qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

ibex_uart.c (17150B)


      1 /*
      2  * QEMU lowRISC Ibex UART device
      3  *
      4  * Copyright (c) 2020 Western Digital
      5  *
      6  * For details check the documentation here:
      7  *    https://docs.opentitan.org/hw/ip/uart/doc/
      8  *
      9  * Permission is hereby granted, free of charge, to any person obtaining a copy
     10  * of this software and associated documentation files (the "Software"), to deal
     11  * in the Software without restriction, including without limitation the rights
     12  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     13  * copies of the Software, and to permit persons to whom the Software is
     14  * furnished to do so, subject to the following conditions:
     15  *
     16  * The above copyright notice and this permission notice shall be included in
     17  * all copies or substantial portions of the Software.
     18  *
     19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
     22  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     23  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     24  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     25  * THE SOFTWARE.
     26  */
     27 
     28 #include "qemu/osdep.h"
     29 #include "hw/char/ibex_uart.h"
     30 #include "hw/irq.h"
     31 #include "hw/qdev-clock.h"
     32 #include "hw/qdev-properties.h"
     33 #include "hw/qdev-properties-system.h"
     34 #include "migration/vmstate.h"
     35 #include "qemu/log.h"
     36 #include "qemu/module.h"
     37 
     38 REG32(INTR_STATE, 0x00)
     39     FIELD(INTR_STATE, TX_WATERMARK, 0, 1)
     40     FIELD(INTR_STATE, RX_WATERMARK, 1, 1)
     41     FIELD(INTR_STATE, TX_EMPTY, 2, 1)
     42     FIELD(INTR_STATE, RX_OVERFLOW, 3, 1)
     43 REG32(INTR_ENABLE, 0x04)
     44 REG32(INTR_TEST, 0x08)
     45 REG32(ALERT_TEST, 0x0C)
     46 REG32(CTRL, 0x10)
     47     FIELD(CTRL, TX_ENABLE, 0, 1)
     48     FIELD(CTRL, RX_ENABLE, 1, 1)
     49     FIELD(CTRL, NF, 2, 1)
     50     FIELD(CTRL, SLPBK, 4, 1)
     51     FIELD(CTRL, LLPBK, 5, 1)
     52     FIELD(CTRL, PARITY_EN, 6, 1)
     53     FIELD(CTRL, PARITY_ODD, 7, 1)
     54     FIELD(CTRL, RXBLVL, 8, 2)
     55     FIELD(CTRL, NCO, 16, 16)
     56 REG32(STATUS, 0x14)
     57     FIELD(STATUS, TXFULL, 0, 1)
     58     FIELD(STATUS, RXFULL, 1, 1)
     59     FIELD(STATUS, TXEMPTY, 2, 1)
     60     FIELD(STATUS, RXIDLE, 4, 1)
     61     FIELD(STATUS, RXEMPTY, 5, 1)
     62 REG32(RDATA, 0x18)
     63 REG32(WDATA, 0x1C)
     64 REG32(FIFO_CTRL, 0x20)
     65     FIELD(FIFO_CTRL, RXRST, 0, 1)
     66     FIELD(FIFO_CTRL, TXRST, 1, 1)
     67     FIELD(FIFO_CTRL, RXILVL, 2, 3)
     68     FIELD(FIFO_CTRL, TXILVL, 5, 2)
     69 REG32(FIFO_STATUS, 0x24)
     70     FIELD(FIFO_STATUS, TXLVL, 0, 5)
     71     FIELD(FIFO_STATUS, RXLVL, 16, 5)
     72 REG32(OVRD, 0x28)
     73 REG32(VAL, 0x2C)
     74 REG32(TIMEOUT_CTRL, 0x30)
     75 
     76 static void ibex_uart_update_irqs(IbexUartState *s)
     77 {
     78     if (s->uart_intr_state & s->uart_intr_enable & R_INTR_STATE_TX_WATERMARK_MASK) {
     79         qemu_set_irq(s->tx_watermark, 1);
     80     } else {
     81         qemu_set_irq(s->tx_watermark, 0);
     82     }
     83 
     84     if (s->uart_intr_state & s->uart_intr_enable & R_INTR_STATE_RX_WATERMARK_MASK) {
     85         qemu_set_irq(s->rx_watermark, 1);
     86     } else {
     87         qemu_set_irq(s->rx_watermark, 0);
     88     }
     89 
     90     if (s->uart_intr_state & s->uart_intr_enable & R_INTR_STATE_TX_EMPTY_MASK) {
     91         qemu_set_irq(s->tx_empty, 1);
     92     } else {
     93         qemu_set_irq(s->tx_empty, 0);
     94     }
     95 
     96     if (s->uart_intr_state & s->uart_intr_enable & R_INTR_STATE_RX_OVERFLOW_MASK) {
     97         qemu_set_irq(s->rx_overflow, 1);
     98     } else {
     99         qemu_set_irq(s->rx_overflow, 0);
    100     }
    101 }
    102 
    103 static int ibex_uart_can_receive(void *opaque)
    104 {
    105     IbexUartState *s = opaque;
    106 
    107     if ((s->uart_ctrl & R_CTRL_RX_ENABLE_MASK)
    108            && !(s->uart_status & R_STATUS_RXFULL_MASK)) {
    109         return 1;
    110     }
    111 
    112     return 0;
    113 }
    114 
    115 static void ibex_uart_receive(void *opaque, const uint8_t *buf, int size)
    116 {
    117     IbexUartState *s = opaque;
    118     uint8_t rx_fifo_level = (s->uart_fifo_ctrl & R_FIFO_CTRL_RXILVL_MASK)
    119                             >> R_FIFO_CTRL_RXILVL_SHIFT;
    120 
    121     s->uart_rdata = *buf;
    122 
    123     s->uart_status &= ~R_STATUS_RXIDLE_MASK;
    124     s->uart_status &= ~R_STATUS_RXEMPTY_MASK;
    125     /* The RXFULL is set after receiving a single byte
    126      * as the FIFO buffers are not yet implemented.
    127      */
    128     s->uart_status |= R_STATUS_RXFULL_MASK;
    129     s->rx_level += 1;
    130 
    131     if (size > rx_fifo_level) {
    132         s->uart_intr_state |= R_INTR_STATE_RX_WATERMARK_MASK;
    133     }
    134 
    135     ibex_uart_update_irqs(s);
    136 }
    137 
    138 static gboolean ibex_uart_xmit(void *do_not_use, GIOCondition cond,
    139                                void *opaque)
    140 {
    141     IbexUartState *s = opaque;
    142     uint8_t tx_fifo_level = (s->uart_fifo_ctrl & R_FIFO_CTRL_TXILVL_MASK)
    143                             >> R_FIFO_CTRL_TXILVL_SHIFT;
    144     int ret;
    145 
    146     /* instant drain the fifo when there's no back-end */
    147     if (!qemu_chr_fe_backend_connected(&s->chr)) {
    148         s->tx_level = 0;
    149         return FALSE;
    150     }
    151 
    152     if (!s->tx_level) {
    153         s->uart_status &= ~R_STATUS_TXFULL_MASK;
    154         s->uart_status |= R_STATUS_TXEMPTY_MASK;
    155         s->uart_intr_state |= R_INTR_STATE_TX_EMPTY_MASK;
    156         s->uart_intr_state &= ~R_INTR_STATE_TX_WATERMARK_MASK;
    157         ibex_uart_update_irqs(s);
    158         return FALSE;
    159     }
    160 
    161     ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_level);
    162 
    163     if (ret >= 0) {
    164         s->tx_level -= ret;
    165         memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_level);
    166     }
    167 
    168     if (s->tx_level) {
    169         guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
    170                                         ibex_uart_xmit, s);
    171         if (!r) {
    172             s->tx_level = 0;
    173             return FALSE;
    174         }
    175     }
    176 
    177     /* Clear the TX Full bit */
    178     if (s->tx_level != IBEX_UART_TX_FIFO_SIZE) {
    179         s->uart_status &= ~R_STATUS_TXFULL_MASK;
    180     }
    181 
    182     /* Disable the TX_WATERMARK IRQ */
    183     if (s->tx_level < tx_fifo_level) {
    184         s->uart_intr_state &= ~R_INTR_STATE_TX_WATERMARK_MASK;
    185     }
    186 
    187     /* Set TX empty */
    188     if (s->tx_level == 0) {
    189         s->uart_status |= R_STATUS_TXEMPTY_MASK;
    190         s->uart_intr_state |= R_INTR_STATE_TX_EMPTY_MASK;
    191     }
    192 
    193     ibex_uart_update_irqs(s);
    194     return FALSE;
    195 }
    196 
    197 static void uart_write_tx_fifo(IbexUartState *s, const uint8_t *buf,
    198                                int size)
    199 {
    200     uint64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    201     uint8_t tx_fifo_level = (s->uart_fifo_ctrl & R_FIFO_CTRL_TXILVL_MASK)
    202                             >> R_FIFO_CTRL_TXILVL_SHIFT;
    203 
    204     if (size > IBEX_UART_TX_FIFO_SIZE - s->tx_level) {
    205         size = IBEX_UART_TX_FIFO_SIZE - s->tx_level;
    206         qemu_log_mask(LOG_GUEST_ERROR, "ibex_uart: TX FIFO overflow");
    207     }
    208 
    209     memcpy(s->tx_fifo + s->tx_level, buf, size);
    210     s->tx_level += size;
    211 
    212     if (s->tx_level > 0) {
    213         s->uart_status &= ~R_STATUS_TXEMPTY_MASK;
    214     }
    215 
    216     if (s->tx_level >= tx_fifo_level) {
    217         s->uart_intr_state |= R_INTR_STATE_TX_WATERMARK_MASK;
    218         ibex_uart_update_irqs(s);
    219     }
    220 
    221     if (s->tx_level == IBEX_UART_TX_FIFO_SIZE) {
    222         s->uart_status |= R_STATUS_TXFULL_MASK;
    223     }
    224 
    225     timer_mod(s->fifo_trigger_handle, current_time +
    226               (s->char_tx_time * 4));
    227 }
    228 
    229 static void ibex_uart_reset(DeviceState *dev)
    230 {
    231     IbexUartState *s = IBEX_UART(dev);
    232 
    233     s->uart_intr_state = 0x00000000;
    234     s->uart_intr_state = 0x00000000;
    235     s->uart_intr_enable = 0x00000000;
    236     s->uart_ctrl = 0x00000000;
    237     s->uart_status = 0x0000003c;
    238     s->uart_rdata = 0x00000000;
    239     s->uart_fifo_ctrl = 0x00000000;
    240     s->uart_fifo_status = 0x00000000;
    241     s->uart_ovrd = 0x00000000;
    242     s->uart_val = 0x00000000;
    243     s->uart_timeout_ctrl = 0x00000000;
    244 
    245     s->tx_level = 0;
    246     s->rx_level = 0;
    247 
    248     s->char_tx_time = (NANOSECONDS_PER_SECOND / 230400) * 10;
    249 
    250     ibex_uart_update_irqs(s);
    251 }
    252 
    253 static uint64_t ibex_uart_get_baud(IbexUartState *s)
    254 {
    255     uint64_t baud;
    256 
    257     baud = ((s->uart_ctrl & R_CTRL_NCO_MASK) >> 16);
    258     baud *= clock_get_hz(s->f_clk);
    259     baud >>= 20;
    260 
    261     return baud;
    262 }
    263 
    264 static uint64_t ibex_uart_read(void *opaque, hwaddr addr,
    265                                        unsigned int size)
    266 {
    267     IbexUartState *s = opaque;
    268     uint64_t retvalue = 0;
    269 
    270     switch (addr >> 2) {
    271     case R_INTR_STATE:
    272         retvalue = s->uart_intr_state;
    273         break;
    274     case R_INTR_ENABLE:
    275         retvalue = s->uart_intr_enable;
    276         break;
    277     case R_INTR_TEST:
    278         qemu_log_mask(LOG_GUEST_ERROR,
    279                       "%s: wdata is write only\n", __func__);
    280         break;
    281 
    282     case R_CTRL:
    283         retvalue = s->uart_ctrl;
    284         break;
    285     case R_STATUS:
    286         retvalue = s->uart_status;
    287         break;
    288 
    289     case R_RDATA:
    290         retvalue = s->uart_rdata;
    291         if ((s->uart_ctrl & R_CTRL_RX_ENABLE_MASK) && (s->rx_level > 0)) {
    292             qemu_chr_fe_accept_input(&s->chr);
    293 
    294             s->rx_level -= 1;
    295             s->uart_status &= ~R_STATUS_RXFULL_MASK;
    296             if (s->rx_level == 0) {
    297                 s->uart_status |= R_STATUS_RXIDLE_MASK;
    298                 s->uart_status |= R_STATUS_RXEMPTY_MASK;
    299             }
    300         }
    301         break;
    302     case R_WDATA:
    303         qemu_log_mask(LOG_GUEST_ERROR,
    304                       "%s: wdata is write only\n", __func__);
    305         break;
    306 
    307     case R_FIFO_CTRL:
    308         retvalue = s->uart_fifo_ctrl;
    309         break;
    310     case R_FIFO_STATUS:
    311         retvalue = s->uart_fifo_status;
    312 
    313         retvalue |= (s->rx_level & 0x1F) << R_FIFO_STATUS_RXLVL_SHIFT;
    314         retvalue |= (s->tx_level & 0x1F) << R_FIFO_STATUS_TXLVL_SHIFT;
    315 
    316         qemu_log_mask(LOG_UNIMP,
    317                       "%s: RX fifos are not supported\n", __func__);
    318         break;
    319 
    320     case R_OVRD:
    321         retvalue = s->uart_ovrd;
    322         qemu_log_mask(LOG_UNIMP,
    323                       "%s: ovrd is not supported\n", __func__);
    324         break;
    325     case R_VAL:
    326         retvalue = s->uart_val;
    327         qemu_log_mask(LOG_UNIMP,
    328                       "%s: val is not supported\n", __func__);
    329         break;
    330     case R_TIMEOUT_CTRL:
    331         retvalue = s->uart_timeout_ctrl;
    332         qemu_log_mask(LOG_UNIMP,
    333                       "%s: timeout_ctrl is not supported\n", __func__);
    334         break;
    335     default:
    336         qemu_log_mask(LOG_GUEST_ERROR,
    337                       "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr);
    338         return 0;
    339     }
    340 
    341     return retvalue;
    342 }
    343 
    344 static void ibex_uart_write(void *opaque, hwaddr addr,
    345                                   uint64_t val64, unsigned int size)
    346 {
    347     IbexUartState *s = opaque;
    348     uint32_t value = val64;
    349 
    350     switch (addr >> 2) {
    351     case R_INTR_STATE:
    352         /* Write 1 clear */
    353         s->uart_intr_state &= ~value;
    354         ibex_uart_update_irqs(s);
    355         break;
    356     case R_INTR_ENABLE:
    357         s->uart_intr_enable = value;
    358         ibex_uart_update_irqs(s);
    359         break;
    360     case R_INTR_TEST:
    361         s->uart_intr_state |= value;
    362         ibex_uart_update_irqs(s);
    363         break;
    364 
    365     case R_CTRL:
    366         s->uart_ctrl = value;
    367 
    368         if (value & R_CTRL_NF_MASK) {
    369             qemu_log_mask(LOG_UNIMP,
    370                           "%s: UART_CTRL_NF is not supported\n", __func__);
    371         }
    372         if (value & R_CTRL_SLPBK_MASK) {
    373             qemu_log_mask(LOG_UNIMP,
    374                           "%s: UART_CTRL_SLPBK is not supported\n", __func__);
    375         }
    376         if (value & R_CTRL_LLPBK_MASK) {
    377             qemu_log_mask(LOG_UNIMP,
    378                           "%s: UART_CTRL_LLPBK is not supported\n", __func__);
    379         }
    380         if (value & R_CTRL_PARITY_EN_MASK) {
    381             qemu_log_mask(LOG_UNIMP,
    382                           "%s: UART_CTRL_PARITY_EN is not supported\n",
    383                           __func__);
    384         }
    385         if (value & R_CTRL_PARITY_ODD_MASK) {
    386             qemu_log_mask(LOG_UNIMP,
    387                           "%s: UART_CTRL_PARITY_ODD is not supported\n",
    388                           __func__);
    389         }
    390         if (value & R_CTRL_RXBLVL_MASK) {
    391             qemu_log_mask(LOG_UNIMP,
    392                           "%s: UART_CTRL_RXBLVL is not supported\n", __func__);
    393         }
    394         if (value & R_CTRL_NCO_MASK) {
    395             uint64_t baud = ibex_uart_get_baud(s);
    396 
    397             s->char_tx_time = (NANOSECONDS_PER_SECOND / baud) * 10;
    398         }
    399         break;
    400     case R_STATUS:
    401         qemu_log_mask(LOG_GUEST_ERROR,
    402                       "%s: status is read only\n", __func__);
    403         break;
    404 
    405     case R_RDATA:
    406         qemu_log_mask(LOG_GUEST_ERROR,
    407                       "%s: rdata is read only\n", __func__);
    408         break;
    409     case R_WDATA:
    410         uart_write_tx_fifo(s, (uint8_t *) &value, 1);
    411         break;
    412 
    413     case R_FIFO_CTRL:
    414         s->uart_fifo_ctrl = value;
    415 
    416         if (value & R_FIFO_CTRL_RXRST_MASK) {
    417             s->rx_level = 0;
    418             qemu_log_mask(LOG_UNIMP,
    419                           "%s: RX fifos are not supported\n", __func__);
    420         }
    421         if (value & R_FIFO_CTRL_TXRST_MASK) {
    422             s->tx_level = 0;
    423         }
    424         break;
    425     case R_FIFO_STATUS:
    426         qemu_log_mask(LOG_GUEST_ERROR,
    427                       "%s: fifo_status is read only\n", __func__);
    428         break;
    429 
    430     case R_OVRD:
    431         s->uart_ovrd = value;
    432         qemu_log_mask(LOG_UNIMP,
    433                       "%s: ovrd is not supported\n", __func__);
    434         break;
    435     case R_VAL:
    436         qemu_log_mask(LOG_GUEST_ERROR,
    437                       "%s: val is read only\n", __func__);
    438         break;
    439     case R_TIMEOUT_CTRL:
    440         s->uart_timeout_ctrl = value;
    441         qemu_log_mask(LOG_UNIMP,
    442                       "%s: timeout_ctrl is not supported\n", __func__);
    443         break;
    444     default:
    445         qemu_log_mask(LOG_GUEST_ERROR,
    446                       "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr);
    447     }
    448 }
    449 
    450 static void ibex_uart_clk_update(void *opaque, ClockEvent event)
    451 {
    452     IbexUartState *s = opaque;
    453 
    454     /* recompute uart's speed on clock change */
    455     uint64_t baud = ibex_uart_get_baud(s);
    456 
    457     s->char_tx_time = (NANOSECONDS_PER_SECOND / baud) * 10;
    458 }
    459 
    460 static void fifo_trigger_update(void *opaque)
    461 {
    462     IbexUartState *s = opaque;
    463 
    464     if (s->uart_ctrl & R_CTRL_TX_ENABLE_MASK) {
    465         ibex_uart_xmit(NULL, G_IO_OUT, s);
    466     }
    467 }
    468 
    469 static const MemoryRegionOps ibex_uart_ops = {
    470     .read = ibex_uart_read,
    471     .write = ibex_uart_write,
    472     .endianness = DEVICE_NATIVE_ENDIAN,
    473     .impl.min_access_size = 4,
    474     .impl.max_access_size = 4,
    475 };
    476 
    477 static int ibex_uart_post_load(void *opaque, int version_id)
    478 {
    479     IbexUartState *s = opaque;
    480 
    481     ibex_uart_update_irqs(s);
    482     return 0;
    483 }
    484 
    485 static const VMStateDescription vmstate_ibex_uart = {
    486     .name = TYPE_IBEX_UART,
    487     .version_id = 1,
    488     .minimum_version_id = 1,
    489     .post_load = ibex_uart_post_load,
    490     .fields = (VMStateField[]) {
    491         VMSTATE_UINT8_ARRAY(tx_fifo, IbexUartState,
    492                             IBEX_UART_TX_FIFO_SIZE),
    493         VMSTATE_UINT32(tx_level, IbexUartState),
    494         VMSTATE_UINT64(char_tx_time, IbexUartState),
    495         VMSTATE_TIMER_PTR(fifo_trigger_handle, IbexUartState),
    496         VMSTATE_UINT32(uart_intr_state, IbexUartState),
    497         VMSTATE_UINT32(uart_intr_enable, IbexUartState),
    498         VMSTATE_UINT32(uart_ctrl, IbexUartState),
    499         VMSTATE_UINT32(uart_status, IbexUartState),
    500         VMSTATE_UINT32(uart_rdata, IbexUartState),
    501         VMSTATE_UINT32(uart_fifo_ctrl, IbexUartState),
    502         VMSTATE_UINT32(uart_fifo_status, IbexUartState),
    503         VMSTATE_UINT32(uart_ovrd, IbexUartState),
    504         VMSTATE_UINT32(uart_val, IbexUartState),
    505         VMSTATE_UINT32(uart_timeout_ctrl, IbexUartState),
    506         VMSTATE_END_OF_LIST()
    507     }
    508 };
    509 
    510 static Property ibex_uart_properties[] = {
    511     DEFINE_PROP_CHR("chardev", IbexUartState, chr),
    512     DEFINE_PROP_END_OF_LIST(),
    513 };
    514 
    515 static void ibex_uart_init(Object *obj)
    516 {
    517     IbexUartState *s = IBEX_UART(obj);
    518 
    519     s->f_clk = qdev_init_clock_in(DEVICE(obj), "f_clock",
    520                                   ibex_uart_clk_update, s, ClockUpdate);
    521     clock_set_hz(s->f_clk, IBEX_UART_CLOCK);
    522 
    523     sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->tx_watermark);
    524     sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->rx_watermark);
    525     sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->tx_empty);
    526     sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->rx_overflow);
    527 
    528     memory_region_init_io(&s->mmio, obj, &ibex_uart_ops, s,
    529                           TYPE_IBEX_UART, 0x400);
    530     sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio);
    531 }
    532 
    533 static void ibex_uart_realize(DeviceState *dev, Error **errp)
    534 {
    535     IbexUartState *s = IBEX_UART(dev);
    536 
    537     s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
    538                                           fifo_trigger_update, s);
    539 
    540     qemu_chr_fe_set_handlers(&s->chr, ibex_uart_can_receive,
    541                              ibex_uart_receive, NULL, NULL,
    542                              s, NULL, true);
    543 }
    544 
    545 static void ibex_uart_class_init(ObjectClass *klass, void *data)
    546 {
    547     DeviceClass *dc = DEVICE_CLASS(klass);
    548 
    549     dc->reset = ibex_uart_reset;
    550     dc->realize = ibex_uart_realize;
    551     dc->vmsd = &vmstate_ibex_uart;
    552     device_class_set_props(dc, ibex_uart_properties);
    553     set_bit(DEVICE_CATEGORY_INPUT, dc->categories);
    554 }
    555 
    556 static const TypeInfo ibex_uart_info = {
    557     .name          = TYPE_IBEX_UART,
    558     .parent        = TYPE_SYS_BUS_DEVICE,
    559     .instance_size = sizeof(IbexUartState),
    560     .instance_init = ibex_uart_init,
    561     .class_init    = ibex_uart_class_init,
    562 };
    563 
    564 static void ibex_uart_register_types(void)
    565 {
    566     type_register_static(&ibex_uart_info);
    567 }
    568 
    569 type_init(ibex_uart_register_types)