qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

serial.c (34849B)


      1 /*
      2  * QEMU 16550A UART emulation
      3  *
      4  * Copyright (c) 2003-2004 Fabrice Bellard
      5  * Copyright (c) 2008 Citrix Systems, Inc.
      6  *
      7  * Permission is hereby granted, free of charge, to any person obtaining a copy
      8  * of this software and associated documentation files (the "Software"), to deal
      9  * in the Software without restriction, including without limitation the rights
     10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     11  * copies of the Software, and to permit persons to whom the Software is
     12  * furnished to do so, subject to the following conditions:
     13  *
     14  * The above copyright notice and this permission notice shall be included in
     15  * all copies or substantial portions of the Software.
     16  *
     17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
     20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     23  * THE SOFTWARE.
     24  */
     25 
     26 #include "qemu/osdep.h"
     27 #include "qemu/bitops.h"
     28 #include "hw/char/serial.h"
     29 #include "hw/irq.h"
     30 #include "migration/vmstate.h"
     31 #include "chardev/char-serial.h"
     32 #include "qapi/error.h"
     33 #include "qemu/timer.h"
     34 #include "sysemu/reset.h"
     35 #include "sysemu/runstate.h"
     36 #include "qemu/error-report.h"
     37 #include "trace.h"
     38 #include "hw/qdev-properties.h"
     39 #include "hw/qdev-properties-system.h"
     40 
     41 #define UART_LCR_DLAB	0x80	/* Divisor latch access bit */
     42 
     43 #define UART_IER_MSI	0x08	/* Enable Modem status interrupt */
     44 #define UART_IER_RLSI	0x04	/* Enable receiver line status interrupt */
     45 #define UART_IER_THRI	0x02	/* Enable Transmitter holding register int. */
     46 #define UART_IER_RDI	0x01	/* Enable receiver data interrupt */
     47 
     48 #define UART_IIR_NO_INT	0x01	/* No interrupts pending */
     49 #define UART_IIR_ID	0x06	/* Mask for the interrupt ID */
     50 
     51 #define UART_IIR_MSI	0x00	/* Modem status interrupt */
     52 #define UART_IIR_THRI	0x02	/* Transmitter holding register empty */
     53 #define UART_IIR_RDI	0x04	/* Receiver data interrupt */
     54 #define UART_IIR_RLSI	0x06	/* Receiver line status interrupt */
     55 #define UART_IIR_CTI    0x0C    /* Character Timeout Indication */
     56 
     57 #define UART_IIR_FENF   0x80    /* Fifo enabled, but not functionning */
     58 #define UART_IIR_FE     0xC0    /* Fifo enabled */
     59 
     60 /*
     61  * These are the definitions for the Modem Control Register
     62  */
     63 #define UART_MCR_LOOP	0x10	/* Enable loopback test mode */
     64 #define UART_MCR_OUT2	0x08	/* Out2 complement */
     65 #define UART_MCR_OUT1	0x04	/* Out1 complement */
     66 #define UART_MCR_RTS	0x02	/* RTS complement */
     67 #define UART_MCR_DTR	0x01	/* DTR complement */
     68 
     69 /*
     70  * These are the definitions for the Modem Status Register
     71  */
     72 #define UART_MSR_DCD	0x80	/* Data Carrier Detect */
     73 #define UART_MSR_RI	0x40	/* Ring Indicator */
     74 #define UART_MSR_DSR	0x20	/* Data Set Ready */
     75 #define UART_MSR_CTS	0x10	/* Clear to Send */
     76 #define UART_MSR_DDCD	0x08	/* Delta DCD */
     77 #define UART_MSR_TERI	0x04	/* Trailing edge ring indicator */
     78 #define UART_MSR_DDSR	0x02	/* Delta DSR */
     79 #define UART_MSR_DCTS	0x01	/* Delta CTS */
     80 #define UART_MSR_ANY_DELTA 0x0F	/* Any of the delta bits! */
     81 
     82 #define UART_LSR_TEMT	0x40	/* Transmitter empty */
     83 #define UART_LSR_THRE	0x20	/* Transmit-hold-register empty */
     84 #define UART_LSR_BI	0x10	/* Break interrupt indicator */
     85 #define UART_LSR_FE	0x08	/* Frame error indicator */
     86 #define UART_LSR_PE	0x04	/* Parity error indicator */
     87 #define UART_LSR_OE	0x02	/* Overrun error indicator */
     88 #define UART_LSR_DR	0x01	/* Receiver data ready */
     89 #define UART_LSR_INT_ANY 0x1E	/* Any of the lsr-interrupt-triggering status bits */
     90 
     91 /* Interrupt trigger levels. The byte-counts are for 16550A - in newer UARTs the byte-count for each ITL is higher. */
     92 
     93 #define UART_FCR_ITL_1      0x00 /* 1 byte ITL */
     94 #define UART_FCR_ITL_2      0x40 /* 4 bytes ITL */
     95 #define UART_FCR_ITL_3      0x80 /* 8 bytes ITL */
     96 #define UART_FCR_ITL_4      0xC0 /* 14 bytes ITL */
     97 
     98 #define UART_FCR_DMS        0x08    /* DMA Mode Select */
     99 #define UART_FCR_XFR        0x04    /* XMIT Fifo Reset */
    100 #define UART_FCR_RFR        0x02    /* RCVR Fifo Reset */
    101 #define UART_FCR_FE         0x01    /* FIFO Enable */
    102 
    103 #define MAX_XMIT_RETRY      4
    104 
    105 static void serial_receive1(void *opaque, const uint8_t *buf, int size);
    106 static void serial_xmit(SerialState *s);
    107 
    108 static inline void recv_fifo_put(SerialState *s, uint8_t chr)
    109 {
    110     /* Receive overruns do not overwrite FIFO contents. */
    111     if (!fifo8_is_full(&s->recv_fifo)) {
    112         fifo8_push(&s->recv_fifo, chr);
    113     } else {
    114         s->lsr |= UART_LSR_OE;
    115     }
    116 }
    117 
    118 static void serial_update_irq(SerialState *s)
    119 {
    120     uint8_t tmp_iir = UART_IIR_NO_INT;
    121 
    122     if ((s->ier & UART_IER_RLSI) && (s->lsr & UART_LSR_INT_ANY)) {
    123         tmp_iir = UART_IIR_RLSI;
    124     } else if ((s->ier & UART_IER_RDI) && s->timeout_ipending) {
    125         /* Note that(s->ier & UART_IER_RDI) can mask this interrupt,
    126          * this is not in the specification but is observed on existing
    127          * hardware.  */
    128         tmp_iir = UART_IIR_CTI;
    129     } else if ((s->ier & UART_IER_RDI) && (s->lsr & UART_LSR_DR) &&
    130                (!(s->fcr & UART_FCR_FE) ||
    131                 s->recv_fifo.num >= s->recv_fifo_itl)) {
    132         tmp_iir = UART_IIR_RDI;
    133     } else if ((s->ier & UART_IER_THRI) && s->thr_ipending) {
    134         tmp_iir = UART_IIR_THRI;
    135     } else if ((s->ier & UART_IER_MSI) && (s->msr & UART_MSR_ANY_DELTA)) {
    136         tmp_iir = UART_IIR_MSI;
    137     }
    138 
    139     s->iir = tmp_iir | (s->iir & 0xF0);
    140 
    141     if (tmp_iir != UART_IIR_NO_INT) {
    142         qemu_irq_raise(s->irq);
    143     } else {
    144         qemu_irq_lower(s->irq);
    145     }
    146 }
    147 
    148 static void serial_update_parameters(SerialState *s)
    149 {
    150     float speed;
    151     int parity, data_bits, stop_bits, frame_size;
    152     QEMUSerialSetParams ssp;
    153 
    154     /* Start bit. */
    155     frame_size = 1;
    156     if (s->lcr & 0x08) {
    157         /* Parity bit. */
    158         frame_size++;
    159         if (s->lcr & 0x10)
    160             parity = 'E';
    161         else
    162             parity = 'O';
    163     } else {
    164             parity = 'N';
    165     }
    166     if (s->lcr & 0x04) {
    167         stop_bits = 2;
    168     } else {
    169         stop_bits = 1;
    170     }
    171 
    172     data_bits = (s->lcr & 0x03) + 5;
    173     frame_size += data_bits + stop_bits;
    174     /* Zero divisor should give about 3500 baud */
    175     speed = (s->divider == 0) ? 3500 : (float) s->baudbase / s->divider;
    176     ssp.speed = speed;
    177     ssp.parity = parity;
    178     ssp.data_bits = data_bits;
    179     ssp.stop_bits = stop_bits;
    180     s->char_transmit_time =  (NANOSECONDS_PER_SECOND / speed) * frame_size;
    181     qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
    182     trace_serial_update_parameters(speed, parity, data_bits, stop_bits);
    183 }
    184 
    185 static void serial_update_msl(SerialState *s)
    186 {
    187     uint8_t omsr;
    188     int flags;
    189 
    190     timer_del(s->modem_status_poll);
    191 
    192     if (qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_GET_TIOCM,
    193                           &flags) == -ENOTSUP) {
    194         s->poll_msl = -1;
    195         return;
    196     }
    197 
    198     omsr = s->msr;
    199 
    200     s->msr = (flags & CHR_TIOCM_CTS) ? s->msr | UART_MSR_CTS : s->msr & ~UART_MSR_CTS;
    201     s->msr = (flags & CHR_TIOCM_DSR) ? s->msr | UART_MSR_DSR : s->msr & ~UART_MSR_DSR;
    202     s->msr = (flags & CHR_TIOCM_CAR) ? s->msr | UART_MSR_DCD : s->msr & ~UART_MSR_DCD;
    203     s->msr = (flags & CHR_TIOCM_RI) ? s->msr | UART_MSR_RI : s->msr & ~UART_MSR_RI;
    204 
    205     if (s->msr != omsr) {
    206          /* Set delta bits */
    207          s->msr = s->msr | ((s->msr >> 4) ^ (omsr >> 4));
    208          /* UART_MSR_TERI only if change was from 1 -> 0 */
    209          if ((s->msr & UART_MSR_TERI) && !(omsr & UART_MSR_RI))
    210              s->msr &= ~UART_MSR_TERI;
    211          serial_update_irq(s);
    212     }
    213 
    214     /* The real 16550A apparently has a 250ns response latency to line status changes.
    215        We'll be lazy and poll only every 10ms, and only poll it at all if MSI interrupts are turned on */
    216 
    217     if (s->poll_msl) {
    218         timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
    219                   NANOSECONDS_PER_SECOND / 100);
    220     }
    221 }
    222 
    223 static gboolean serial_watch_cb(void *do_not_use, GIOCondition cond,
    224                                 void *opaque)
    225 {
    226     SerialState *s = opaque;
    227     s->watch_tag = 0;
    228     serial_xmit(s);
    229     return FALSE;
    230 }
    231 
    232 static void serial_xmit(SerialState *s)
    233 {
    234     do {
    235         assert(!(s->lsr & UART_LSR_TEMT));
    236         if (s->tsr_retry == 0) {
    237             assert(!(s->lsr & UART_LSR_THRE));
    238 
    239             if (s->fcr & UART_FCR_FE) {
    240                 assert(!fifo8_is_empty(&s->xmit_fifo));
    241                 s->tsr = fifo8_pop(&s->xmit_fifo);
    242                 if (!s->xmit_fifo.num) {
    243                     s->lsr |= UART_LSR_THRE;
    244                 }
    245             } else {
    246                 s->tsr = s->thr;
    247                 s->lsr |= UART_LSR_THRE;
    248             }
    249             if ((s->lsr & UART_LSR_THRE) && !s->thr_ipending) {
    250                 s->thr_ipending = 1;
    251                 serial_update_irq(s);
    252             }
    253         }
    254 
    255         if (s->mcr & UART_MCR_LOOP) {
    256             /* in loopback mode, say that we just received a char */
    257             serial_receive1(s, &s->tsr, 1);
    258         } else {
    259             int rc = qemu_chr_fe_write(&s->chr, &s->tsr, 1);
    260 
    261             if ((rc == 0 ||
    262                  (rc == -1 && errno == EAGAIN)) &&
    263                 s->tsr_retry < MAX_XMIT_RETRY) {
    264                 assert(s->watch_tag == 0);
    265                 s->watch_tag =
    266                     qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
    267                                           serial_watch_cb, s);
    268                 if (s->watch_tag > 0) {
    269                     s->tsr_retry++;
    270                     return;
    271                 }
    272             }
    273         }
    274         s->tsr_retry = 0;
    275 
    276         /* Transmit another byte if it is already available. It is only
    277            possible when FIFO is enabled and not empty. */
    278     } while (!(s->lsr & UART_LSR_THRE));
    279 
    280     s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    281     s->lsr |= UART_LSR_TEMT;
    282 }
    283 
    284 /* Setter for FCR.
    285    is_load flag means, that value is set while loading VM state
    286    and interrupt should not be invoked */
    287 static void serial_write_fcr(SerialState *s, uint8_t val)
    288 {
    289     /* Set fcr - val only has the bits that are supposed to "stick" */
    290     s->fcr = val;
    291 
    292     if (val & UART_FCR_FE) {
    293         s->iir |= UART_IIR_FE;
    294         /* Set recv_fifo trigger Level */
    295         switch (val & 0xC0) {
    296         case UART_FCR_ITL_1:
    297             s->recv_fifo_itl = 1;
    298             break;
    299         case UART_FCR_ITL_2:
    300             s->recv_fifo_itl = 4;
    301             break;
    302         case UART_FCR_ITL_3:
    303             s->recv_fifo_itl = 8;
    304             break;
    305         case UART_FCR_ITL_4:
    306             s->recv_fifo_itl = 14;
    307             break;
    308         }
    309     } else {
    310         s->iir &= ~UART_IIR_FE;
    311     }
    312 }
    313 
    314 static void serial_update_tiocm(SerialState *s)
    315 {
    316     int flags;
    317 
    318     qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_GET_TIOCM, &flags);
    319 
    320     flags &= ~(CHR_TIOCM_RTS | CHR_TIOCM_DTR);
    321 
    322     if (s->mcr & UART_MCR_RTS) {
    323         flags |= CHR_TIOCM_RTS;
    324     }
    325     if (s->mcr & UART_MCR_DTR) {
    326         flags |= CHR_TIOCM_DTR;
    327     }
    328 
    329     qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_TIOCM, &flags);
    330 }
    331 
    332 static void serial_ioport_write(void *opaque, hwaddr addr, uint64_t val,
    333                                 unsigned size)
    334 {
    335     SerialState *s = opaque;
    336 
    337     assert(size == 1 && addr < 8);
    338     trace_serial_write(addr, val);
    339     switch(addr) {
    340     default:
    341     case 0:
    342         if (s->lcr & UART_LCR_DLAB) {
    343             s->divider = deposit32(s->divider, 8 * addr, 8, val);
    344             serial_update_parameters(s);
    345         } else {
    346             s->thr = (uint8_t) val;
    347             if(s->fcr & UART_FCR_FE) {
    348                 /* xmit overruns overwrite data, so make space if needed */
    349                 if (fifo8_is_full(&s->xmit_fifo)) {
    350                     fifo8_pop(&s->xmit_fifo);
    351                 }
    352                 fifo8_push(&s->xmit_fifo, s->thr);
    353             }
    354             s->thr_ipending = 0;
    355             s->lsr &= ~UART_LSR_THRE;
    356             s->lsr &= ~UART_LSR_TEMT;
    357             serial_update_irq(s);
    358             if (s->tsr_retry == 0) {
    359                 serial_xmit(s);
    360             }
    361         }
    362         break;
    363     case 1:
    364         if (s->lcr & UART_LCR_DLAB) {
    365             s->divider = deposit32(s->divider, 8 * addr, 8, val);
    366             serial_update_parameters(s);
    367         } else {
    368             uint8_t changed = (s->ier ^ val) & 0x0f;
    369             s->ier = val & 0x0f;
    370             /* If the backend device is a real serial port, turn polling of the modem
    371              * status lines on physical port on or off depending on UART_IER_MSI state.
    372              */
    373             if ((changed & UART_IER_MSI) && s->poll_msl >= 0) {
    374                 if (s->ier & UART_IER_MSI) {
    375                      s->poll_msl = 1;
    376                      serial_update_msl(s);
    377                 } else {
    378                      timer_del(s->modem_status_poll);
    379                      s->poll_msl = 0;
    380                 }
    381             }
    382 
    383             /* Turning on the THRE interrupt on IER can trigger the interrupt
    384              * if LSR.THRE=1, even if it had been masked before by reading IIR.
    385              * This is not in the datasheet, but Windows relies on it.  It is
    386              * unclear if THRE has to be resampled every time THRI becomes
    387              * 1, or only on the rising edge.  Bochs does the latter, and Windows
    388              * always toggles IER to all zeroes and back to all ones, so do the
    389              * same.
    390              *
    391              * If IER.THRI is zero, thr_ipending is not used.  Set it to zero
    392              * so that the thr_ipending subsection is not migrated.
    393              */
    394             if (changed & UART_IER_THRI) {
    395                 if ((s->ier & UART_IER_THRI) && (s->lsr & UART_LSR_THRE)) {
    396                     s->thr_ipending = 1;
    397                 } else {
    398                     s->thr_ipending = 0;
    399                 }
    400             }
    401 
    402             if (changed) {
    403                 serial_update_irq(s);
    404             }
    405         }
    406         break;
    407     case 2:
    408         /* Did the enable/disable flag change? If so, make sure FIFOs get flushed */
    409         if ((val ^ s->fcr) & UART_FCR_FE) {
    410             val |= UART_FCR_XFR | UART_FCR_RFR;
    411         }
    412 
    413         /* FIFO clear */
    414 
    415         if (val & UART_FCR_RFR) {
    416             s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
    417             timer_del(s->fifo_timeout_timer);
    418             s->timeout_ipending = 0;
    419             fifo8_reset(&s->recv_fifo);
    420         }
    421 
    422         if (val & UART_FCR_XFR) {
    423             s->lsr |= UART_LSR_THRE;
    424             s->thr_ipending = 1;
    425             fifo8_reset(&s->xmit_fifo);
    426         }
    427 
    428         serial_write_fcr(s, val & 0xC9);
    429         serial_update_irq(s);
    430         break;
    431     case 3:
    432         {
    433             int break_enable;
    434             s->lcr = val;
    435             serial_update_parameters(s);
    436             break_enable = (val >> 6) & 1;
    437             if (break_enable != s->last_break_enable) {
    438                 s->last_break_enable = break_enable;
    439                 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
    440                                   &break_enable);
    441             }
    442         }
    443         break;
    444     case 4:
    445         {
    446             int old_mcr = s->mcr;
    447             s->mcr = val & 0x1f;
    448             if (val & UART_MCR_LOOP)
    449                 break;
    450 
    451             if (s->poll_msl >= 0 && old_mcr != s->mcr) {
    452                 serial_update_tiocm(s);
    453                 /* Update the modem status after a one-character-send wait-time, since there may be a response
    454                    from the device/computer at the other end of the serial line */
    455                 timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time);
    456             }
    457         }
    458         break;
    459     case 5:
    460         break;
    461     case 6:
    462         break;
    463     case 7:
    464         s->scr = val;
    465         break;
    466     }
    467 }
    468 
    469 static uint64_t serial_ioport_read(void *opaque, hwaddr addr, unsigned size)
    470 {
    471     SerialState *s = opaque;
    472     uint32_t ret;
    473 
    474     assert(size == 1 && addr < 8);
    475     switch(addr) {
    476     default:
    477     case 0:
    478         if (s->lcr & UART_LCR_DLAB) {
    479             ret = extract16(s->divider, 8 * addr, 8);
    480         } else {
    481             if(s->fcr & UART_FCR_FE) {
    482                 ret = fifo8_is_empty(&s->recv_fifo) ?
    483                             0 : fifo8_pop(&s->recv_fifo);
    484                 if (s->recv_fifo.num == 0) {
    485                     s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
    486                 } else {
    487                     timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4);
    488                 }
    489                 s->timeout_ipending = 0;
    490             } else {
    491                 ret = s->rbr;
    492                 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
    493             }
    494             serial_update_irq(s);
    495             if (!(s->mcr & UART_MCR_LOOP)) {
    496                 /* in loopback mode, don't receive any data */
    497                 qemu_chr_fe_accept_input(&s->chr);
    498             }
    499         }
    500         break;
    501     case 1:
    502         if (s->lcr & UART_LCR_DLAB) {
    503             ret = extract16(s->divider, 8 * addr, 8);
    504         } else {
    505             ret = s->ier;
    506         }
    507         break;
    508     case 2:
    509         ret = s->iir;
    510         if ((ret & UART_IIR_ID) == UART_IIR_THRI) {
    511             s->thr_ipending = 0;
    512             serial_update_irq(s);
    513         }
    514         break;
    515     case 3:
    516         ret = s->lcr;
    517         break;
    518     case 4:
    519         ret = s->mcr;
    520         break;
    521     case 5:
    522         ret = s->lsr;
    523         /* Clear break and overrun interrupts */
    524         if (s->lsr & (UART_LSR_BI|UART_LSR_OE)) {
    525             s->lsr &= ~(UART_LSR_BI|UART_LSR_OE);
    526             serial_update_irq(s);
    527         }
    528         break;
    529     case 6:
    530         if (s->mcr & UART_MCR_LOOP) {
    531             /* in loopback, the modem output pins are connected to the
    532                inputs */
    533             ret = (s->mcr & 0x0c) << 4;
    534             ret |= (s->mcr & 0x02) << 3;
    535             ret |= (s->mcr & 0x01) << 5;
    536         } else {
    537             if (s->poll_msl >= 0)
    538                 serial_update_msl(s);
    539             ret = s->msr;
    540             /* Clear delta bits & msr int after read, if they were set */
    541             if (s->msr & UART_MSR_ANY_DELTA) {
    542                 s->msr &= 0xF0;
    543                 serial_update_irq(s);
    544             }
    545         }
    546         break;
    547     case 7:
    548         ret = s->scr;
    549         break;
    550     }
    551     trace_serial_read(addr, ret);
    552     return ret;
    553 }
    554 
    555 static int serial_can_receive(SerialState *s)
    556 {
    557     if(s->fcr & UART_FCR_FE) {
    558         if (s->recv_fifo.num < UART_FIFO_LENGTH) {
    559             /*
    560              * Advertise (fifo.itl - fifo.count) bytes when count < ITL, and 1
    561              * if above. If UART_FIFO_LENGTH - fifo.count is advertised the
    562              * effect will be to almost always fill the fifo completely before
    563              * the guest has a chance to respond, effectively overriding the ITL
    564              * that the guest has set.
    565              */
    566             return (s->recv_fifo.num <= s->recv_fifo_itl) ?
    567                         s->recv_fifo_itl - s->recv_fifo.num : 1;
    568         } else {
    569             return 0;
    570         }
    571     } else {
    572         return !(s->lsr & UART_LSR_DR);
    573     }
    574 }
    575 
    576 static void serial_receive_break(SerialState *s)
    577 {
    578     s->rbr = 0;
    579     /* When the LSR_DR is set a null byte is pushed into the fifo */
    580     recv_fifo_put(s, '\0');
    581     s->lsr |= UART_LSR_BI | UART_LSR_DR;
    582     serial_update_irq(s);
    583 }
    584 
    585 /* There's data in recv_fifo and s->rbr has not been read for 4 char transmit times */
    586 static void fifo_timeout_int (void *opaque) {
    587     SerialState *s = opaque;
    588     if (s->recv_fifo.num) {
    589         s->timeout_ipending = 1;
    590         serial_update_irq(s);
    591     }
    592 }
    593 
    594 static int serial_can_receive1(void *opaque)
    595 {
    596     SerialState *s = opaque;
    597     return serial_can_receive(s);
    598 }
    599 
    600 static void serial_receive1(void *opaque, const uint8_t *buf, int size)
    601 {
    602     SerialState *s = opaque;
    603 
    604     if (s->wakeup) {
    605         qemu_system_wakeup_request(QEMU_WAKEUP_REASON_OTHER, NULL);
    606     }
    607     if(s->fcr & UART_FCR_FE) {
    608         int i;
    609         for (i = 0; i < size; i++) {
    610             recv_fifo_put(s, buf[i]);
    611         }
    612         s->lsr |= UART_LSR_DR;
    613         /* call the timeout receive callback in 4 char transmit time */
    614         timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4);
    615     } else {
    616         if (s->lsr & UART_LSR_DR)
    617             s->lsr |= UART_LSR_OE;
    618         s->rbr = buf[0];
    619         s->lsr |= UART_LSR_DR;
    620     }
    621     serial_update_irq(s);
    622 }
    623 
    624 static void serial_event(void *opaque, QEMUChrEvent event)
    625 {
    626     SerialState *s = opaque;
    627     if (event == CHR_EVENT_BREAK)
    628         serial_receive_break(s);
    629 }
    630 
    631 static int serial_pre_save(void *opaque)
    632 {
    633     SerialState *s = opaque;
    634     s->fcr_vmstate = s->fcr;
    635 
    636     return 0;
    637 }
    638 
    639 static int serial_pre_load(void *opaque)
    640 {
    641     SerialState *s = opaque;
    642     s->thr_ipending = -1;
    643     s->poll_msl = -1;
    644     return 0;
    645 }
    646 
    647 static int serial_post_load(void *opaque, int version_id)
    648 {
    649     SerialState *s = opaque;
    650 
    651     if (version_id < 3) {
    652         s->fcr_vmstate = 0;
    653     }
    654     if (s->thr_ipending == -1) {
    655         s->thr_ipending = ((s->iir & UART_IIR_ID) == UART_IIR_THRI);
    656     }
    657 
    658     if (s->tsr_retry > 0) {
    659         /* tsr_retry > 0 implies LSR.TEMT = 0 (transmitter not empty).  */
    660         if (s->lsr & UART_LSR_TEMT) {
    661             error_report("inconsistent state in serial device "
    662                          "(tsr empty, tsr_retry=%d", s->tsr_retry);
    663             return -1;
    664         }
    665 
    666         if (s->tsr_retry > MAX_XMIT_RETRY) {
    667             s->tsr_retry = MAX_XMIT_RETRY;
    668         }
    669 
    670         assert(s->watch_tag == 0);
    671         s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
    672                                              serial_watch_cb, s);
    673     } else {
    674         /* tsr_retry == 0 implies LSR.TEMT = 1 (transmitter empty).  */
    675         if (!(s->lsr & UART_LSR_TEMT)) {
    676             error_report("inconsistent state in serial device "
    677                          "(tsr not empty, tsr_retry=0");
    678             return -1;
    679         }
    680     }
    681 
    682     s->last_break_enable = (s->lcr >> 6) & 1;
    683     /* Initialize fcr via setter to perform essential side-effects */
    684     serial_write_fcr(s, s->fcr_vmstate);
    685     serial_update_parameters(s);
    686     return 0;
    687 }
    688 
    689 static bool serial_thr_ipending_needed(void *opaque)
    690 {
    691     SerialState *s = opaque;
    692 
    693     if (s->ier & UART_IER_THRI) {
    694         bool expected_value = ((s->iir & UART_IIR_ID) == UART_IIR_THRI);
    695         return s->thr_ipending != expected_value;
    696     } else {
    697         /* LSR.THRE will be sampled again when the interrupt is
    698          * enabled.  thr_ipending is not used in this case, do
    699          * not migrate it.
    700          */
    701         return false;
    702     }
    703 }
    704 
    705 static const VMStateDescription vmstate_serial_thr_ipending = {
    706     .name = "serial/thr_ipending",
    707     .version_id = 1,
    708     .minimum_version_id = 1,
    709     .needed = serial_thr_ipending_needed,
    710     .fields = (VMStateField[]) {
    711         VMSTATE_INT32(thr_ipending, SerialState),
    712         VMSTATE_END_OF_LIST()
    713     }
    714 };
    715 
    716 static bool serial_tsr_needed(void *opaque)
    717 {
    718     SerialState *s = (SerialState *)opaque;
    719     return s->tsr_retry != 0;
    720 }
    721 
    722 static const VMStateDescription vmstate_serial_tsr = {
    723     .name = "serial/tsr",
    724     .version_id = 1,
    725     .minimum_version_id = 1,
    726     .needed = serial_tsr_needed,
    727     .fields = (VMStateField[]) {
    728         VMSTATE_UINT32(tsr_retry, SerialState),
    729         VMSTATE_UINT8(thr, SerialState),
    730         VMSTATE_UINT8(tsr, SerialState),
    731         VMSTATE_END_OF_LIST()
    732     }
    733 };
    734 
    735 static bool serial_recv_fifo_needed(void *opaque)
    736 {
    737     SerialState *s = (SerialState *)opaque;
    738     return !fifo8_is_empty(&s->recv_fifo);
    739 
    740 }
    741 
    742 static const VMStateDescription vmstate_serial_recv_fifo = {
    743     .name = "serial/recv_fifo",
    744     .version_id = 1,
    745     .minimum_version_id = 1,
    746     .needed = serial_recv_fifo_needed,
    747     .fields = (VMStateField[]) {
    748         VMSTATE_STRUCT(recv_fifo, SerialState, 1, vmstate_fifo8, Fifo8),
    749         VMSTATE_END_OF_LIST()
    750     }
    751 };
    752 
    753 static bool serial_xmit_fifo_needed(void *opaque)
    754 {
    755     SerialState *s = (SerialState *)opaque;
    756     return !fifo8_is_empty(&s->xmit_fifo);
    757 }
    758 
    759 static const VMStateDescription vmstate_serial_xmit_fifo = {
    760     .name = "serial/xmit_fifo",
    761     .version_id = 1,
    762     .minimum_version_id = 1,
    763     .needed = serial_xmit_fifo_needed,
    764     .fields = (VMStateField[]) {
    765         VMSTATE_STRUCT(xmit_fifo, SerialState, 1, vmstate_fifo8, Fifo8),
    766         VMSTATE_END_OF_LIST()
    767     }
    768 };
    769 
    770 static bool serial_fifo_timeout_timer_needed(void *opaque)
    771 {
    772     SerialState *s = (SerialState *)opaque;
    773     return timer_pending(s->fifo_timeout_timer);
    774 }
    775 
    776 static const VMStateDescription vmstate_serial_fifo_timeout_timer = {
    777     .name = "serial/fifo_timeout_timer",
    778     .version_id = 1,
    779     .minimum_version_id = 1,
    780     .needed = serial_fifo_timeout_timer_needed,
    781     .fields = (VMStateField[]) {
    782         VMSTATE_TIMER_PTR(fifo_timeout_timer, SerialState),
    783         VMSTATE_END_OF_LIST()
    784     }
    785 };
    786 
    787 static bool serial_timeout_ipending_needed(void *opaque)
    788 {
    789     SerialState *s = (SerialState *)opaque;
    790     return s->timeout_ipending != 0;
    791 }
    792 
    793 static const VMStateDescription vmstate_serial_timeout_ipending = {
    794     .name = "serial/timeout_ipending",
    795     .version_id = 1,
    796     .minimum_version_id = 1,
    797     .needed = serial_timeout_ipending_needed,
    798     .fields = (VMStateField[]) {
    799         VMSTATE_INT32(timeout_ipending, SerialState),
    800         VMSTATE_END_OF_LIST()
    801     }
    802 };
    803 
    804 static bool serial_poll_needed(void *opaque)
    805 {
    806     SerialState *s = (SerialState *)opaque;
    807     return s->poll_msl >= 0;
    808 }
    809 
    810 static const VMStateDescription vmstate_serial_poll = {
    811     .name = "serial/poll",
    812     .version_id = 1,
    813     .needed = serial_poll_needed,
    814     .minimum_version_id = 1,
    815     .fields = (VMStateField[]) {
    816         VMSTATE_INT32(poll_msl, SerialState),
    817         VMSTATE_TIMER_PTR(modem_status_poll, SerialState),
    818         VMSTATE_END_OF_LIST()
    819     }
    820 };
    821 
    822 const VMStateDescription vmstate_serial = {
    823     .name = "serial",
    824     .version_id = 3,
    825     .minimum_version_id = 2,
    826     .pre_save = serial_pre_save,
    827     .pre_load = serial_pre_load,
    828     .post_load = serial_post_load,
    829     .fields = (VMStateField[]) {
    830         VMSTATE_UINT16_V(divider, SerialState, 2),
    831         VMSTATE_UINT8(rbr, SerialState),
    832         VMSTATE_UINT8(ier, SerialState),
    833         VMSTATE_UINT8(iir, SerialState),
    834         VMSTATE_UINT8(lcr, SerialState),
    835         VMSTATE_UINT8(mcr, SerialState),
    836         VMSTATE_UINT8(lsr, SerialState),
    837         VMSTATE_UINT8(msr, SerialState),
    838         VMSTATE_UINT8(scr, SerialState),
    839         VMSTATE_UINT8_V(fcr_vmstate, SerialState, 3),
    840         VMSTATE_END_OF_LIST()
    841     },
    842     .subsections = (const VMStateDescription*[]) {
    843         &vmstate_serial_thr_ipending,
    844         &vmstate_serial_tsr,
    845         &vmstate_serial_recv_fifo,
    846         &vmstate_serial_xmit_fifo,
    847         &vmstate_serial_fifo_timeout_timer,
    848         &vmstate_serial_timeout_ipending,
    849         &vmstate_serial_poll,
    850         NULL
    851     }
    852 };
    853 
    854 static void serial_reset(void *opaque)
    855 {
    856     SerialState *s = opaque;
    857 
    858     if (s->watch_tag > 0) {
    859         g_source_remove(s->watch_tag);
    860         s->watch_tag = 0;
    861     }
    862 
    863     s->rbr = 0;
    864     s->ier = 0;
    865     s->iir = UART_IIR_NO_INT;
    866     s->lcr = 0;
    867     s->lsr = UART_LSR_TEMT | UART_LSR_THRE;
    868     s->msr = UART_MSR_DCD | UART_MSR_DSR | UART_MSR_CTS;
    869     /* Default to 9600 baud, 1 start bit, 8 data bits, 1 stop bit, no parity. */
    870     s->divider = 0x0C;
    871     s->mcr = UART_MCR_OUT2;
    872     s->scr = 0;
    873     s->tsr_retry = 0;
    874     s->char_transmit_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
    875     s->poll_msl = 0;
    876 
    877     s->timeout_ipending = 0;
    878     timer_del(s->fifo_timeout_timer);
    879     timer_del(s->modem_status_poll);
    880 
    881     fifo8_reset(&s->recv_fifo);
    882     fifo8_reset(&s->xmit_fifo);
    883 
    884     s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    885 
    886     s->thr_ipending = 0;
    887     s->last_break_enable = 0;
    888     qemu_irq_lower(s->irq);
    889 
    890     serial_update_msl(s);
    891     s->msr &= ~UART_MSR_ANY_DELTA;
    892 }
    893 
    894 static int serial_be_change(void *opaque)
    895 {
    896     SerialState *s = opaque;
    897 
    898     qemu_chr_fe_set_handlers(&s->chr, serial_can_receive1, serial_receive1,
    899                              serial_event, serial_be_change, s, NULL, true);
    900 
    901     serial_update_parameters(s);
    902 
    903     qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
    904                       &s->last_break_enable);
    905 
    906     s->poll_msl = (s->ier & UART_IER_MSI) ? 1 : 0;
    907     serial_update_msl(s);
    908 
    909     if (s->poll_msl >= 0 && !(s->mcr & UART_MCR_LOOP)) {
    910         serial_update_tiocm(s);
    911     }
    912 
    913     if (s->watch_tag > 0) {
    914         g_source_remove(s->watch_tag);
    915         s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
    916                                              serial_watch_cb, s);
    917     }
    918 
    919     return 0;
    920 }
    921 
    922 static void serial_realize(DeviceState *dev, Error **errp)
    923 {
    924     SerialState *s = SERIAL(dev);
    925 
    926     s->modem_status_poll = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) serial_update_msl, s);
    927 
    928     s->fifo_timeout_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) fifo_timeout_int, s);
    929     qemu_register_reset(serial_reset, s);
    930 
    931     qemu_chr_fe_set_handlers(&s->chr, serial_can_receive1, serial_receive1,
    932                              serial_event, serial_be_change, s, NULL, true);
    933     fifo8_create(&s->recv_fifo, UART_FIFO_LENGTH);
    934     fifo8_create(&s->xmit_fifo, UART_FIFO_LENGTH);
    935     serial_reset(s);
    936 }
    937 
    938 static void serial_unrealize(DeviceState *dev)
    939 {
    940     SerialState *s = SERIAL(dev);
    941 
    942     qemu_chr_fe_deinit(&s->chr, false);
    943 
    944     timer_free(s->modem_status_poll);
    945 
    946     timer_free(s->fifo_timeout_timer);
    947 
    948     fifo8_destroy(&s->recv_fifo);
    949     fifo8_destroy(&s->xmit_fifo);
    950 
    951     qemu_unregister_reset(serial_reset, s);
    952 }
    953 
    954 /* Change the main reference oscillator frequency. */
    955 void serial_set_frequency(SerialState *s, uint32_t frequency)
    956 {
    957     s->baudbase = frequency;
    958     serial_update_parameters(s);
    959 }
    960 
    961 const MemoryRegionOps serial_io_ops = {
    962     .read = serial_ioport_read,
    963     .write = serial_ioport_write,
    964     .valid = {
    965         .unaligned = 1,
    966     },
    967     .impl = {
    968         .min_access_size = 1,
    969         .max_access_size = 1,
    970     },
    971     .endianness = DEVICE_LITTLE_ENDIAN,
    972 };
    973 
    974 static Property serial_properties[] = {
    975     DEFINE_PROP_CHR("chardev", SerialState, chr),
    976     DEFINE_PROP_UINT32("baudbase", SerialState, baudbase, 115200),
    977     DEFINE_PROP_BOOL("wakeup", SerialState, wakeup, false),
    978     DEFINE_PROP_END_OF_LIST(),
    979 };
    980 
    981 static void serial_class_init(ObjectClass *klass, void* data)
    982 {
    983     DeviceClass *dc = DEVICE_CLASS(klass);
    984 
    985     /* internal device for serialio/serialmm, not user-creatable */
    986     dc->user_creatable = false;
    987     dc->realize = serial_realize;
    988     dc->unrealize = serial_unrealize;
    989     device_class_set_props(dc, serial_properties);
    990 }
    991 
    992 static const TypeInfo serial_info = {
    993     .name = TYPE_SERIAL,
    994     .parent = TYPE_DEVICE,
    995     .instance_size = sizeof(SerialState),
    996     .class_init = serial_class_init,
    997 };
    998 
    999 /* Memory mapped interface */
   1000 static uint64_t serial_mm_read(void *opaque, hwaddr addr,
   1001                                unsigned size)
   1002 {
   1003     SerialMM *s = SERIAL_MM(opaque);
   1004     return serial_ioport_read(&s->serial, addr >> s->regshift, 1);
   1005 }
   1006 
   1007 static void serial_mm_write(void *opaque, hwaddr addr,
   1008                             uint64_t value, unsigned size)
   1009 {
   1010     SerialMM *s = SERIAL_MM(opaque);
   1011     value &= 255;
   1012     serial_ioport_write(&s->serial, addr >> s->regshift, value, 1);
   1013 }
   1014 
   1015 static const MemoryRegionOps serial_mm_ops[3] = {
   1016     [DEVICE_NATIVE_ENDIAN] = {
   1017         .read = serial_mm_read,
   1018         .write = serial_mm_write,
   1019         .endianness = DEVICE_NATIVE_ENDIAN,
   1020         .valid.max_access_size = 8,
   1021         .impl.max_access_size = 8,
   1022     },
   1023     [DEVICE_LITTLE_ENDIAN] = {
   1024         .read = serial_mm_read,
   1025         .write = serial_mm_write,
   1026         .endianness = DEVICE_LITTLE_ENDIAN,
   1027         .valid.max_access_size = 8,
   1028         .impl.max_access_size = 8,
   1029     },
   1030     [DEVICE_BIG_ENDIAN] = {
   1031         .read = serial_mm_read,
   1032         .write = serial_mm_write,
   1033         .endianness = DEVICE_BIG_ENDIAN,
   1034         .valid.max_access_size = 8,
   1035         .impl.max_access_size = 8,
   1036     },
   1037 };
   1038 
   1039 static void serial_mm_realize(DeviceState *dev, Error **errp)
   1040 {
   1041     SerialMM *smm = SERIAL_MM(dev);
   1042     SerialState *s = &smm->serial;
   1043 
   1044     if (!qdev_realize(DEVICE(s), NULL, errp)) {
   1045         return;
   1046     }
   1047 
   1048     memory_region_init_io(&s->io, OBJECT(dev),
   1049                           &serial_mm_ops[smm->endianness], smm, "serial",
   1050                           8 << smm->regshift);
   1051     sysbus_init_mmio(SYS_BUS_DEVICE(smm), &s->io);
   1052     sysbus_init_irq(SYS_BUS_DEVICE(smm), &smm->serial.irq);
   1053 }
   1054 
   1055 static const VMStateDescription vmstate_serial_mm = {
   1056     .name = "serial",
   1057     .version_id = 3,
   1058     .minimum_version_id = 2,
   1059     .fields = (VMStateField[]) {
   1060         VMSTATE_STRUCT(serial, SerialMM, 0, vmstate_serial, SerialState),
   1061         VMSTATE_END_OF_LIST()
   1062     }
   1063 };
   1064 
   1065 SerialMM *serial_mm_init(MemoryRegion *address_space,
   1066                          hwaddr base, int regshift,
   1067                          qemu_irq irq, int baudbase,
   1068                          Chardev *chr, enum device_endian end)
   1069 {
   1070     SerialMM *smm = SERIAL_MM(qdev_new(TYPE_SERIAL_MM));
   1071     MemoryRegion *mr;
   1072 
   1073     qdev_prop_set_uint8(DEVICE(smm), "regshift", regshift);
   1074     qdev_prop_set_uint32(DEVICE(smm), "baudbase", baudbase);
   1075     qdev_prop_set_chr(DEVICE(smm), "chardev", chr);
   1076     qdev_set_legacy_instance_id(DEVICE(smm), base, 2);
   1077     qdev_prop_set_uint8(DEVICE(smm), "endianness", end);
   1078     sysbus_realize_and_unref(SYS_BUS_DEVICE(smm), &error_fatal);
   1079 
   1080     sysbus_connect_irq(SYS_BUS_DEVICE(smm), 0, irq);
   1081     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(smm), 0);
   1082     memory_region_add_subregion(address_space, base, mr);
   1083 
   1084     return smm;
   1085 }
   1086 
   1087 static void serial_mm_instance_init(Object *o)
   1088 {
   1089     SerialMM *smm = SERIAL_MM(o);
   1090 
   1091     object_initialize_child(o, "serial", &smm->serial, TYPE_SERIAL);
   1092 
   1093     qdev_alias_all_properties(DEVICE(&smm->serial), o);
   1094 }
   1095 
   1096 static Property serial_mm_properties[] = {
   1097     /*
   1098      * Set the spacing between adjacent memory-mapped UART registers.
   1099      * Each register will be at (1 << regshift) bytes after the
   1100      * previous one.
   1101      */
   1102     DEFINE_PROP_UINT8("regshift", SerialMM, regshift, 0),
   1103     DEFINE_PROP_UINT8("endianness", SerialMM, endianness, DEVICE_NATIVE_ENDIAN),
   1104     DEFINE_PROP_END_OF_LIST(),
   1105 };
   1106 
   1107 static void serial_mm_class_init(ObjectClass *oc, void *data)
   1108 {
   1109     DeviceClass *dc = DEVICE_CLASS(oc);
   1110 
   1111     device_class_set_props(dc, serial_mm_properties);
   1112     dc->realize = serial_mm_realize;
   1113     dc->vmsd = &vmstate_serial_mm;
   1114 }
   1115 
   1116 static const TypeInfo serial_mm_info = {
   1117     .name = TYPE_SERIAL_MM,
   1118     .parent = TYPE_SYS_BUS_DEVICE,
   1119     .class_init = serial_mm_class_init,
   1120     .instance_init = serial_mm_instance_init,
   1121     .instance_size = sizeof(SerialMM),
   1122 };
   1123 
   1124 static void serial_register_types(void)
   1125 {
   1126     type_register_static(&serial_info);
   1127     type_register_static(&serial_mm_info);
   1128 }
   1129 
   1130 type_init(serial_register_types)