qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

loader.c (53862B)


      1 /*
      2  * QEMU Executable loader
      3  *
      4  * Copyright (c) 2006 Fabrice Bellard
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a copy
      7  * of this software and associated documentation files (the "Software"), to deal
      8  * in the Software without restriction, including without limitation the rights
      9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     10  * copies of the Software, and to permit persons to whom the Software is
     11  * furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice shall be included in
     14  * all copies or substantial portions of the Software.
     15  *
     16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
     19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     22  * THE SOFTWARE.
     23  *
     24  * Gunzip functionality in this file is derived from u-boot:
     25  *
     26  * (C) Copyright 2008 Semihalf
     27  *
     28  * (C) Copyright 2000-2005
     29  * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
     30  *
     31  * This program is free software; you can redistribute it and/or
     32  * modify it under the terms of the GNU General Public License as
     33  * published by the Free Software Foundation; either version 2 of
     34  * the License, or (at your option) any later version.
     35  *
     36  * This program is distributed in the hope that it will be useful,
     37  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     38  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
     39  * GNU General Public License for more details.
     40  *
     41  * You should have received a copy of the GNU General Public License along
     42  * with this program; if not, see <http://www.gnu.org/licenses/>.
     43  */
     44 
     45 #include "qemu/osdep.h"
     46 #include "qemu/datadir.h"
     47 #include "qapi/error.h"
     48 #include "qapi/qapi-commands-machine.h"
     49 #include "qapi/type-helpers.h"
     50 #include "trace.h"
     51 #include "hw/hw.h"
     52 #include "disas/disas.h"
     53 #include "migration/vmstate.h"
     54 #include "monitor/monitor.h"
     55 #include "sysemu/reset.h"
     56 #include "sysemu/sysemu.h"
     57 #include "uboot_image.h"
     58 #include "hw/loader.h"
     59 #include "hw/nvram/fw_cfg.h"
     60 #include "exec/memory.h"
     61 #include "hw/boards.h"
     62 #include "qemu/cutils.h"
     63 #include "sysemu/runstate.h"
     64 
     65 #include <zlib.h>
     66 
     67 static int roms_loaded;
     68 
     69 /* return the size or -1 if error */
     70 int64_t get_image_size(const char *filename)
     71 {
     72     int fd;
     73     int64_t size;
     74     fd = open(filename, O_RDONLY | O_BINARY);
     75     if (fd < 0)
     76         return -1;
     77     size = lseek(fd, 0, SEEK_END);
     78     close(fd);
     79     return size;
     80 }
     81 
     82 /* return the size or -1 if error */
     83 ssize_t load_image_size(const char *filename, void *addr, size_t size)
     84 {
     85     int fd;
     86     ssize_t actsize, l = 0;
     87 
     88     fd = open(filename, O_RDONLY | O_BINARY);
     89     if (fd < 0) {
     90         return -1;
     91     }
     92 
     93     while ((actsize = read(fd, addr + l, size - l)) > 0) {
     94         l += actsize;
     95     }
     96 
     97     close(fd);
     98 
     99     return actsize < 0 ? -1 : l;
    100 }
    101 
    102 /* read()-like version */
    103 ssize_t read_targphys(const char *name,
    104                       int fd, hwaddr dst_addr, size_t nbytes)
    105 {
    106     uint8_t *buf;
    107     ssize_t did;
    108 
    109     buf = g_malloc(nbytes);
    110     did = read(fd, buf, nbytes);
    111     if (did > 0)
    112         rom_add_blob_fixed("read", buf, did, dst_addr);
    113     g_free(buf);
    114     return did;
    115 }
    116 
    117 ssize_t load_image_targphys(const char *filename,
    118                             hwaddr addr, uint64_t max_sz)
    119 {
    120     return load_image_targphys_as(filename, addr, max_sz, NULL);
    121 }
    122 
    123 /* return the size or -1 if error */
    124 ssize_t load_image_targphys_as(const char *filename,
    125                                hwaddr addr, uint64_t max_sz, AddressSpace *as)
    126 {
    127     ssize_t size;
    128 
    129     size = get_image_size(filename);
    130     if (size < 0 || size > max_sz) {
    131         return -1;
    132     }
    133     if (size > 0) {
    134         if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) {
    135             return -1;
    136         }
    137     }
    138     return size;
    139 }
    140 
    141 ssize_t load_image_mr(const char *filename, MemoryRegion *mr)
    142 {
    143     ssize_t size;
    144 
    145     if (!memory_access_is_direct(mr, false)) {
    146         /* Can only load an image into RAM or ROM */
    147         return -1;
    148     }
    149 
    150     size = get_image_size(filename);
    151 
    152     if (size < 0 || size > memory_region_size(mr)) {
    153         return -1;
    154     }
    155     if (size > 0) {
    156         if (rom_add_file_mr(filename, mr, -1) < 0) {
    157             return -1;
    158         }
    159     }
    160     return size;
    161 }
    162 
    163 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size,
    164                       const char *source)
    165 {
    166     const char *nulp;
    167     char *ptr;
    168 
    169     if (buf_size <= 0) return;
    170     nulp = memchr(source, 0, buf_size);
    171     if (nulp) {
    172         rom_add_blob_fixed(name, source, (nulp - source) + 1, dest);
    173     } else {
    174         rom_add_blob_fixed(name, source, buf_size, dest);
    175         ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr));
    176         *ptr = 0;
    177     }
    178 }
    179 
    180 /* A.OUT loader */
    181 
    182 struct exec
    183 {
    184   uint32_t a_info;   /* Use macros N_MAGIC, etc for access */
    185   uint32_t a_text;   /* length of text, in bytes */
    186   uint32_t a_data;   /* length of data, in bytes */
    187   uint32_t a_bss;    /* length of uninitialized data area, in bytes */
    188   uint32_t a_syms;   /* length of symbol table data in file, in bytes */
    189   uint32_t a_entry;  /* start address */
    190   uint32_t a_trsize; /* length of relocation info for text, in bytes */
    191   uint32_t a_drsize; /* length of relocation info for data, in bytes */
    192 };
    193 
    194 static void bswap_ahdr(struct exec *e)
    195 {
    196     bswap32s(&e->a_info);
    197     bswap32s(&e->a_text);
    198     bswap32s(&e->a_data);
    199     bswap32s(&e->a_bss);
    200     bswap32s(&e->a_syms);
    201     bswap32s(&e->a_entry);
    202     bswap32s(&e->a_trsize);
    203     bswap32s(&e->a_drsize);
    204 }
    205 
    206 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
    207 #define OMAGIC 0407
    208 #define NMAGIC 0410
    209 #define ZMAGIC 0413
    210 #define QMAGIC 0314
    211 #define _N_HDROFF(x) (1024 - sizeof (struct exec))
    212 #define N_TXTOFF(x)							\
    213     (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) :	\
    214      (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
    215 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0)
    216 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1))
    217 
    218 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text)
    219 
    220 #define N_DATADDR(x, target_page_size) \
    221     (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \
    222      : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size)))
    223 
    224 
    225 ssize_t load_aout(const char *filename, hwaddr addr, int max_sz,
    226                   int bswap_needed, hwaddr target_page_size)
    227 {
    228     int fd;
    229     ssize_t size, ret;
    230     struct exec e;
    231     uint32_t magic;
    232 
    233     fd = open(filename, O_RDONLY | O_BINARY);
    234     if (fd < 0)
    235         return -1;
    236 
    237     size = read(fd, &e, sizeof(e));
    238     if (size < 0)
    239         goto fail;
    240 
    241     if (bswap_needed) {
    242         bswap_ahdr(&e);
    243     }
    244 
    245     magic = N_MAGIC(e);
    246     switch (magic) {
    247     case ZMAGIC:
    248     case QMAGIC:
    249     case OMAGIC:
    250         if (e.a_text + e.a_data > max_sz)
    251             goto fail;
    252         lseek(fd, N_TXTOFF(e), SEEK_SET);
    253         size = read_targphys(filename, fd, addr, e.a_text + e.a_data);
    254         if (size < 0)
    255             goto fail;
    256         break;
    257     case NMAGIC:
    258         if (N_DATADDR(e, target_page_size) + e.a_data > max_sz)
    259             goto fail;
    260         lseek(fd, N_TXTOFF(e), SEEK_SET);
    261         size = read_targphys(filename, fd, addr, e.a_text);
    262         if (size < 0)
    263             goto fail;
    264         ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size),
    265                             e.a_data);
    266         if (ret < 0)
    267             goto fail;
    268         size += ret;
    269         break;
    270     default:
    271         goto fail;
    272     }
    273     close(fd);
    274     return size;
    275  fail:
    276     close(fd);
    277     return -1;
    278 }
    279 
    280 /* ELF loader */
    281 
    282 static void *load_at(int fd, off_t offset, size_t size)
    283 {
    284     void *ptr;
    285     if (lseek(fd, offset, SEEK_SET) < 0)
    286         return NULL;
    287     ptr = g_malloc(size);
    288     if (read(fd, ptr, size) != size) {
    289         g_free(ptr);
    290         return NULL;
    291     }
    292     return ptr;
    293 }
    294 
    295 #ifdef ELF_CLASS
    296 #undef ELF_CLASS
    297 #endif
    298 
    299 #define ELF_CLASS   ELFCLASS32
    300 #include "elf.h"
    301 
    302 #define SZ		32
    303 #define elf_word        uint32_t
    304 #define elf_sword        int32_t
    305 #define bswapSZs	bswap32s
    306 #include "hw/elf_ops.h"
    307 
    308 #undef elfhdr
    309 #undef elf_phdr
    310 #undef elf_shdr
    311 #undef elf_sym
    312 #undef elf_rela
    313 #undef elf_note
    314 #undef elf_word
    315 #undef elf_sword
    316 #undef bswapSZs
    317 #undef SZ
    318 #define elfhdr		elf64_hdr
    319 #define elf_phdr	elf64_phdr
    320 #define elf_note	elf64_note
    321 #define elf_shdr	elf64_shdr
    322 #define elf_sym		elf64_sym
    323 #define elf_rela        elf64_rela
    324 #define elf_word        uint64_t
    325 #define elf_sword        int64_t
    326 #define bswapSZs	bswap64s
    327 #define SZ		64
    328 #include "hw/elf_ops.h"
    329 
    330 const char *load_elf_strerror(ssize_t error)
    331 {
    332     switch (error) {
    333     case 0:
    334         return "No error";
    335     case ELF_LOAD_FAILED:
    336         return "Failed to load ELF";
    337     case ELF_LOAD_NOT_ELF:
    338         return "The image is not ELF";
    339     case ELF_LOAD_WRONG_ARCH:
    340         return "The image is from incompatible architecture";
    341     case ELF_LOAD_WRONG_ENDIAN:
    342         return "The image has incorrect endianness";
    343     case ELF_LOAD_TOO_BIG:
    344         return "The image segments are too big to load";
    345     default:
    346         return "Unknown error";
    347     }
    348 }
    349 
    350 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp)
    351 {
    352     int fd;
    353     uint8_t e_ident_local[EI_NIDENT];
    354     uint8_t *e_ident;
    355     size_t hdr_size, off;
    356     bool is64l;
    357 
    358     if (!hdr) {
    359         hdr = e_ident_local;
    360     }
    361     e_ident = hdr;
    362 
    363     fd = open(filename, O_RDONLY | O_BINARY);
    364     if (fd < 0) {
    365         error_setg_errno(errp, errno, "Failed to open file: %s", filename);
    366         return;
    367     }
    368     if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) {
    369         error_setg_errno(errp, errno, "Failed to read file: %s", filename);
    370         goto fail;
    371     }
    372     if (e_ident[0] != ELFMAG0 ||
    373         e_ident[1] != ELFMAG1 ||
    374         e_ident[2] != ELFMAG2 ||
    375         e_ident[3] != ELFMAG3) {
    376         error_setg(errp, "Bad ELF magic");
    377         goto fail;
    378     }
    379 
    380     is64l = e_ident[EI_CLASS] == ELFCLASS64;
    381     hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr);
    382     if (is64) {
    383         *is64 = is64l;
    384     }
    385 
    386     off = EI_NIDENT;
    387     while (hdr != e_ident_local && off < hdr_size) {
    388         size_t br = read(fd, hdr + off, hdr_size - off);
    389         switch (br) {
    390         case 0:
    391             error_setg(errp, "File too short: %s", filename);
    392             goto fail;
    393         case -1:
    394             error_setg_errno(errp, errno, "Failed to read file: %s",
    395                              filename);
    396             goto fail;
    397         }
    398         off += br;
    399     }
    400 
    401 fail:
    402     close(fd);
    403 }
    404 
    405 /* return < 0 if error, otherwise the number of bytes loaded in memory */
    406 ssize_t load_elf(const char *filename,
    407                  uint64_t (*elf_note_fn)(void *, void *, bool),
    408                  uint64_t (*translate_fn)(void *, uint64_t),
    409                  void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
    410                  uint64_t *highaddr, uint32_t *pflags, int big_endian,
    411                  int elf_machine, int clear_lsb, int data_swab)
    412 {
    413     return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque,
    414                        pentry, lowaddr, highaddr, pflags, big_endian,
    415                        elf_machine, clear_lsb, data_swab, NULL);
    416 }
    417 
    418 /* return < 0 if error, otherwise the number of bytes loaded in memory */
    419 ssize_t load_elf_as(const char *filename,
    420                     uint64_t (*elf_note_fn)(void *, void *, bool),
    421                     uint64_t (*translate_fn)(void *, uint64_t),
    422                     void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
    423                     uint64_t *highaddr, uint32_t *pflags, int big_endian,
    424                     int elf_machine, int clear_lsb, int data_swab,
    425                     AddressSpace *as)
    426 {
    427     return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque,
    428                         pentry, lowaddr, highaddr, pflags, big_endian,
    429                         elf_machine, clear_lsb, data_swab, as, true);
    430 }
    431 
    432 /* return < 0 if error, otherwise the number of bytes loaded in memory */
    433 ssize_t load_elf_ram(const char *filename,
    434                      uint64_t (*elf_note_fn)(void *, void *, bool),
    435                      uint64_t (*translate_fn)(void *, uint64_t),
    436                      void *translate_opaque, uint64_t *pentry,
    437                      uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags,
    438                      int big_endian, int elf_machine, int clear_lsb,
    439                      int data_swab, AddressSpace *as, bool load_rom)
    440 {
    441     return load_elf_ram_sym(filename, elf_note_fn,
    442                             translate_fn, translate_opaque,
    443                             pentry, lowaddr, highaddr, pflags, big_endian,
    444                             elf_machine, clear_lsb, data_swab, as,
    445                             load_rom, NULL);
    446 }
    447 
    448 /* return < 0 if error, otherwise the number of bytes loaded in memory */
    449 ssize_t load_elf_ram_sym(const char *filename,
    450                          uint64_t (*elf_note_fn)(void *, void *, bool),
    451                          uint64_t (*translate_fn)(void *, uint64_t),
    452                          void *translate_opaque, uint64_t *pentry,
    453                          uint64_t *lowaddr, uint64_t *highaddr,
    454                          uint32_t *pflags, int big_endian, int elf_machine,
    455                          int clear_lsb, int data_swab,
    456                          AddressSpace *as, bool load_rom, symbol_fn_t sym_cb)
    457 {
    458     int fd, data_order, target_data_order, must_swab;
    459     ssize_t ret = ELF_LOAD_FAILED;
    460     uint8_t e_ident[EI_NIDENT];
    461 
    462     fd = open(filename, O_RDONLY | O_BINARY);
    463     if (fd < 0) {
    464         perror(filename);
    465         return -1;
    466     }
    467     if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident))
    468         goto fail;
    469     if (e_ident[0] != ELFMAG0 ||
    470         e_ident[1] != ELFMAG1 ||
    471         e_ident[2] != ELFMAG2 ||
    472         e_ident[3] != ELFMAG3) {
    473         ret = ELF_LOAD_NOT_ELF;
    474         goto fail;
    475     }
    476 #if HOST_BIG_ENDIAN
    477     data_order = ELFDATA2MSB;
    478 #else
    479     data_order = ELFDATA2LSB;
    480 #endif
    481     must_swab = data_order != e_ident[EI_DATA];
    482     if (big_endian) {
    483         target_data_order = ELFDATA2MSB;
    484     } else {
    485         target_data_order = ELFDATA2LSB;
    486     }
    487 
    488     if (target_data_order != e_ident[EI_DATA]) {
    489         ret = ELF_LOAD_WRONG_ENDIAN;
    490         goto fail;
    491     }
    492 
    493     lseek(fd, 0, SEEK_SET);
    494     if (e_ident[EI_CLASS] == ELFCLASS64) {
    495         ret = load_elf64(filename, fd, elf_note_fn,
    496                          translate_fn, translate_opaque, must_swab,
    497                          pentry, lowaddr, highaddr, pflags, elf_machine,
    498                          clear_lsb, data_swab, as, load_rom, sym_cb);
    499     } else {
    500         ret = load_elf32(filename, fd, elf_note_fn,
    501                          translate_fn, translate_opaque, must_swab,
    502                          pentry, lowaddr, highaddr, pflags, elf_machine,
    503                          clear_lsb, data_swab, as, load_rom, sym_cb);
    504     }
    505 
    506  fail:
    507     close(fd);
    508     return ret;
    509 }
    510 
    511 static void bswap_uboot_header(uboot_image_header_t *hdr)
    512 {
    513 #if !HOST_BIG_ENDIAN
    514     bswap32s(&hdr->ih_magic);
    515     bswap32s(&hdr->ih_hcrc);
    516     bswap32s(&hdr->ih_time);
    517     bswap32s(&hdr->ih_size);
    518     bswap32s(&hdr->ih_load);
    519     bswap32s(&hdr->ih_ep);
    520     bswap32s(&hdr->ih_dcrc);
    521 #endif
    522 }
    523 
    524 
    525 #define ZALLOC_ALIGNMENT	16
    526 
    527 static void *zalloc(void *x, unsigned items, unsigned size)
    528 {
    529     void *p;
    530 
    531     size *= items;
    532     size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1);
    533 
    534     p = g_malloc(size);
    535 
    536     return (p);
    537 }
    538 
    539 static void zfree(void *x, void *addr)
    540 {
    541     g_free(addr);
    542 }
    543 
    544 
    545 #define HEAD_CRC	2
    546 #define EXTRA_FIELD	4
    547 #define ORIG_NAME	8
    548 #define COMMENT		0x10
    549 #define RESERVED	0xe0
    550 
    551 #define DEFLATED	8
    552 
    553 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen)
    554 {
    555     z_stream s;
    556     ssize_t dstbytes;
    557     int r, i, flags;
    558 
    559     /* skip header */
    560     i = 10;
    561     if (srclen < 4) {
    562         goto toosmall;
    563     }
    564     flags = src[3];
    565     if (src[2] != DEFLATED || (flags & RESERVED) != 0) {
    566         puts ("Error: Bad gzipped data\n");
    567         return -1;
    568     }
    569     if ((flags & EXTRA_FIELD) != 0) {
    570         if (srclen < 12) {
    571             goto toosmall;
    572         }
    573         i = 12 + src[10] + (src[11] << 8);
    574     }
    575     if ((flags & ORIG_NAME) != 0) {
    576         while (i < srclen && src[i++] != 0) {
    577             /* do nothing */
    578         }
    579     }
    580     if ((flags & COMMENT) != 0) {
    581         while (i < srclen && src[i++] != 0) {
    582             /* do nothing */
    583         }
    584     }
    585     if ((flags & HEAD_CRC) != 0) {
    586         i += 2;
    587     }
    588     if (i >= srclen) {
    589         goto toosmall;
    590     }
    591 
    592     s.zalloc = zalloc;
    593     s.zfree = zfree;
    594 
    595     r = inflateInit2(&s, -MAX_WBITS);
    596     if (r != Z_OK) {
    597         printf ("Error: inflateInit2() returned %d\n", r);
    598         return (-1);
    599     }
    600     s.next_in = src + i;
    601     s.avail_in = srclen - i;
    602     s.next_out = dst;
    603     s.avail_out = dstlen;
    604     r = inflate(&s, Z_FINISH);
    605     if (r != Z_OK && r != Z_STREAM_END) {
    606         printf ("Error: inflate() returned %d\n", r);
    607         return -1;
    608     }
    609     dstbytes = s.next_out - (unsigned char *) dst;
    610     inflateEnd(&s);
    611 
    612     return dstbytes;
    613 
    614 toosmall:
    615     puts("Error: gunzip out of data in header\n");
    616     return -1;
    617 }
    618 
    619 /* Load a U-Boot image.  */
    620 static ssize_t load_uboot_image(const char *filename, hwaddr *ep,
    621                                 hwaddr *loadaddr, int *is_linux,
    622                                 uint8_t image_type,
    623                                 uint64_t (*translate_fn)(void *, uint64_t),
    624                                 void *translate_opaque, AddressSpace *as)
    625 {
    626     int fd;
    627     ssize_t size;
    628     hwaddr address;
    629     uboot_image_header_t h;
    630     uboot_image_header_t *hdr = &h;
    631     uint8_t *data = NULL;
    632     int ret = -1;
    633     int do_uncompress = 0;
    634 
    635     fd = open(filename, O_RDONLY | O_BINARY);
    636     if (fd < 0)
    637         return -1;
    638 
    639     size = read(fd, hdr, sizeof(uboot_image_header_t));
    640     if (size < sizeof(uboot_image_header_t)) {
    641         goto out;
    642     }
    643 
    644     bswap_uboot_header(hdr);
    645 
    646     if (hdr->ih_magic != IH_MAGIC)
    647         goto out;
    648 
    649     if (hdr->ih_type != image_type) {
    650         if (!(image_type == IH_TYPE_KERNEL &&
    651             hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) {
    652             fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type,
    653                     image_type);
    654             goto out;
    655         }
    656     }
    657 
    658     /* TODO: Implement other image types.  */
    659     switch (hdr->ih_type) {
    660     case IH_TYPE_KERNEL_NOLOAD:
    661         if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) {
    662             fprintf(stderr, "this image format (kernel_noload) cannot be "
    663                     "loaded on this machine type");
    664             goto out;
    665         }
    666 
    667         hdr->ih_load = *loadaddr + sizeof(*hdr);
    668         hdr->ih_ep += hdr->ih_load;
    669         /* fall through */
    670     case IH_TYPE_KERNEL:
    671         address = hdr->ih_load;
    672         if (translate_fn) {
    673             address = translate_fn(translate_opaque, address);
    674         }
    675         if (loadaddr) {
    676             *loadaddr = hdr->ih_load;
    677         }
    678 
    679         switch (hdr->ih_comp) {
    680         case IH_COMP_NONE:
    681             break;
    682         case IH_COMP_GZIP:
    683             do_uncompress = 1;
    684             break;
    685         default:
    686             fprintf(stderr,
    687                     "Unable to load u-boot images with compression type %d\n",
    688                     hdr->ih_comp);
    689             goto out;
    690         }
    691 
    692         if (ep) {
    693             *ep = hdr->ih_ep;
    694         }
    695 
    696         /* TODO: Check CPU type.  */
    697         if (is_linux) {
    698             if (hdr->ih_os == IH_OS_LINUX) {
    699                 *is_linux = 1;
    700             } else if (hdr->ih_os == IH_OS_VXWORKS) {
    701                 /*
    702                  * VxWorks 7 uses the same boot interface as the Linux kernel
    703                  * on Arm (64-bit only), PowerPC and RISC-V architectures.
    704                  */
    705                 switch (hdr->ih_arch) {
    706                 case IH_ARCH_ARM64:
    707                 case IH_ARCH_PPC:
    708                 case IH_ARCH_RISCV:
    709                     *is_linux = 1;
    710                     break;
    711                 default:
    712                     *is_linux = 0;
    713                     break;
    714                 }
    715             } else {
    716                 *is_linux = 0;
    717             }
    718         }
    719 
    720         break;
    721     case IH_TYPE_RAMDISK:
    722         address = *loadaddr;
    723         break;
    724     default:
    725         fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type);
    726         goto out;
    727     }
    728 
    729     data = g_malloc(hdr->ih_size);
    730 
    731     if (read(fd, data, hdr->ih_size) != hdr->ih_size) {
    732         fprintf(stderr, "Error reading file\n");
    733         goto out;
    734     }
    735 
    736     if (do_uncompress) {
    737         uint8_t *compressed_data;
    738         size_t max_bytes;
    739         ssize_t bytes;
    740 
    741         compressed_data = data;
    742         max_bytes = UBOOT_MAX_GUNZIP_BYTES;
    743         data = g_malloc(max_bytes);
    744 
    745         bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size);
    746         g_free(compressed_data);
    747         if (bytes < 0) {
    748             fprintf(stderr, "Unable to decompress gzipped image!\n");
    749             goto out;
    750         }
    751         hdr->ih_size = bytes;
    752     }
    753 
    754     rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as);
    755 
    756     ret = hdr->ih_size;
    757 
    758 out:
    759     g_free(data);
    760     close(fd);
    761     return ret;
    762 }
    763 
    764 ssize_t load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr,
    765                     int *is_linux,
    766                     uint64_t (*translate_fn)(void *, uint64_t),
    767                     void *translate_opaque)
    768 {
    769     return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
    770                             translate_fn, translate_opaque, NULL);
    771 }
    772 
    773 ssize_t load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr,
    774                        int *is_linux,
    775                        uint64_t (*translate_fn)(void *, uint64_t),
    776                        void *translate_opaque, AddressSpace *as)
    777 {
    778     return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
    779                             translate_fn, translate_opaque, as);
    780 }
    781 
    782 /* Load a ramdisk.  */
    783 ssize_t load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz)
    784 {
    785     return load_ramdisk_as(filename, addr, max_sz, NULL);
    786 }
    787 
    788 ssize_t load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz,
    789                         AddressSpace *as)
    790 {
    791     return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK,
    792                             NULL, NULL, as);
    793 }
    794 
    795 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */
    796 ssize_t load_image_gzipped_buffer(const char *filename, uint64_t max_sz,
    797                                   uint8_t **buffer)
    798 {
    799     uint8_t *compressed_data = NULL;
    800     uint8_t *data = NULL;
    801     gsize len;
    802     ssize_t bytes;
    803     int ret = -1;
    804 
    805     if (!g_file_get_contents(filename, (char **) &compressed_data, &len,
    806                              NULL)) {
    807         goto out;
    808     }
    809 
    810     /* Is it a gzip-compressed file? */
    811     if (len < 2 ||
    812         compressed_data[0] != 0x1f ||
    813         compressed_data[1] != 0x8b) {
    814         goto out;
    815     }
    816 
    817     if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) {
    818         max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES;
    819     }
    820 
    821     data = g_malloc(max_sz);
    822     bytes = gunzip(data, max_sz, compressed_data, len);
    823     if (bytes < 0) {
    824         fprintf(stderr, "%s: unable to decompress gzipped kernel file\n",
    825                 filename);
    826         goto out;
    827     }
    828 
    829     /* trim to actual size and return to caller */
    830     *buffer = g_realloc(data, bytes);
    831     ret = bytes;
    832     /* ownership has been transferred to caller */
    833     data = NULL;
    834 
    835  out:
    836     g_free(compressed_data);
    837     g_free(data);
    838     return ret;
    839 }
    840 
    841 /* Load a gzip-compressed kernel. */
    842 ssize_t load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz)
    843 {
    844     ssize_t bytes;
    845     uint8_t *data;
    846 
    847     bytes = load_image_gzipped_buffer(filename, max_sz, &data);
    848     if (bytes != -1) {
    849         rom_add_blob_fixed(filename, data, bytes, addr);
    850         g_free(data);
    851     }
    852     return bytes;
    853 }
    854 
    855 /*
    856  * Functions for reboot-persistent memory regions.
    857  *  - used for vga bios and option roms.
    858  *  - also linux kernel (-kernel / -initrd).
    859  */
    860 
    861 typedef struct Rom Rom;
    862 
    863 struct Rom {
    864     char *name;
    865     char *path;
    866 
    867     /* datasize is the amount of memory allocated in "data". If datasize is less
    868      * than romsize, it means that the area from datasize to romsize is filled
    869      * with zeros.
    870      */
    871     size_t romsize;
    872     size_t datasize;
    873 
    874     uint8_t *data;
    875     MemoryRegion *mr;
    876     AddressSpace *as;
    877     int isrom;
    878     char *fw_dir;
    879     char *fw_file;
    880     GMappedFile *mapped_file;
    881 
    882     bool committed;
    883 
    884     hwaddr addr;
    885     QTAILQ_ENTRY(Rom) next;
    886 };
    887 
    888 static FWCfgState *fw_cfg;
    889 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms);
    890 
    891 /*
    892  * rom->data can be heap-allocated or memory-mapped (e.g. when added with
    893  * rom_add_elf_program())
    894  */
    895 static void rom_free_data(Rom *rom)
    896 {
    897     if (rom->mapped_file) {
    898         g_mapped_file_unref(rom->mapped_file);
    899         rom->mapped_file = NULL;
    900     } else {
    901         g_free(rom->data);
    902     }
    903 
    904     rom->data = NULL;
    905 }
    906 
    907 static void rom_free(Rom *rom)
    908 {
    909     rom_free_data(rom);
    910     g_free(rom->path);
    911     g_free(rom->name);
    912     g_free(rom->fw_dir);
    913     g_free(rom->fw_file);
    914     g_free(rom);
    915 }
    916 
    917 static inline bool rom_order_compare(Rom *rom, Rom *item)
    918 {
    919     return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) ||
    920            (rom->as == item->as && rom->addr >= item->addr);
    921 }
    922 
    923 static void rom_insert(Rom *rom)
    924 {
    925     Rom *item;
    926 
    927     if (roms_loaded) {
    928         hw_error ("ROM images must be loaded at startup\n");
    929     }
    930 
    931     /* The user didn't specify an address space, this is the default */
    932     if (!rom->as) {
    933         rom->as = &address_space_memory;
    934     }
    935 
    936     rom->committed = false;
    937 
    938     /* List is ordered by load address in the same address space */
    939     QTAILQ_FOREACH(item, &roms, next) {
    940         if (rom_order_compare(rom, item)) {
    941             continue;
    942         }
    943         QTAILQ_INSERT_BEFORE(item, rom, next);
    944         return;
    945     }
    946     QTAILQ_INSERT_TAIL(&roms, rom, next);
    947 }
    948 
    949 static void fw_cfg_resized(const char *id, uint64_t length, void *host)
    950 {
    951     if (fw_cfg) {
    952         fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length);
    953     }
    954 }
    955 
    956 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro)
    957 {
    958     void *data;
    959 
    960     rom->mr = g_malloc(sizeof(*rom->mr));
    961     memory_region_init_resizeable_ram(rom->mr, owner, name,
    962                                       rom->datasize, rom->romsize,
    963                                       fw_cfg_resized,
    964                                       &error_fatal);
    965     memory_region_set_readonly(rom->mr, ro);
    966     vmstate_register_ram_global(rom->mr);
    967 
    968     data = memory_region_get_ram_ptr(rom->mr);
    969     memcpy(data, rom->data, rom->datasize);
    970 
    971     return data;
    972 }
    973 
    974 ssize_t rom_add_file(const char *file, const char *fw_dir,
    975                      hwaddr addr, int32_t bootindex,
    976                      bool option_rom, MemoryRegion *mr,
    977                      AddressSpace *as)
    978 {
    979     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
    980     Rom *rom;
    981     ssize_t rc;
    982     int fd = -1;
    983     char devpath[100];
    984 
    985     if (as && mr) {
    986         fprintf(stderr, "Specifying an Address Space and Memory Region is " \
    987                 "not valid when loading a rom\n");
    988         /* We haven't allocated anything so we don't need any cleanup */
    989         return -1;
    990     }
    991 
    992     rom = g_malloc0(sizeof(*rom));
    993     rom->name = g_strdup(file);
    994     rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name);
    995     rom->as = as;
    996     if (rom->path == NULL) {
    997         rom->path = g_strdup(file);
    998     }
    999 
   1000     fd = open(rom->path, O_RDONLY | O_BINARY);
   1001     if (fd == -1) {
   1002         fprintf(stderr, "Could not open option rom '%s': %s\n",
   1003                 rom->path, strerror(errno));
   1004         goto err;
   1005     }
   1006 
   1007     if (fw_dir) {
   1008         rom->fw_dir  = g_strdup(fw_dir);
   1009         rom->fw_file = g_strdup(file);
   1010     }
   1011     rom->addr     = addr;
   1012     rom->romsize  = lseek(fd, 0, SEEK_END);
   1013     if (rom->romsize == -1) {
   1014         fprintf(stderr, "rom: file %-20s: get size error: %s\n",
   1015                 rom->name, strerror(errno));
   1016         goto err;
   1017     }
   1018 
   1019     rom->datasize = rom->romsize;
   1020     rom->data     = g_malloc0(rom->datasize);
   1021     lseek(fd, 0, SEEK_SET);
   1022     rc = read(fd, rom->data, rom->datasize);
   1023     if (rc != rom->datasize) {
   1024         fprintf(stderr, "rom: file %-20s: read error: rc=%zd (expected %zd)\n",
   1025                 rom->name, rc, rom->datasize);
   1026         goto err;
   1027     }
   1028     close(fd);
   1029     rom_insert(rom);
   1030     if (rom->fw_file && fw_cfg) {
   1031         const char *basename;
   1032         char fw_file_name[FW_CFG_MAX_FILE_PATH];
   1033         void *data;
   1034 
   1035         basename = strrchr(rom->fw_file, '/');
   1036         if (basename) {
   1037             basename++;
   1038         } else {
   1039             basename = rom->fw_file;
   1040         }
   1041         snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir,
   1042                  basename);
   1043         snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
   1044 
   1045         if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) {
   1046             data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true);
   1047         } else {
   1048             data = rom->data;
   1049         }
   1050 
   1051         fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize);
   1052     } else {
   1053         if (mr) {
   1054             rom->mr = mr;
   1055             snprintf(devpath, sizeof(devpath), "/rom@%s", file);
   1056         } else {
   1057             snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr);
   1058         }
   1059     }
   1060 
   1061     add_boot_device_path(bootindex, NULL, devpath);
   1062     return 0;
   1063 
   1064 err:
   1065     if (fd != -1)
   1066         close(fd);
   1067 
   1068     rom_free(rom);
   1069     return -1;
   1070 }
   1071 
   1072 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len,
   1073                    size_t max_len, hwaddr addr, const char *fw_file_name,
   1074                    FWCfgCallback fw_callback, void *callback_opaque,
   1075                    AddressSpace *as, bool read_only)
   1076 {
   1077     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
   1078     Rom *rom;
   1079     MemoryRegion *mr = NULL;
   1080 
   1081     rom           = g_malloc0(sizeof(*rom));
   1082     rom->name     = g_strdup(name);
   1083     rom->as       = as;
   1084     rom->addr     = addr;
   1085     rom->romsize  = max_len ? max_len : len;
   1086     rom->datasize = len;
   1087     g_assert(rom->romsize >= rom->datasize);
   1088     rom->data     = g_malloc0(rom->datasize);
   1089     memcpy(rom->data, blob, len);
   1090     rom_insert(rom);
   1091     if (fw_file_name && fw_cfg) {
   1092         char devpath[100];
   1093         void *data;
   1094 
   1095         if (read_only) {
   1096             snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
   1097         } else {
   1098             snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name);
   1099         }
   1100 
   1101         if (mc->rom_file_has_mr) {
   1102             data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only);
   1103             mr = rom->mr;
   1104         } else {
   1105             data = rom->data;
   1106         }
   1107 
   1108         fw_cfg_add_file_callback(fw_cfg, fw_file_name,
   1109                                  fw_callback, NULL, callback_opaque,
   1110                                  data, rom->datasize, read_only);
   1111     }
   1112     return mr;
   1113 }
   1114 
   1115 /* This function is specific for elf program because we don't need to allocate
   1116  * all the rom. We just allocate the first part and the rest is just zeros. This
   1117  * is why romsize and datasize are different. Also, this function takes its own
   1118  * reference to "mapped_file", so we don't have to allocate and copy the buffer.
   1119  */
   1120 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data,
   1121                         size_t datasize, size_t romsize, hwaddr addr,
   1122                         AddressSpace *as)
   1123 {
   1124     Rom *rom;
   1125 
   1126     rom           = g_malloc0(sizeof(*rom));
   1127     rom->name     = g_strdup(name);
   1128     rom->addr     = addr;
   1129     rom->datasize = datasize;
   1130     rom->romsize  = romsize;
   1131     rom->data     = data;
   1132     rom->as       = as;
   1133 
   1134     if (mapped_file && data) {
   1135         g_mapped_file_ref(mapped_file);
   1136         rom->mapped_file = mapped_file;
   1137     }
   1138 
   1139     rom_insert(rom);
   1140     return 0;
   1141 }
   1142 
   1143 ssize_t rom_add_vga(const char *file)
   1144 {
   1145     return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL);
   1146 }
   1147 
   1148 ssize_t rom_add_option(const char *file, int32_t bootindex)
   1149 {
   1150     return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL);
   1151 }
   1152 
   1153 static void rom_reset(void *unused)
   1154 {
   1155     Rom *rom;
   1156 
   1157     QTAILQ_FOREACH(rom, &roms, next) {
   1158         if (rom->fw_file) {
   1159             continue;
   1160         }
   1161         /*
   1162          * We don't need to fill in the RAM with ROM data because we'll fill
   1163          * the data in during the next incoming migration in all cases.  Note
   1164          * that some of those RAMs can actually be modified by the guest.
   1165          */
   1166         if (runstate_check(RUN_STATE_INMIGRATE)) {
   1167             if (rom->data && rom->isrom) {
   1168                 /*
   1169                  * Free it so that a rom_reset after migration doesn't
   1170                  * overwrite a potentially modified 'rom'.
   1171                  */
   1172                 rom_free_data(rom);
   1173             }
   1174             continue;
   1175         }
   1176 
   1177         if (rom->data == NULL) {
   1178             continue;
   1179         }
   1180         if (rom->mr) {
   1181             void *host = memory_region_get_ram_ptr(rom->mr);
   1182             memcpy(host, rom->data, rom->datasize);
   1183             memset(host + rom->datasize, 0, rom->romsize - rom->datasize);
   1184         } else {
   1185             address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED,
   1186                                     rom->data, rom->datasize);
   1187             address_space_set(rom->as, rom->addr + rom->datasize, 0,
   1188                               rom->romsize - rom->datasize,
   1189                               MEMTXATTRS_UNSPECIFIED);
   1190         }
   1191         if (rom->isrom) {
   1192             /* rom needs to be written only once */
   1193             rom_free_data(rom);
   1194         }
   1195         /*
   1196          * The rom loader is really on the same level as firmware in the guest
   1197          * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure
   1198          * that the instruction cache for that new region is clear, so that the
   1199          * CPU definitely fetches its instructions from the just written data.
   1200          */
   1201         cpu_flush_icache_range(rom->addr, rom->datasize);
   1202 
   1203         trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom);
   1204     }
   1205 }
   1206 
   1207 /* Return true if two consecutive ROMs in the ROM list overlap */
   1208 static bool roms_overlap(Rom *last_rom, Rom *this_rom)
   1209 {
   1210     if (!last_rom) {
   1211         return false;
   1212     }
   1213     return last_rom->as == this_rom->as &&
   1214         last_rom->addr + last_rom->romsize > this_rom->addr;
   1215 }
   1216 
   1217 static const char *rom_as_name(Rom *rom)
   1218 {
   1219     const char *name = rom->as ? rom->as->name : NULL;
   1220     return name ?: "anonymous";
   1221 }
   1222 
   1223 static void rom_print_overlap_error_header(void)
   1224 {
   1225     error_report("Some ROM regions are overlapping");
   1226     error_printf(
   1227         "These ROM regions might have been loaded by "
   1228         "direct user request or by default.\n"
   1229         "They could be BIOS/firmware images, a guest kernel, "
   1230         "initrd or some other file loaded into guest memory.\n"
   1231         "Check whether you intended to load all this guest code, and "
   1232         "whether it has been built to load to the correct addresses.\n");
   1233 }
   1234 
   1235 static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom)
   1236 {
   1237     error_printf(
   1238         "\nThe following two regions overlap (in the %s address space):\n",
   1239         rom_as_name(rom));
   1240     error_printf(
   1241         "  %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n",
   1242         last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize);
   1243     error_printf(
   1244         "  %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n",
   1245         rom->name, rom->addr, rom->addr + rom->romsize);
   1246 }
   1247 
   1248 int rom_check_and_register_reset(void)
   1249 {
   1250     MemoryRegionSection section;
   1251     Rom *rom, *last_rom = NULL;
   1252     bool found_overlap = false;
   1253 
   1254     QTAILQ_FOREACH(rom, &roms, next) {
   1255         if (rom->fw_file) {
   1256             continue;
   1257         }
   1258         if (!rom->mr) {
   1259             if (roms_overlap(last_rom, rom)) {
   1260                 if (!found_overlap) {
   1261                     found_overlap = true;
   1262                     rom_print_overlap_error_header();
   1263                 }
   1264                 rom_print_one_overlap_error(last_rom, rom);
   1265                 /* Keep going through the list so we report all overlaps */
   1266             }
   1267             last_rom = rom;
   1268         }
   1269         section = memory_region_find(rom->mr ? rom->mr : get_system_memory(),
   1270                                      rom->addr, 1);
   1271         rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr);
   1272         memory_region_unref(section.mr);
   1273     }
   1274     if (found_overlap) {
   1275         return -1;
   1276     }
   1277 
   1278     qemu_register_reset(rom_reset, NULL);
   1279     roms_loaded = 1;
   1280     return 0;
   1281 }
   1282 
   1283 void rom_set_fw(FWCfgState *f)
   1284 {
   1285     fw_cfg = f;
   1286 }
   1287 
   1288 void rom_set_order_override(int order)
   1289 {
   1290     if (!fw_cfg)
   1291         return;
   1292     fw_cfg_set_order_override(fw_cfg, order);
   1293 }
   1294 
   1295 void rom_reset_order_override(void)
   1296 {
   1297     if (!fw_cfg)
   1298         return;
   1299     fw_cfg_reset_order_override(fw_cfg);
   1300 }
   1301 
   1302 void rom_transaction_begin(void)
   1303 {
   1304     Rom *rom;
   1305 
   1306     /* Ignore ROMs added without the transaction API */
   1307     QTAILQ_FOREACH(rom, &roms, next) {
   1308         rom->committed = true;
   1309     }
   1310 }
   1311 
   1312 void rom_transaction_end(bool commit)
   1313 {
   1314     Rom *rom;
   1315     Rom *tmp;
   1316 
   1317     QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) {
   1318         if (rom->committed) {
   1319             continue;
   1320         }
   1321         if (commit) {
   1322             rom->committed = true;
   1323         } else {
   1324             QTAILQ_REMOVE(&roms, rom, next);
   1325             rom_free(rom);
   1326         }
   1327     }
   1328 }
   1329 
   1330 static Rom *find_rom(hwaddr addr, size_t size)
   1331 {
   1332     Rom *rom;
   1333 
   1334     QTAILQ_FOREACH(rom, &roms, next) {
   1335         if (rom->fw_file) {
   1336             continue;
   1337         }
   1338         if (rom->mr) {
   1339             continue;
   1340         }
   1341         if (rom->addr > addr) {
   1342             continue;
   1343         }
   1344         if (rom->addr + rom->romsize < addr + size) {
   1345             continue;
   1346         }
   1347         return rom;
   1348     }
   1349     return NULL;
   1350 }
   1351 
   1352 typedef struct RomSec {
   1353     hwaddr base;
   1354     int se; /* start/end flag */
   1355 } RomSec;
   1356 
   1357 
   1358 /*
   1359  * Sort into address order. We break ties between rom-startpoints
   1360  * and rom-endpoints in favour of the startpoint, by sorting the 0->1
   1361  * transition before the 1->0 transition. Either way round would
   1362  * work, but this way saves a little work later by avoiding
   1363  * dealing with "gaps" of 0 length.
   1364  */
   1365 static gint sort_secs(gconstpointer a, gconstpointer b)
   1366 {
   1367     RomSec *ra = (RomSec *) a;
   1368     RomSec *rb = (RomSec *) b;
   1369 
   1370     if (ra->base == rb->base) {
   1371         return ra->se - rb->se;
   1372     }
   1373     return ra->base > rb->base ? 1 : -1;
   1374 }
   1375 
   1376 static GList *add_romsec_to_list(GList *secs, hwaddr base, int se)
   1377 {
   1378    RomSec *cand = g_new(RomSec, 1);
   1379    cand->base = base;
   1380    cand->se = se;
   1381    return g_list_prepend(secs, cand);
   1382 }
   1383 
   1384 RomGap rom_find_largest_gap_between(hwaddr base, size_t size)
   1385 {
   1386     Rom *rom;
   1387     RomSec *cand;
   1388     RomGap res = {0, 0};
   1389     hwaddr gapstart = base;
   1390     GList *it, *secs = NULL;
   1391     int count = 0;
   1392 
   1393     QTAILQ_FOREACH(rom, &roms, next) {
   1394         /* Ignore blobs being loaded to special places */
   1395         if (rom->mr || rom->fw_file) {
   1396             continue;
   1397         }
   1398         /* ignore anything finishing bellow base */
   1399         if (rom->addr + rom->romsize <= base) {
   1400             continue;
   1401         }
   1402         /* ignore anything starting above the region */
   1403         if (rom->addr >= base + size) {
   1404             continue;
   1405         }
   1406 
   1407         /* Save the start and end of each relevant ROM */
   1408         secs = add_romsec_to_list(secs, rom->addr, 1);
   1409 
   1410         if (rom->addr + rom->romsize < base + size) {
   1411             secs = add_romsec_to_list(secs, rom->addr + rom->romsize, -1);
   1412         }
   1413     }
   1414 
   1415     /* sentinel */
   1416     secs = add_romsec_to_list(secs, base + size, 1);
   1417 
   1418     secs = g_list_sort(secs, sort_secs);
   1419 
   1420     for (it = g_list_first(secs); it; it = g_list_next(it)) {
   1421         cand = (RomSec *) it->data;
   1422         if (count == 0 && count + cand->se == 1) {
   1423             size_t gap = cand->base - gapstart;
   1424             if (gap > res.size) {
   1425                 res.base = gapstart;
   1426                 res.size = gap;
   1427             }
   1428         } else if (count == 1 && count + cand->se == 0) {
   1429             gapstart = cand->base;
   1430         }
   1431         count += cand->se;
   1432     }
   1433 
   1434     g_list_free_full(secs, g_free);
   1435     return res;
   1436 }
   1437 
   1438 /*
   1439  * Copies memory from registered ROMs to dest. Any memory that is contained in
   1440  * a ROM between addr and addr + size is copied. Note that this can involve
   1441  * multiple ROMs, which need not start at addr and need not end at addr + size.
   1442  */
   1443 int rom_copy(uint8_t *dest, hwaddr addr, size_t size)
   1444 {
   1445     hwaddr end = addr + size;
   1446     uint8_t *s, *d = dest;
   1447     size_t l = 0;
   1448     Rom *rom;
   1449 
   1450     QTAILQ_FOREACH(rom, &roms, next) {
   1451         if (rom->fw_file) {
   1452             continue;
   1453         }
   1454         if (rom->mr) {
   1455             continue;
   1456         }
   1457         if (rom->addr + rom->romsize < addr) {
   1458             continue;
   1459         }
   1460         if (rom->addr > end || rom->addr < addr) {
   1461             break;
   1462         }
   1463 
   1464         d = dest + (rom->addr - addr);
   1465         s = rom->data;
   1466         l = rom->datasize;
   1467 
   1468         if ((d + l) > (dest + size)) {
   1469             l = dest - d;
   1470         }
   1471 
   1472         if (l > 0) {
   1473             memcpy(d, s, l);
   1474         }
   1475 
   1476         if (rom->romsize > rom->datasize) {
   1477             /* If datasize is less than romsize, it means that we didn't
   1478              * allocate all the ROM because the trailing data are only zeros.
   1479              */
   1480 
   1481             d += l;
   1482             l = rom->romsize - rom->datasize;
   1483 
   1484             if ((d + l) > (dest + size)) {
   1485                 /* Rom size doesn't fit in the destination area. Adjust to avoid
   1486                  * overflow.
   1487                  */
   1488                 l = dest - d;
   1489             }
   1490 
   1491             if (l > 0) {
   1492                 memset(d, 0x0, l);
   1493             }
   1494         }
   1495     }
   1496 
   1497     return (d + l) - dest;
   1498 }
   1499 
   1500 void *rom_ptr(hwaddr addr, size_t size)
   1501 {
   1502     Rom *rom;
   1503 
   1504     rom = find_rom(addr, size);
   1505     if (!rom || !rom->data)
   1506         return NULL;
   1507     return rom->data + (addr - rom->addr);
   1508 }
   1509 
   1510 typedef struct FindRomCBData {
   1511     size_t size; /* Amount of data we want from ROM, in bytes */
   1512     MemoryRegion *mr; /* MR at the unaliased guest addr */
   1513     hwaddr xlat; /* Offset of addr within mr */
   1514     void *rom; /* Output: rom data pointer, if found */
   1515 } FindRomCBData;
   1516 
   1517 static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr,
   1518                         hwaddr offset_in_region, void *opaque)
   1519 {
   1520     FindRomCBData *cbdata = opaque;
   1521     hwaddr alias_addr;
   1522 
   1523     if (mr != cbdata->mr) {
   1524         return false;
   1525     }
   1526 
   1527     alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region;
   1528     cbdata->rom = rom_ptr(alias_addr, cbdata->size);
   1529     if (!cbdata->rom) {
   1530         return false;
   1531     }
   1532     /* Found a match, stop iterating */
   1533     return true;
   1534 }
   1535 
   1536 void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size)
   1537 {
   1538     /*
   1539      * Find any ROM data for the given guest address range.  If there
   1540      * is a ROM blob then return a pointer to the host memory
   1541      * corresponding to 'addr'; otherwise return NULL.
   1542      *
   1543      * We look not only for ROM blobs that were loaded directly to
   1544      * addr, but also for ROM blobs that were loaded to aliases of
   1545      * that memory at other addresses within the AddressSpace.
   1546      *
   1547      * Note that we do not check @as against the 'as' member in the
   1548      * 'struct Rom' returned by rom_ptr(). The Rom::as is the
   1549      * AddressSpace which the rom blob should be written to, whereas
   1550      * our @as argument is the AddressSpace which we are (effectively)
   1551      * reading from, and the same underlying RAM will often be visible
   1552      * in multiple AddressSpaces. (A common example is a ROM blob
   1553      * written to the 'system' address space but then read back via a
   1554      * CPU's cpu->as pointer.) This does mean we might potentially
   1555      * return a false-positive match if a ROM blob was loaded into an
   1556      * AS which is entirely separate and distinct from the one we're
   1557      * querying, but this issue exists also for rom_ptr() and hasn't
   1558      * caused any problems in practice.
   1559      */
   1560     FlatView *fv;
   1561     void *rom;
   1562     hwaddr len_unused;
   1563     FindRomCBData cbdata = {};
   1564 
   1565     /* Easy case: there's data at the actual address */
   1566     rom = rom_ptr(addr, size);
   1567     if (rom) {
   1568         return rom;
   1569     }
   1570 
   1571     RCU_READ_LOCK_GUARD();
   1572 
   1573     fv = address_space_to_flatview(as);
   1574     cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused,
   1575                                    false, MEMTXATTRS_UNSPECIFIED);
   1576     if (!cbdata.mr) {
   1577         /* Nothing at this address, so there can't be any aliasing */
   1578         return NULL;
   1579     }
   1580     cbdata.size = size;
   1581     flatview_for_each_range(fv, find_rom_cb, &cbdata);
   1582     return cbdata.rom;
   1583 }
   1584 
   1585 HumanReadableText *qmp_x_query_roms(Error **errp)
   1586 {
   1587     Rom *rom;
   1588     g_autoptr(GString) buf = g_string_new("");
   1589 
   1590     QTAILQ_FOREACH(rom, &roms, next) {
   1591         if (rom->mr) {
   1592             g_string_append_printf(buf, "%s"
   1593                                    " size=0x%06zx name=\"%s\"\n",
   1594                                    memory_region_name(rom->mr),
   1595                                    rom->romsize,
   1596                                    rom->name);
   1597         } else if (!rom->fw_file) {
   1598             g_string_append_printf(buf, "addr=" TARGET_FMT_plx
   1599                                    " size=0x%06zx mem=%s name=\"%s\"\n",
   1600                                    rom->addr, rom->romsize,
   1601                                    rom->isrom ? "rom" : "ram",
   1602                                    rom->name);
   1603         } else {
   1604             g_string_append_printf(buf, "fw=%s/%s"
   1605                                    " size=0x%06zx name=\"%s\"\n",
   1606                                    rom->fw_dir,
   1607                                    rom->fw_file,
   1608                                    rom->romsize,
   1609                                    rom->name);
   1610         }
   1611     }
   1612 
   1613     return human_readable_text_from_str(buf);
   1614 }
   1615 
   1616 typedef enum HexRecord HexRecord;
   1617 enum HexRecord {
   1618     DATA_RECORD = 0,
   1619     EOF_RECORD,
   1620     EXT_SEG_ADDR_RECORD,
   1621     START_SEG_ADDR_RECORD,
   1622     EXT_LINEAR_ADDR_RECORD,
   1623     START_LINEAR_ADDR_RECORD,
   1624 };
   1625 
   1626 /* Each record contains a 16-bit address which is combined with the upper 16
   1627  * bits of the implicit "next address" to form a 32-bit address.
   1628  */
   1629 #define NEXT_ADDR_MASK 0xffff0000
   1630 
   1631 #define DATA_FIELD_MAX_LEN 0xff
   1632 #define LEN_EXCEPT_DATA 0x5
   1633 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) +
   1634  *       sizeof(checksum) */
   1635 typedef struct {
   1636     uint8_t byte_count;
   1637     uint16_t address;
   1638     uint8_t record_type;
   1639     uint8_t data[DATA_FIELD_MAX_LEN];
   1640     uint8_t checksum;
   1641 } HexLine;
   1642 
   1643 /* return 0 or -1 if error */
   1644 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c,
   1645                          uint32_t *index, const bool in_process)
   1646 {
   1647     /* +-------+---------------+-------+---------------------+--------+
   1648      * | byte  |               |record |                     |        |
   1649      * | count |    address    | type  |        data         |checksum|
   1650      * +-------+---------------+-------+---------------------+--------+
   1651      * ^       ^               ^       ^                     ^        ^
   1652      * |1 byte |    2 bytes    |1 byte |     0-255 bytes     | 1 byte |
   1653      */
   1654     uint8_t value = 0;
   1655     uint32_t idx = *index;
   1656     /* ignore space */
   1657     if (g_ascii_isspace(c)) {
   1658         return true;
   1659     }
   1660     if (!g_ascii_isxdigit(c) || !in_process) {
   1661         return false;
   1662     }
   1663     value = g_ascii_xdigit_value(c);
   1664     value = (idx & 0x1) ? (value & 0xf) : (value << 4);
   1665     if (idx < 2) {
   1666         line->byte_count |= value;
   1667     } else if (2 <= idx && idx < 6) {
   1668         line->address <<= 4;
   1669         line->address += g_ascii_xdigit_value(c);
   1670     } else if (6 <= idx && idx < 8) {
   1671         line->record_type |= value;
   1672     } else if (8 <= idx && idx < 8 + 2 * line->byte_count) {
   1673         line->data[(idx - 8) >> 1] |= value;
   1674     } else if (8 + 2 * line->byte_count <= idx &&
   1675                idx < 10 + 2 * line->byte_count) {
   1676         line->checksum |= value;
   1677     } else {
   1678         return false;
   1679     }
   1680     *our_checksum += value;
   1681     ++(*index);
   1682     return true;
   1683 }
   1684 
   1685 typedef struct {
   1686     const char *filename;
   1687     HexLine line;
   1688     uint8_t *bin_buf;
   1689     hwaddr *start_addr;
   1690     int total_size;
   1691     uint32_t next_address_to_write;
   1692     uint32_t current_address;
   1693     uint32_t current_rom_index;
   1694     uint32_t rom_start_address;
   1695     AddressSpace *as;
   1696     bool complete;
   1697 } HexParser;
   1698 
   1699 /* return size or -1 if error */
   1700 static int handle_record_type(HexParser *parser)
   1701 {
   1702     HexLine *line = &(parser->line);
   1703     switch (line->record_type) {
   1704     case DATA_RECORD:
   1705         parser->current_address =
   1706             (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address;
   1707         /* verify this is a contiguous block of memory */
   1708         if (parser->current_address != parser->next_address_to_write) {
   1709             if (parser->current_rom_index != 0) {
   1710                 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
   1711                                       parser->current_rom_index,
   1712                                       parser->rom_start_address, parser->as);
   1713             }
   1714             parser->rom_start_address = parser->current_address;
   1715             parser->current_rom_index = 0;
   1716         }
   1717 
   1718         /* copy from line buffer to output bin_buf */
   1719         memcpy(parser->bin_buf + parser->current_rom_index, line->data,
   1720                line->byte_count);
   1721         parser->current_rom_index += line->byte_count;
   1722         parser->total_size += line->byte_count;
   1723         /* save next address to write */
   1724         parser->next_address_to_write =
   1725             parser->current_address + line->byte_count;
   1726         break;
   1727 
   1728     case EOF_RECORD:
   1729         if (parser->current_rom_index != 0) {
   1730             rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
   1731                                   parser->current_rom_index,
   1732                                   parser->rom_start_address, parser->as);
   1733         }
   1734         parser->complete = true;
   1735         return parser->total_size;
   1736     case EXT_SEG_ADDR_RECORD:
   1737     case EXT_LINEAR_ADDR_RECORD:
   1738         if (line->byte_count != 2 && line->address != 0) {
   1739             return -1;
   1740         }
   1741 
   1742         if (parser->current_rom_index != 0) {
   1743             rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
   1744                                   parser->current_rom_index,
   1745                                   parser->rom_start_address, parser->as);
   1746         }
   1747 
   1748         /* save next address to write,
   1749          * in case of non-contiguous block of memory */
   1750         parser->next_address_to_write = (line->data[0] << 12) |
   1751                                         (line->data[1] << 4);
   1752         if (line->record_type == EXT_LINEAR_ADDR_RECORD) {
   1753             parser->next_address_to_write <<= 12;
   1754         }
   1755 
   1756         parser->rom_start_address = parser->next_address_to_write;
   1757         parser->current_rom_index = 0;
   1758         break;
   1759 
   1760     case START_SEG_ADDR_RECORD:
   1761         if (line->byte_count != 4 && line->address != 0) {
   1762             return -1;
   1763         }
   1764 
   1765         /* x86 16-bit CS:IP segmented addressing */
   1766         *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) +
   1767                                 ((line->data[2] << 8) | line->data[3]);
   1768         break;
   1769 
   1770     case START_LINEAR_ADDR_RECORD:
   1771         if (line->byte_count != 4 && line->address != 0) {
   1772             return -1;
   1773         }
   1774 
   1775         *(parser->start_addr) = ldl_be_p(line->data);
   1776         break;
   1777 
   1778     default:
   1779         return -1;
   1780     }
   1781 
   1782     return parser->total_size;
   1783 }
   1784 
   1785 /* return size or -1 if error */
   1786 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob,
   1787                           size_t hex_blob_size, AddressSpace *as)
   1788 {
   1789     bool in_process = false; /* avoid re-enter and
   1790                               * check whether record begin with ':' */
   1791     uint8_t *end = hex_blob + hex_blob_size;
   1792     uint8_t our_checksum = 0;
   1793     uint32_t record_index = 0;
   1794     HexParser parser = {
   1795         .filename = filename,
   1796         .bin_buf = g_malloc(hex_blob_size),
   1797         .start_addr = addr,
   1798         .as = as,
   1799         .complete = false
   1800     };
   1801 
   1802     rom_transaction_begin();
   1803 
   1804     for (; hex_blob < end && !parser.complete; ++hex_blob) {
   1805         switch (*hex_blob) {
   1806         case '\r':
   1807         case '\n':
   1808             if (!in_process) {
   1809                 break;
   1810             }
   1811 
   1812             in_process = false;
   1813             if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 !=
   1814                     record_index ||
   1815                 our_checksum != 0) {
   1816                 parser.total_size = -1;
   1817                 goto out;
   1818             }
   1819 
   1820             if (handle_record_type(&parser) == -1) {
   1821                 parser.total_size = -1;
   1822                 goto out;
   1823             }
   1824             break;
   1825 
   1826         /* start of a new record. */
   1827         case ':':
   1828             memset(&parser.line, 0, sizeof(HexLine));
   1829             in_process = true;
   1830             record_index = 0;
   1831             break;
   1832 
   1833         /* decoding lines */
   1834         default:
   1835             if (!parse_record(&parser.line, &our_checksum, *hex_blob,
   1836                               &record_index, in_process)) {
   1837                 parser.total_size = -1;
   1838                 goto out;
   1839             }
   1840             break;
   1841         }
   1842     }
   1843 
   1844 out:
   1845     g_free(parser.bin_buf);
   1846     rom_transaction_end(parser.total_size != -1);
   1847     return parser.total_size;
   1848 }
   1849 
   1850 /* return size or -1 if error */
   1851 ssize_t load_targphys_hex_as(const char *filename, hwaddr *entry,
   1852                              AddressSpace *as)
   1853 {
   1854     gsize hex_blob_size;
   1855     gchar *hex_blob;
   1856     ssize_t total_size = 0;
   1857 
   1858     if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) {
   1859         return -1;
   1860     }
   1861 
   1862     total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob,
   1863                                 hex_blob_size, as);
   1864 
   1865     g_free(hex_blob);
   1866     return total_size;
   1867 }