qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

smbus_eeprom.c (9302B)


      1 /*
      2  * QEMU SMBus EEPROM device
      3  *
      4  * Copyright (c) 2007 Arastra, Inc.
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a copy
      7  * of this software and associated documentation files (the "Software"), to deal
      8  * in the Software without restriction, including without limitation the rights
      9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     10  * copies of the Software, and to permit persons to whom the Software is
     11  * furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice shall be included in
     14  * all copies or substantial portions of the Software.
     15  *
     16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
     19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     22  * THE SOFTWARE.
     23  */
     24 
     25 #include "qemu/osdep.h"
     26 #include "qemu/units.h"
     27 #include "qapi/error.h"
     28 #include "hw/boards.h"
     29 #include "hw/i2c/i2c.h"
     30 #include "hw/i2c/smbus_slave.h"
     31 #include "hw/qdev-properties.h"
     32 #include "migration/vmstate.h"
     33 #include "hw/i2c/smbus_eeprom.h"
     34 #include "qom/object.h"
     35 
     36 //#define DEBUG
     37 
     38 #define TYPE_SMBUS_EEPROM "smbus-eeprom"
     39 
     40 OBJECT_DECLARE_SIMPLE_TYPE(SMBusEEPROMDevice, SMBUS_EEPROM)
     41 
     42 #define SMBUS_EEPROM_SIZE 256
     43 
     44 struct SMBusEEPROMDevice {
     45     SMBusDevice smbusdev;
     46     uint8_t data[SMBUS_EEPROM_SIZE];
     47     uint8_t *init_data;
     48     uint8_t offset;
     49     bool accessed;
     50 };
     51 
     52 static uint8_t eeprom_receive_byte(SMBusDevice *dev)
     53 {
     54     SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
     55     uint8_t *data = eeprom->data;
     56     uint8_t val = data[eeprom->offset++];
     57 
     58     eeprom->accessed = true;
     59 #ifdef DEBUG
     60     printf("eeprom_receive_byte: addr=0x%02x val=0x%02x\n",
     61            dev->i2c.address, val);
     62 #endif
     63     return val;
     64 }
     65 
     66 static int eeprom_write_data(SMBusDevice *dev, uint8_t *buf, uint8_t len)
     67 {
     68     SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
     69     uint8_t *data = eeprom->data;
     70 
     71     eeprom->accessed = true;
     72 #ifdef DEBUG
     73     printf("eeprom_write_byte: addr=0x%02x cmd=0x%02x val=0x%02x\n",
     74            dev->i2c.address, buf[0], buf[1]);
     75 #endif
     76     /* len is guaranteed to be > 0 */
     77     eeprom->offset = buf[0];
     78     buf++;
     79     len--;
     80 
     81     for (; len > 0; len--) {
     82         data[eeprom->offset] = *buf++;
     83         eeprom->offset = (eeprom->offset + 1) % SMBUS_EEPROM_SIZE;
     84     }
     85 
     86     return 0;
     87 }
     88 
     89 static bool smbus_eeprom_vmstate_needed(void *opaque)
     90 {
     91     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
     92     SMBusEEPROMDevice *eeprom = opaque;
     93 
     94     return (eeprom->accessed || smbus_vmstate_needed(&eeprom->smbusdev)) &&
     95         !mc->smbus_no_migration_support;
     96 }
     97 
     98 static const VMStateDescription vmstate_smbus_eeprom = {
     99     .name = "smbus-eeprom",
    100     .version_id = 1,
    101     .minimum_version_id = 1,
    102     .needed = smbus_eeprom_vmstate_needed,
    103     .fields      = (VMStateField[]) {
    104         VMSTATE_SMBUS_DEVICE(smbusdev, SMBusEEPROMDevice),
    105         VMSTATE_UINT8_ARRAY(data, SMBusEEPROMDevice, SMBUS_EEPROM_SIZE),
    106         VMSTATE_UINT8(offset, SMBusEEPROMDevice),
    107         VMSTATE_BOOL(accessed, SMBusEEPROMDevice),
    108         VMSTATE_END_OF_LIST()
    109     }
    110 };
    111 
    112 /*
    113  * Reset the EEPROM contents to the initial state on a reset.  This
    114  * isn't really how an EEPROM works, of course, but the general
    115  * principle of QEMU is to restore function on reset to what it would
    116  * be if QEMU was stopped and started.
    117  *
    118  * The proper thing to do would be to have a backing blockdev to hold
    119  * the contents and restore that on startup, and not do this on reset.
    120  * But until that time, act as if we had been stopped and restarted.
    121  */
    122 static void smbus_eeprom_reset(DeviceState *dev)
    123 {
    124     SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
    125 
    126     memcpy(eeprom->data, eeprom->init_data, SMBUS_EEPROM_SIZE);
    127     eeprom->offset = 0;
    128 }
    129 
    130 static void smbus_eeprom_realize(DeviceState *dev, Error **errp)
    131 {
    132     SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev);
    133 
    134     smbus_eeprom_reset(dev);
    135     if (eeprom->init_data == NULL) {
    136         error_setg(errp, "init_data cannot be NULL");
    137     }
    138 }
    139 
    140 static void smbus_eeprom_class_initfn(ObjectClass *klass, void *data)
    141 {
    142     DeviceClass *dc = DEVICE_CLASS(klass);
    143     SMBusDeviceClass *sc = SMBUS_DEVICE_CLASS(klass);
    144 
    145     dc->realize = smbus_eeprom_realize;
    146     dc->reset = smbus_eeprom_reset;
    147     sc->receive_byte = eeprom_receive_byte;
    148     sc->write_data = eeprom_write_data;
    149     dc->vmsd = &vmstate_smbus_eeprom;
    150     /* Reason: init_data */
    151     dc->user_creatable = false;
    152 }
    153 
    154 static const TypeInfo smbus_eeprom_info = {
    155     .name          = TYPE_SMBUS_EEPROM,
    156     .parent        = TYPE_SMBUS_DEVICE,
    157     .instance_size = sizeof(SMBusEEPROMDevice),
    158     .class_init    = smbus_eeprom_class_initfn,
    159 };
    160 
    161 static void smbus_eeprom_register_types(void)
    162 {
    163     type_register_static(&smbus_eeprom_info);
    164 }
    165 
    166 type_init(smbus_eeprom_register_types)
    167 
    168 void smbus_eeprom_init_one(I2CBus *smbus, uint8_t address, uint8_t *eeprom_buf)
    169 {
    170     DeviceState *dev;
    171 
    172     dev = qdev_new(TYPE_SMBUS_EEPROM);
    173     qdev_prop_set_uint8(dev, "address", address);
    174     /* FIXME: use an array of byte or block backend property? */
    175     SMBUS_EEPROM(dev)->init_data = eeprom_buf;
    176     qdev_realize_and_unref(dev, (BusState *)smbus, &error_fatal);
    177 }
    178 
    179 void smbus_eeprom_init(I2CBus *smbus, int nb_eeprom,
    180                        const uint8_t *eeprom_spd, int eeprom_spd_size)
    181 {
    182     int i;
    183      /* XXX: make this persistent */
    184 
    185     assert(nb_eeprom <= 8);
    186     uint8_t *eeprom_buf = g_malloc0(8 * SMBUS_EEPROM_SIZE);
    187     if (eeprom_spd_size > 0) {
    188         memcpy(eeprom_buf, eeprom_spd, eeprom_spd_size);
    189     }
    190 
    191     for (i = 0; i < nb_eeprom; i++) {
    192         smbus_eeprom_init_one(smbus, 0x50 + i,
    193                               eeprom_buf + (i * SMBUS_EEPROM_SIZE));
    194     }
    195 }
    196 
    197 /* Generate SDRAM SPD EEPROM data describing a module of type and size */
    198 uint8_t *spd_data_generate(enum sdram_type type, ram_addr_t ram_size)
    199 {
    200     uint8_t *spd;
    201     uint8_t nbanks;
    202     uint16_t density;
    203     uint32_t size;
    204     int min_log2, max_log2, sz_log2;
    205     int i;
    206 
    207     switch (type) {
    208     case SDR:
    209         min_log2 = 2;
    210         max_log2 = 9;
    211         break;
    212     case DDR:
    213         min_log2 = 5;
    214         max_log2 = 12;
    215         break;
    216     case DDR2:
    217         min_log2 = 7;
    218         max_log2 = 14;
    219         break;
    220     default:
    221         g_assert_not_reached();
    222     }
    223     size = ram_size >> 20; /* work in terms of megabytes */
    224     sz_log2 = 31 - clz32(size);
    225     size = 1U << sz_log2;
    226     assert(ram_size == size * MiB);
    227     assert(sz_log2 >= min_log2);
    228 
    229     nbanks = 1;
    230     while (sz_log2 > max_log2 && nbanks < 8) {
    231         sz_log2--;
    232         nbanks *= 2;
    233     }
    234 
    235     assert(size == (1ULL << sz_log2) * nbanks);
    236 
    237     /* split to 2 banks if possible to avoid a bug in MIPS Malta firmware */
    238     if (nbanks == 1 && sz_log2 > min_log2) {
    239         sz_log2--;
    240         nbanks++;
    241     }
    242 
    243     density = 1ULL << (sz_log2 - 2);
    244     switch (type) {
    245     case DDR2:
    246         density = (density & 0xe0) | (density >> 8 & 0x1f);
    247         break;
    248     case DDR:
    249         density = (density & 0xf8) | (density >> 8 & 0x07);
    250         break;
    251     case SDR:
    252     default:
    253         density &= 0xff;
    254         break;
    255     }
    256 
    257     spd = g_malloc0(256);
    258     spd[0] = 128;   /* data bytes in EEPROM */
    259     spd[1] = 8;     /* log2 size of EEPROM */
    260     spd[2] = type;
    261     spd[3] = 13;    /* row address bits */
    262     spd[4] = 10;    /* column address bits */
    263     spd[5] = (type == DDR2 ? nbanks - 1 : nbanks);
    264     spd[6] = 64;    /* module data width */
    265                     /* reserved / data width high */
    266     spd[8] = 4;     /* interface voltage level */
    267     spd[9] = 0x25;  /* highest CAS latency */
    268     spd[10] = 1;    /* access time */
    269                     /* DIMM configuration 0 = non-ECC */
    270     spd[12] = 0x82; /* refresh requirements */
    271     spd[13] = 8;    /* primary SDRAM width */
    272                     /* ECC SDRAM width */
    273     spd[15] = (type == DDR2 ? 0 : 1); /* reserved / delay for random col rd */
    274     spd[16] = 12;   /* burst lengths supported */
    275     spd[17] = 4;    /* banks per SDRAM device */
    276     spd[18] = 12;   /* ~CAS latencies supported */
    277     spd[19] = (type == DDR2 ? 0 : 1); /* reserved / ~CS latencies supported */
    278     spd[20] = 2;    /* DIMM type / ~WE latencies */
    279     spd[21] = (type < DDR2 ? 0x20 : 0); /* module features */
    280                     /* memory chip features */
    281     spd[23] = 0x12; /* clock cycle time @ medium CAS latency */
    282                     /* data access time */
    283                     /* clock cycle time @ short CAS latency */
    284                     /* data access time */
    285     spd[27] = 20;   /* min. row precharge time */
    286     spd[28] = 15;   /* min. row active row delay */
    287     spd[29] = 20;   /* min. ~RAS to ~CAS delay */
    288     spd[30] = 45;   /* min. active to precharge time */
    289     spd[31] = density;
    290     spd[32] = 20;   /* addr/cmd setup time */
    291     spd[33] = 8;    /* addr/cmd hold time */
    292     spd[34] = 20;   /* data input setup time */
    293     spd[35] = 8;    /* data input hold time */
    294 
    295     /* checksum */
    296     for (i = 0; i < 63; i++) {
    297         spd[63] += spd[i];
    298     }
    299     return spd;
    300 }