qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

ssd0323.c (10487B)


      1 /*
      2  * SSD0323 OLED controller with OSRAM Pictiva 128x64 display.
      3  *
      4  * Copyright (c) 2006-2007 CodeSourcery.
      5  * Written by Paul Brook
      6  *
      7  * This code is licensed under the GPL.
      8  */
      9 
     10 /* The controller can support a variety of different displays, but we only
     11    implement one.  Most of the commends relating to brightness and geometry
     12    setup are ignored. */
     13 
     14 #include "qemu/osdep.h"
     15 #include "hw/ssi/ssi.h"
     16 #include "migration/vmstate.h"
     17 #include "qemu/module.h"
     18 #include "ui/console.h"
     19 #include "qom/object.h"
     20 
     21 //#define DEBUG_SSD0323 1
     22 
     23 #ifdef DEBUG_SSD0323
     24 #define DPRINTF(fmt, ...) \
     25 do { printf("ssd0323: " fmt , ## __VA_ARGS__); } while (0)
     26 #define BADF(fmt, ...) \
     27 do { \
     28     fprintf(stderr, "ssd0323: error: " fmt , ## __VA_ARGS__); abort(); \
     29 } while (0)
     30 #else
     31 #define DPRINTF(fmt, ...) do {} while(0)
     32 #define BADF(fmt, ...) \
     33 do { fprintf(stderr, "ssd0323: error: " fmt , ## __VA_ARGS__);} while (0)
     34 #endif
     35 
     36 /* Scaling factor for pixels.  */
     37 #define MAGNIFY 4
     38 
     39 #define REMAP_SWAP_COLUMN 0x01
     40 #define REMAP_SWAP_NYBBLE 0x02
     41 #define REMAP_VERTICAL    0x04
     42 #define REMAP_SWAP_COM    0x10
     43 #define REMAP_SPLIT_COM   0x40
     44 
     45 enum ssd0323_mode
     46 {
     47     SSD0323_CMD,
     48     SSD0323_DATA
     49 };
     50 
     51 struct ssd0323_state {
     52     SSIPeripheral ssidev;
     53     QemuConsole *con;
     54 
     55     uint32_t cmd_len;
     56     int32_t cmd;
     57     int32_t cmd_data[8];
     58     int32_t row;
     59     int32_t row_start;
     60     int32_t row_end;
     61     int32_t col;
     62     int32_t col_start;
     63     int32_t col_end;
     64     int32_t redraw;
     65     int32_t remap;
     66     uint32_t mode;
     67     uint8_t framebuffer[128 * 80 / 2];
     68 };
     69 
     70 #define TYPE_SSD0323 "ssd0323"
     71 OBJECT_DECLARE_SIMPLE_TYPE(ssd0323_state, SSD0323)
     72 
     73 
     74 static uint32_t ssd0323_transfer(SSIPeripheral *dev, uint32_t data)
     75 {
     76     ssd0323_state *s = SSD0323(dev);
     77 
     78     switch (s->mode) {
     79     case SSD0323_DATA:
     80         DPRINTF("data 0x%02x\n", data);
     81         s->framebuffer[s->col + s->row * 64] = data;
     82         if (s->remap & REMAP_VERTICAL) {
     83             s->row++;
     84             if (s->row > s->row_end) {
     85                 s->row = s->row_start;
     86                 s->col++;
     87             }
     88             if (s->col > s->col_end) {
     89                 s->col = s->col_start;
     90             }
     91         } else {
     92             s->col++;
     93             if (s->col > s->col_end) {
     94                 s->row++;
     95                 s->col = s->col_start;
     96             }
     97             if (s->row > s->row_end) {
     98                 s->row = s->row_start;
     99             }
    100         }
    101         s->redraw = 1;
    102         break;
    103     case SSD0323_CMD:
    104         DPRINTF("cmd 0x%02x\n", data);
    105         if (s->cmd_len == 0) {
    106             s->cmd = data;
    107         } else {
    108             s->cmd_data[s->cmd_len - 1] = data;
    109         }
    110         s->cmd_len++;
    111         switch (s->cmd) {
    112 #define DATA(x) if (s->cmd_len <= (x)) return 0
    113         case 0x15: /* Set column.  */
    114             DATA(2);
    115             s->col = s->col_start = s->cmd_data[0] % 64;
    116             s->col_end = s->cmd_data[1] % 64;
    117             break;
    118         case 0x75: /* Set row.  */
    119             DATA(2);
    120             s->row = s->row_start = s->cmd_data[0] % 80;
    121             s->row_end = s->cmd_data[1] % 80;
    122             break;
    123         case 0x81: /* Set contrast */
    124             DATA(1);
    125             break;
    126         case 0x84: case 0x85: case 0x86: /* Max current.  */
    127             DATA(0);
    128             break;
    129         case 0xa0: /* Set remapping.  */
    130             /* FIXME: Implement this.  */
    131             DATA(1);
    132             s->remap = s->cmd_data[0];
    133             break;
    134         case 0xa1: /* Set display start line.  */
    135         case 0xa2: /* Set display offset.  */
    136             /* FIXME: Implement these.  */
    137             DATA(1);
    138             break;
    139         case 0xa4: /* Normal mode.  */
    140         case 0xa5: /* All on.  */
    141         case 0xa6: /* All off.  */
    142         case 0xa7: /* Inverse.  */
    143             /* FIXME: Implement these.  */
    144             DATA(0);
    145             break;
    146         case 0xa8: /* Set multiplex ratio.  */
    147         case 0xad: /* Set DC-DC converter.  */
    148             DATA(1);
    149             /* Ignored.  Don't care.  */
    150             break;
    151         case 0xae: /* Display off.  */
    152         case 0xaf: /* Display on.  */
    153             DATA(0);
    154             /* TODO: Implement power control.  */
    155             break;
    156         case 0xb1: /* Set phase length.  */
    157         case 0xb2: /* Set row period.  */
    158         case 0xb3: /* Set clock rate.  */
    159         case 0xbc: /* Set precharge.  */
    160         case 0xbe: /* Set VCOMH.  */
    161         case 0xbf: /* Set segment low.  */
    162             DATA(1);
    163             /* Ignored.  Don't care.  */
    164             break;
    165         case 0xb8: /* Set grey scale table.  */
    166             /* FIXME: Implement this.  */
    167             DATA(8);
    168             break;
    169         case 0xe3: /* NOP.  */
    170             DATA(0);
    171             break;
    172         case 0xff: /* Nasty hack because we don't handle chip selects
    173                       properly.  */
    174             break;
    175         default:
    176             BADF("Unknown command: 0x%x\n", data);
    177         }
    178         s->cmd_len = 0;
    179         return 0;
    180     }
    181     return 0;
    182 }
    183 
    184 static void ssd0323_update_display(void *opaque)
    185 {
    186     ssd0323_state *s = (ssd0323_state *)opaque;
    187     DisplaySurface *surface = qemu_console_surface(s->con);
    188     uint8_t *dest;
    189     uint8_t *src;
    190     int x;
    191     int y;
    192     int i;
    193     int line;
    194     char *colors[16];
    195     char colortab[MAGNIFY * 64];
    196     char *p;
    197     int dest_width;
    198 
    199     if (!s->redraw)
    200         return;
    201 
    202     switch (surface_bits_per_pixel(surface)) {
    203     case 0:
    204         return;
    205     case 15:
    206         dest_width = 2;
    207         break;
    208     case 16:
    209         dest_width = 2;
    210         break;
    211     case 24:
    212         dest_width = 3;
    213         break;
    214     case 32:
    215         dest_width = 4;
    216         break;
    217     default:
    218         BADF("Bad color depth\n");
    219         return;
    220     }
    221     p = colortab;
    222     for (i = 0; i < 16; i++) {
    223         int n;
    224         colors[i] = p;
    225         switch (surface_bits_per_pixel(surface)) {
    226         case 15:
    227             n = i * 2 + (i >> 3);
    228             p[0] = n | (n << 5);
    229             p[1] = (n << 2) | (n >> 3);
    230             break;
    231         case 16:
    232             n = i * 2 + (i >> 3);
    233             p[0] = n | (n << 6) | ((n << 1) & 0x20);
    234             p[1] = (n << 3) | (n >> 2);
    235             break;
    236         case 24:
    237         case 32:
    238             n = (i << 4) | i;
    239             p[0] = p[1] = p[2] = n;
    240             break;
    241         default:
    242             BADF("Bad color depth\n");
    243             return;
    244         }
    245         p += dest_width;
    246     }
    247     /* TODO: Implement row/column remapping.  */
    248     dest = surface_data(surface);
    249     for (y = 0; y < 64; y++) {
    250         line = y;
    251         src = s->framebuffer + 64 * line;
    252         for (x = 0; x < 64; x++) {
    253             int val;
    254             val = *src >> 4;
    255             for (i = 0; i < MAGNIFY; i++) {
    256                 memcpy(dest, colors[val], dest_width);
    257                 dest += dest_width;
    258             }
    259             val = *src & 0xf;
    260             for (i = 0; i < MAGNIFY; i++) {
    261                 memcpy(dest, colors[val], dest_width);
    262                 dest += dest_width;
    263             }
    264             src++;
    265         }
    266         for (i = 1; i < MAGNIFY; i++) {
    267             memcpy(dest, dest - dest_width * MAGNIFY * 128,
    268                    dest_width * 128 * MAGNIFY);
    269             dest += dest_width * 128 * MAGNIFY;
    270         }
    271     }
    272     s->redraw = 0;
    273     dpy_gfx_update(s->con, 0, 0, 128 * MAGNIFY, 64 * MAGNIFY);
    274 }
    275 
    276 static void ssd0323_invalidate_display(void * opaque)
    277 {
    278     ssd0323_state *s = (ssd0323_state *)opaque;
    279     s->redraw = 1;
    280 }
    281 
    282 /* Command/data input.  */
    283 static void ssd0323_cd(void *opaque, int n, int level)
    284 {
    285     ssd0323_state *s = (ssd0323_state *)opaque;
    286     DPRINTF("%s mode\n", level ? "Data" : "Command");
    287     s->mode = level ? SSD0323_DATA : SSD0323_CMD;
    288 }
    289 
    290 static int ssd0323_post_load(void *opaque, int version_id)
    291 {
    292     ssd0323_state *s = (ssd0323_state *)opaque;
    293 
    294     if (s->cmd_len > ARRAY_SIZE(s->cmd_data)) {
    295         return -EINVAL;
    296     }
    297     if (s->row < 0 || s->row >= 80) {
    298         return -EINVAL;
    299     }
    300     if (s->row_start < 0 || s->row_start >= 80) {
    301         return -EINVAL;
    302     }
    303     if (s->row_end < 0 || s->row_end >= 80) {
    304         return -EINVAL;
    305     }
    306     if (s->col < 0 || s->col >= 64) {
    307         return -EINVAL;
    308     }
    309     if (s->col_start < 0 || s->col_start >= 64) {
    310         return -EINVAL;
    311     }
    312     if (s->col_end < 0 || s->col_end >= 64) {
    313         return -EINVAL;
    314     }
    315     if (s->mode != SSD0323_CMD && s->mode != SSD0323_DATA) {
    316         return -EINVAL;
    317     }
    318 
    319     return 0;
    320 }
    321 
    322 static const VMStateDescription vmstate_ssd0323 = {
    323     .name = "ssd0323_oled",
    324     .version_id = 2,
    325     .minimum_version_id = 2,
    326     .post_load = ssd0323_post_load,
    327     .fields      = (VMStateField []) {
    328         VMSTATE_UINT32(cmd_len, ssd0323_state),
    329         VMSTATE_INT32(cmd, ssd0323_state),
    330         VMSTATE_INT32_ARRAY(cmd_data, ssd0323_state, 8),
    331         VMSTATE_INT32(row, ssd0323_state),
    332         VMSTATE_INT32(row_start, ssd0323_state),
    333         VMSTATE_INT32(row_end, ssd0323_state),
    334         VMSTATE_INT32(col, ssd0323_state),
    335         VMSTATE_INT32(col_start, ssd0323_state),
    336         VMSTATE_INT32(col_end, ssd0323_state),
    337         VMSTATE_INT32(redraw, ssd0323_state),
    338         VMSTATE_INT32(remap, ssd0323_state),
    339         VMSTATE_UINT32(mode, ssd0323_state),
    340         VMSTATE_BUFFER(framebuffer, ssd0323_state),
    341         VMSTATE_SSI_PERIPHERAL(ssidev, ssd0323_state),
    342         VMSTATE_END_OF_LIST()
    343     }
    344 };
    345 
    346 static const GraphicHwOps ssd0323_ops = {
    347     .invalidate  = ssd0323_invalidate_display,
    348     .gfx_update  = ssd0323_update_display,
    349 };
    350 
    351 static void ssd0323_realize(SSIPeripheral *d, Error **errp)
    352 {
    353     DeviceState *dev = DEVICE(d);
    354     ssd0323_state *s = SSD0323(d);
    355 
    356     s->col_end = 63;
    357     s->row_end = 79;
    358     s->con = graphic_console_init(dev, 0, &ssd0323_ops, s);
    359     qemu_console_resize(s->con, 128 * MAGNIFY, 64 * MAGNIFY);
    360 
    361     qdev_init_gpio_in(dev, ssd0323_cd, 1);
    362 }
    363 
    364 static void ssd0323_class_init(ObjectClass *klass, void *data)
    365 {
    366     DeviceClass *dc = DEVICE_CLASS(klass);
    367     SSIPeripheralClass *k = SSI_PERIPHERAL_CLASS(klass);
    368 
    369     k->realize = ssd0323_realize;
    370     k->transfer = ssd0323_transfer;
    371     k->cs_polarity = SSI_CS_HIGH;
    372     dc->vmsd = &vmstate_ssd0323;
    373     set_bit(DEVICE_CATEGORY_DISPLAY, dc->categories);
    374 }
    375 
    376 static const TypeInfo ssd0323_info = {
    377     .name          = TYPE_SSD0323,
    378     .parent        = TYPE_SSI_PERIPHERAL,
    379     .instance_size = sizeof(ssd0323_state),
    380     .class_init    = ssd0323_class_init,
    381 };
    382 
    383 static void ssd03232_register_types(void)
    384 {
    385     type_register_static(&ssd0323_info);
    386 }
    387 
    388 type_init(ssd03232_register_types)