qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

sparc32_dma.c (14318B)


      1 /*
      2  * QEMU Sparc32 DMA controller emulation
      3  *
      4  * Copyright (c) 2006 Fabrice Bellard
      5  *
      6  * Modifications:
      7  *  2010-Feb-14 Artyom Tarasenko : reworked irq generation
      8  *
      9  * Permission is hereby granted, free of charge, to any person obtaining a copy
     10  * of this software and associated documentation files (the "Software"), to deal
     11  * in the Software without restriction, including without limitation the rights
     12  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     13  * copies of the Software, and to permit persons to whom the Software is
     14  * furnished to do so, subject to the following conditions:
     15  *
     16  * The above copyright notice and this permission notice shall be included in
     17  * all copies or substantial portions of the Software.
     18  *
     19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
     22  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     23  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     24  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     25  * THE SOFTWARE.
     26  */
     27 
     28 #include "qemu/osdep.h"
     29 #include "hw/irq.h"
     30 #include "hw/qdev-properties.h"
     31 #include "hw/sparc/sparc32_dma.h"
     32 #include "hw/sparc/sun4m_iommu.h"
     33 #include "hw/sysbus.h"
     34 #include "migration/vmstate.h"
     35 #include "sysemu/dma.h"
     36 #include "qapi/error.h"
     37 #include "qemu/module.h"
     38 #include "trace.h"
     39 
     40 /*
     41  * This is the DMA controller part of chip STP2000 (Master I/O), also
     42  * produced as NCR89C100. See
     43  * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
     44  * and
     45  * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/DMA2.txt
     46  */
     47 
     48 #define DMA_SIZE (4 * sizeof(uint32_t))
     49 /* We need the mask, because one instance of the device is not page
     50    aligned (ledma, start address 0x0010) */
     51 #define DMA_MASK (DMA_SIZE - 1)
     52 /* OBP says 0x20 bytes for ledma, the extras are aliased to espdma */
     53 #define DMA_ETH_SIZE (8 * sizeof(uint32_t))
     54 #define DMA_MAX_REG_OFFSET (2 * DMA_SIZE - 1)
     55 
     56 #define DMA_VER 0xa0000000
     57 #define DMA_INTR 1
     58 #define DMA_INTREN 0x10
     59 #define DMA_WRITE_MEM 0x100
     60 #define DMA_EN 0x200
     61 #define DMA_LOADED 0x04000000
     62 #define DMA_DRAIN_FIFO 0x40
     63 #define DMA_RESET 0x80
     64 
     65 /* XXX SCSI and ethernet should have different read-only bit masks */
     66 #define DMA_CSR_RO_MASK 0xfe000007
     67 
     68 enum {
     69     GPIO_RESET = 0,
     70     GPIO_DMA,
     71 };
     72 
     73 /* Note: on sparc, the lance 16 bit bus is swapped */
     74 void ledma_memory_read(void *opaque, hwaddr addr,
     75                        uint8_t *buf, int len, int do_bswap)
     76 {
     77     DMADeviceState *s = opaque;
     78     IOMMUState *is = (IOMMUState *)s->iommu;
     79     int i;
     80 
     81     addr |= s->dmaregs[3];
     82     trace_ledma_memory_read(addr, len);
     83     if (do_bswap) {
     84         dma_memory_read(&is->iommu_as, addr, buf, len, MEMTXATTRS_UNSPECIFIED);
     85     } else {
     86         addr &= ~1;
     87         len &= ~1;
     88         dma_memory_read(&is->iommu_as, addr, buf, len, MEMTXATTRS_UNSPECIFIED);
     89         for(i = 0; i < len; i += 2) {
     90             bswap16s((uint16_t *)(buf + i));
     91         }
     92     }
     93 }
     94 
     95 void ledma_memory_write(void *opaque, hwaddr addr,
     96                         uint8_t *buf, int len, int do_bswap)
     97 {
     98     DMADeviceState *s = opaque;
     99     IOMMUState *is = (IOMMUState *)s->iommu;
    100     int l, i;
    101     uint16_t tmp_buf[32];
    102 
    103     addr |= s->dmaregs[3];
    104     trace_ledma_memory_write(addr, len);
    105     if (do_bswap) {
    106         dma_memory_write(&is->iommu_as, addr, buf, len,
    107                          MEMTXATTRS_UNSPECIFIED);
    108     } else {
    109         addr &= ~1;
    110         len &= ~1;
    111         while (len > 0) {
    112             l = len;
    113             if (l > sizeof(tmp_buf))
    114                 l = sizeof(tmp_buf);
    115             for(i = 0; i < l; i += 2) {
    116                 tmp_buf[i >> 1] = bswap16(*(uint16_t *)(buf + i));
    117             }
    118             dma_memory_write(&is->iommu_as, addr, tmp_buf, l,
    119                              MEMTXATTRS_UNSPECIFIED);
    120             len -= l;
    121             buf += l;
    122             addr += l;
    123         }
    124     }
    125 }
    126 
    127 static void dma_set_irq(void *opaque, int irq, int level)
    128 {
    129     DMADeviceState *s = opaque;
    130     if (level) {
    131         s->dmaregs[0] |= DMA_INTR;
    132         if (s->dmaregs[0] & DMA_INTREN) {
    133             trace_sparc32_dma_set_irq_raise();
    134             qemu_irq_raise(s->irq);
    135         }
    136     } else {
    137         if (s->dmaregs[0] & DMA_INTR) {
    138             s->dmaregs[0] &= ~DMA_INTR;
    139             if (s->dmaregs[0] & DMA_INTREN) {
    140                 trace_sparc32_dma_set_irq_lower();
    141                 qemu_irq_lower(s->irq);
    142             }
    143         }
    144     }
    145 }
    146 
    147 void espdma_memory_read(void *opaque, uint8_t *buf, int len)
    148 {
    149     DMADeviceState *s = opaque;
    150     IOMMUState *is = (IOMMUState *)s->iommu;
    151 
    152     trace_espdma_memory_read(s->dmaregs[1], len);
    153     dma_memory_read(&is->iommu_as, s->dmaregs[1], buf, len,
    154                     MEMTXATTRS_UNSPECIFIED);
    155     s->dmaregs[1] += len;
    156 }
    157 
    158 void espdma_memory_write(void *opaque, uint8_t *buf, int len)
    159 {
    160     DMADeviceState *s = opaque;
    161     IOMMUState *is = (IOMMUState *)s->iommu;
    162 
    163     trace_espdma_memory_write(s->dmaregs[1], len);
    164     dma_memory_write(&is->iommu_as, s->dmaregs[1], buf, len,
    165                      MEMTXATTRS_UNSPECIFIED);
    166     s->dmaregs[1] += len;
    167 }
    168 
    169 static uint64_t dma_mem_read(void *opaque, hwaddr addr,
    170                              unsigned size)
    171 {
    172     DMADeviceState *s = opaque;
    173     uint32_t saddr;
    174 
    175     saddr = (addr & DMA_MASK) >> 2;
    176     trace_sparc32_dma_mem_readl(addr, s->dmaregs[saddr]);
    177     return s->dmaregs[saddr];
    178 }
    179 
    180 static void dma_mem_write(void *opaque, hwaddr addr,
    181                           uint64_t val, unsigned size)
    182 {
    183     DMADeviceState *s = opaque;
    184     uint32_t saddr;
    185 
    186     saddr = (addr & DMA_MASK) >> 2;
    187     trace_sparc32_dma_mem_writel(addr, s->dmaregs[saddr], val);
    188     switch (saddr) {
    189     case 0:
    190         if (val & DMA_INTREN) {
    191             if (s->dmaregs[0] & DMA_INTR) {
    192                 trace_sparc32_dma_set_irq_raise();
    193                 qemu_irq_raise(s->irq);
    194             }
    195         } else {
    196             if (s->dmaregs[0] & (DMA_INTR | DMA_INTREN)) {
    197                 trace_sparc32_dma_set_irq_lower();
    198                 qemu_irq_lower(s->irq);
    199             }
    200         }
    201         if (val & DMA_RESET) {
    202             qemu_irq_raise(s->gpio[GPIO_RESET]);
    203             qemu_irq_lower(s->gpio[GPIO_RESET]);
    204         } else if (val & DMA_DRAIN_FIFO) {
    205             val &= ~DMA_DRAIN_FIFO;
    206         } else if (val == 0)
    207             val = DMA_DRAIN_FIFO;
    208 
    209         if (val & DMA_EN && !(s->dmaregs[0] & DMA_EN)) {
    210             trace_sparc32_dma_enable_raise();
    211             qemu_irq_raise(s->gpio[GPIO_DMA]);
    212         } else if (!(val & DMA_EN) && !!(s->dmaregs[0] & DMA_EN)) {
    213             trace_sparc32_dma_enable_lower();
    214             qemu_irq_lower(s->gpio[GPIO_DMA]);
    215         }
    216 
    217         val &= ~DMA_CSR_RO_MASK;
    218         val |= DMA_VER;
    219         s->dmaregs[0] = (s->dmaregs[0] & DMA_CSR_RO_MASK) | val;
    220         break;
    221     case 1:
    222         s->dmaregs[0] |= DMA_LOADED;
    223         /* fall through */
    224     default:
    225         s->dmaregs[saddr] = val;
    226         break;
    227     }
    228 }
    229 
    230 static const MemoryRegionOps dma_mem_ops = {
    231     .read = dma_mem_read,
    232     .write = dma_mem_write,
    233     .endianness = DEVICE_NATIVE_ENDIAN,
    234     .valid = {
    235         .min_access_size = 4,
    236         .max_access_size = 4,
    237     },
    238 };
    239 
    240 static void sparc32_dma_device_reset(DeviceState *d)
    241 {
    242     DMADeviceState *s = SPARC32_DMA_DEVICE(d);
    243 
    244     memset(s->dmaregs, 0, DMA_SIZE);
    245     s->dmaregs[0] = DMA_VER;
    246 }
    247 
    248 static const VMStateDescription vmstate_sparc32_dma_device = {
    249     .name ="sparc32_dma",
    250     .version_id = 2,
    251     .minimum_version_id = 2,
    252     .fields = (VMStateField[]) {
    253         VMSTATE_UINT32_ARRAY(dmaregs, DMADeviceState, DMA_REGS),
    254         VMSTATE_END_OF_LIST()
    255     }
    256 };
    257 
    258 static void sparc32_dma_device_init(Object *obj)
    259 {
    260     DeviceState *dev = DEVICE(obj);
    261     DMADeviceState *s = SPARC32_DMA_DEVICE(obj);
    262     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
    263 
    264     sysbus_init_irq(sbd, &s->irq);
    265 
    266     sysbus_init_mmio(sbd, &s->iomem);
    267 
    268     object_property_add_link(OBJECT(dev), "iommu", TYPE_SUN4M_IOMMU,
    269                              (Object **) &s->iommu,
    270                              qdev_prop_allow_set_link_before_realize,
    271                              0);
    272 
    273     qdev_init_gpio_in(dev, dma_set_irq, 1);
    274     qdev_init_gpio_out(dev, s->gpio, 2);
    275 }
    276 
    277 static void sparc32_dma_device_class_init(ObjectClass *klass, void *data)
    278 {
    279     DeviceClass *dc = DEVICE_CLASS(klass);
    280 
    281     dc->reset = sparc32_dma_device_reset;
    282     dc->vmsd = &vmstate_sparc32_dma_device;
    283 }
    284 
    285 static const TypeInfo sparc32_dma_device_info = {
    286     .name          = TYPE_SPARC32_DMA_DEVICE,
    287     .parent        = TYPE_SYS_BUS_DEVICE,
    288     .abstract      = true,
    289     .instance_size = sizeof(DMADeviceState),
    290     .instance_init = sparc32_dma_device_init,
    291     .class_init    = sparc32_dma_device_class_init,
    292 };
    293 
    294 static void sparc32_espdma_device_init(Object *obj)
    295 {
    296     DMADeviceState *s = SPARC32_DMA_DEVICE(obj);
    297     ESPDMADeviceState *es = SPARC32_ESPDMA_DEVICE(obj);
    298 
    299     memory_region_init_io(&s->iomem, OBJECT(s), &dma_mem_ops, s,
    300                           "espdma-mmio", DMA_SIZE);
    301 
    302     object_initialize_child(obj, "esp", &es->esp, TYPE_SYSBUS_ESP);
    303 }
    304 
    305 static void sparc32_espdma_device_realize(DeviceState *dev, Error **errp)
    306 {
    307     ESPDMADeviceState *es = SPARC32_ESPDMA_DEVICE(dev);
    308     SysBusESPState *sysbus = SYSBUS_ESP(&es->esp);
    309     ESPState *esp = &sysbus->esp;
    310 
    311     esp->dma_memory_read = espdma_memory_read;
    312     esp->dma_memory_write = espdma_memory_write;
    313     esp->dma_opaque = SPARC32_DMA_DEVICE(dev);
    314     sysbus->it_shift = 2;
    315     esp->dma_enabled = 1;
    316     sysbus_realize(SYS_BUS_DEVICE(sysbus), &error_fatal);
    317 }
    318 
    319 static void sparc32_espdma_device_class_init(ObjectClass *klass, void *data)
    320 {
    321     DeviceClass *dc = DEVICE_CLASS(klass);
    322 
    323     dc->realize = sparc32_espdma_device_realize;
    324 }
    325 
    326 static const TypeInfo sparc32_espdma_device_info = {
    327     .name          = TYPE_SPARC32_ESPDMA_DEVICE,
    328     .parent        = TYPE_SPARC32_DMA_DEVICE,
    329     .instance_size = sizeof(ESPDMADeviceState),
    330     .instance_init = sparc32_espdma_device_init,
    331     .class_init    = sparc32_espdma_device_class_init,
    332 };
    333 
    334 static void sparc32_ledma_device_init(Object *obj)
    335 {
    336     DMADeviceState *s = SPARC32_DMA_DEVICE(obj);
    337     LEDMADeviceState *ls = SPARC32_LEDMA_DEVICE(obj);
    338 
    339     memory_region_init_io(&s->iomem, OBJECT(s), &dma_mem_ops, s,
    340                           "ledma-mmio", DMA_SIZE);
    341 
    342     object_initialize_child(obj, "lance", &ls->lance, TYPE_LANCE);
    343 }
    344 
    345 static void sparc32_ledma_device_realize(DeviceState *dev, Error **errp)
    346 {
    347     LEDMADeviceState *s = SPARC32_LEDMA_DEVICE(dev);
    348     SysBusPCNetState *lance = SYSBUS_PCNET(&s->lance);
    349 
    350     object_property_set_link(OBJECT(lance), "dma", OBJECT(dev), &error_abort);
    351     sysbus_realize(SYS_BUS_DEVICE(lance), &error_fatal);
    352 }
    353 
    354 static void sparc32_ledma_device_class_init(ObjectClass *klass, void *data)
    355 {
    356     DeviceClass *dc = DEVICE_CLASS(klass);
    357 
    358     dc->realize = sparc32_ledma_device_realize;
    359 }
    360 
    361 static const TypeInfo sparc32_ledma_device_info = {
    362     .name          = TYPE_SPARC32_LEDMA_DEVICE,
    363     .parent        = TYPE_SPARC32_DMA_DEVICE,
    364     .instance_size = sizeof(LEDMADeviceState),
    365     .instance_init = sparc32_ledma_device_init,
    366     .class_init    = sparc32_ledma_device_class_init,
    367 };
    368 
    369 static void sparc32_dma_realize(DeviceState *dev, Error **errp)
    370 {
    371     SPARC32DMAState *s = SPARC32_DMA(dev);
    372     DeviceState *espdma, *esp, *ledma, *lance;
    373     SysBusDevice *sbd;
    374     Object *iommu;
    375 
    376     iommu = object_resolve_path_type("", TYPE_SUN4M_IOMMU, NULL);
    377     if (!iommu) {
    378         error_setg(errp, "unable to locate sun4m IOMMU device");
    379         return;
    380     }
    381 
    382     espdma = DEVICE(&s->espdma);
    383     object_property_set_link(OBJECT(espdma), "iommu", iommu, &error_abort);
    384     sysbus_realize(SYS_BUS_DEVICE(espdma), &error_fatal);
    385 
    386     esp = DEVICE(object_resolve_path_component(OBJECT(espdma), "esp"));
    387     sbd = SYS_BUS_DEVICE(esp);
    388     sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(espdma, 0));
    389     qdev_connect_gpio_out(espdma, 0, qdev_get_gpio_in(esp, 0));
    390     qdev_connect_gpio_out(espdma, 1, qdev_get_gpio_in(esp, 1));
    391 
    392     sbd = SYS_BUS_DEVICE(espdma);
    393     memory_region_add_subregion(&s->dmamem, 0x0,
    394                                 sysbus_mmio_get_region(sbd, 0));
    395 
    396     ledma = DEVICE(&s->ledma);
    397     object_property_set_link(OBJECT(ledma), "iommu", iommu, &error_abort);
    398     sysbus_realize(SYS_BUS_DEVICE(ledma), &error_fatal);
    399 
    400     lance = DEVICE(object_resolve_path_component(OBJECT(ledma), "lance"));
    401     sbd = SYS_BUS_DEVICE(lance);
    402     sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(ledma, 0));
    403     qdev_connect_gpio_out(ledma, 0, qdev_get_gpio_in(lance, 0));
    404 
    405     sbd = SYS_BUS_DEVICE(ledma);
    406     memory_region_add_subregion(&s->dmamem, 0x10,
    407                                 sysbus_mmio_get_region(sbd, 0));
    408 
    409     /* Add ledma alias to handle SunOS 5.7 - Solaris 9 invalid access bug */
    410     memory_region_init_alias(&s->ledma_alias, OBJECT(dev), "ledma-alias",
    411                              sysbus_mmio_get_region(sbd, 0), 0x4, 0x4);
    412     memory_region_add_subregion(&s->dmamem, 0x20, &s->ledma_alias);
    413 }
    414 
    415 static void sparc32_dma_init(Object *obj)
    416 {
    417     SPARC32DMAState *s = SPARC32_DMA(obj);
    418     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
    419 
    420     memory_region_init(&s->dmamem, OBJECT(s), "dma", DMA_SIZE + DMA_ETH_SIZE);
    421     sysbus_init_mmio(sbd, &s->dmamem);
    422 
    423     object_initialize_child(obj, "espdma", &s->espdma,
    424                             TYPE_SPARC32_ESPDMA_DEVICE);
    425     object_initialize_child(obj, "ledma", &s->ledma,
    426                             TYPE_SPARC32_LEDMA_DEVICE);
    427 }
    428 
    429 static void sparc32_dma_class_init(ObjectClass *klass, void *data)
    430 {
    431     DeviceClass *dc = DEVICE_CLASS(klass);
    432 
    433     dc->realize = sparc32_dma_realize;
    434 }
    435 
    436 static const TypeInfo sparc32_dma_info = {
    437     .name          = TYPE_SPARC32_DMA,
    438     .parent        = TYPE_SYS_BUS_DEVICE,
    439     .instance_size = sizeof(SPARC32DMAState),
    440     .instance_init = sparc32_dma_init,
    441     .class_init    = sparc32_dma_class_init,
    442 };
    443 
    444 
    445 static void sparc32_dma_register_types(void)
    446 {
    447     type_register_static(&sparc32_dma_device_info);
    448     type_register_static(&sparc32_espdma_device_info);
    449     type_register_static(&sparc32_ledma_device_info);
    450     type_register_static(&sparc32_dma_info);
    451 }
    452 
    453 type_init(sparc32_dma_register_types)