079 {
   4080     object_child_foreach_recursive(object_get_root(),
   4081                                    vtd_machine_done_notify_one, NULL);
   4082 }
   4083 
   4084 static Notifier vtd_machine_done_notify = {
   4085     .notify = vtd_machine_done_hook,
   4086 };
   4087 
   4088 static void vtd_realize(DeviceState *dev, Error **errp)
   4089 {
   4090     MachineState *ms = MACHINE(qdev_get_machine());
   4091     PCMachineState *pcms = PC_MACHINE(ms);
   4092     X86MachineState *x86ms = X86_MACHINE(ms);
   4093     PCIBus *bus = pcms->bus;
   4094     IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
   4095     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
   4096 
   4097     if (s->pasid && x86_iommu->dt_supported) {
   4098         /*
   4099          * PASID-based-Device-TLB Invalidate Descriptor is not
   4100          * implemented and it requires support from vhost layer which
   4101          * needs to be implemented in the future.
   4102          */
   4103         error_setg(errp, "PASID based device IOTLB is not supported");
   4104         return;
   4105     }
   4106 
   4107     if (!vtd_decide_config(s, errp)) {
   4108         return;
   4109     }
   4110 
   4111     QLIST_INIT(&s->vtd_as_with_notifiers);
   4112     qemu_mutex_init(&s->iommu_lock);
   4113     memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
   4114                           "intel_iommu", DMAR_REG_SIZE);
   4115 
   4116     /* Create the shared memory regions by all devices */
   4117     memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
   4118                        UINT64_MAX);
   4119     memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
   4120                           s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
   4121     memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
   4122                              "vtd-sys-alias", get_system_memory(), 0,
   4123                              memory_region_size(get_system_memory()));
   4124     memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
   4125                                         &s->mr_sys_alias, 0);
   4126     memory_region_add_subregion_overlap(&s->mr_nodmar,
   4127                                         VTD_INTERRUPT_ADDR_FIRST,
   4128                                         &s->mr_ir, 1);
   4129 
   4130     sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
   4131     /* No corresponding destroy */
   4132     s->iotlb = g_hash_table_new_full(vtd_iotlb_hash, vtd_iotlb_equal,
   4133                                      g_free, g_free);
   4134     s->vtd_address_spaces = g_hash_table_new_full(vtd_as_hash, vtd_as_equal,
   4135                                       g_free, g_free);
   4136     vtd_init(s);
   4137     sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
   4138     pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
   4139     /* Pseudo address space under root PCI bus. */
   4140     x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
   4141     qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
   4142 }
   4143 
   4144 static void vtd_class_init(ObjectClass *klass, void *data)
   4145 {
   4146     DeviceClass *dc = DEVICE_CLASS(klass);
   4147     X86IOMMUClass *x86_class = X86_IOMMU_DEVICE_CLASS(klass);
   4148 
   4149     dc->reset = vtd_reset;
   4150     dc->vmsd = &vtd_vmstate;
   4151     device_class_set_props(dc, vtd_properties);
   4152     dc->hotpluggable = false;
   4153     x86_class->realize = vtd_realize;
   4154     x86_class->int_remap = vtd_int_remap;
   4155     /* Supported by the pc-q35-* machine types */
   4156     dc->user_creatable = true;
   4157     set_bit(DEVICE_CATEGORY_MISC, dc->categories);
   4158     dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
   4159 }
   4160 
   4161 static const TypeInfo vtd_info = {
   4162     .name          = TYPE_INTEL_IOMMU_DEVICE,
   4163     .parent        = TYPE_X86_IOMMU_DEVICE,
   4164     .instance_size = sizeof(IntelIOMMUState),
   4165     .class_init    = vtd_class_init,
   4166 };
   4167 
   4168 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
   4169                                                      void *data)
   4170 {
   4171     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
   4172 
   4173     imrc->translate = vtd_iommu_translate;
   4174     imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
   4175     imrc->replay = vtd_iommu_replay;
   4176 }
   4177 
   4178 static const TypeInfo vtd_iommu_memory_region_info = {
   4179     .parent = TYPE_IOMMU_MEMORY_REGION,
   4180     .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
   4181     .class_init = vtd_iommu_memory_region_class_init,
   4182 };
   4183 
   4184 static void vtd_register_types(void)
   4185 {
   4186     type_register_static(&vtd_info);
   4187     type_register_static(&vtd_iommu_memory_region_info);
   4188 }
   4189 
   4190 type_init(vtd_register_types)