qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

escc.c (29108B)


      1 /*
      2  * QEMU ESCC (Z8030/Z8530/Z85C30/SCC/ESCC) serial port emulation
      3  *
      4  * Copyright (c) 2003-2005 Fabrice Bellard
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a copy
      7  * of this software and associated documentation files (the "Software"), to deal
      8  * in the Software without restriction, including without limitation the rights
      9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     10  * copies of the Software, and to permit persons to whom the Software is
     11  * furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice shall be included in
     14  * all copies or substantial portions of the Software.
     15  *
     16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
     19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     22  * THE SOFTWARE.
     23  */
     24 
     25 #include "qemu/osdep.h"
     26 #include "hw/irq.h"
     27 #include "hw/qdev-properties.h"
     28 #include "hw/qdev-properties-system.h"
     29 #include "hw/sysbus.h"
     30 #include "migration/vmstate.h"
     31 #include "qemu/module.h"
     32 #include "hw/char/escc.h"
     33 #include "ui/console.h"
     34 #include "trace.h"
     35 
     36 /*
     37  * Chipset docs:
     38  * "Z80C30/Z85C30/Z80230/Z85230/Z85233 SCC/ESCC User Manual",
     39  * http://www.zilog.com/docs/serial/scc_escc_um.pdf
     40  *
     41  * On Sparc32 this is the serial port, mouse and keyboard part of chip STP2001
     42  * (Slave I/O), also produced as NCR89C105. See
     43  * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
     44  *
     45  * The serial ports implement full AMD AM8530 or Zilog Z8530 chips,
     46  * mouse and keyboard ports don't implement all functions and they are
     47  * only asynchronous. There is no DMA.
     48  *
     49  * Z85C30 is also used on PowerMacs and m68k Macs.
     50  *
     51  * There are some small differences between Sparc version (sunzilog)
     52  * and PowerMac (pmac):
     53  *  Offset between control and data registers
     54  *  There is some kind of lockup bug, but we can ignore it
     55  *  CTS is inverted
     56  *  DMA on pmac using DBDMA chip
     57  *  pmac can do IRDA and faster rates, sunzilog can only do 38400
     58  *  pmac baud rate generator clock is 3.6864 MHz, sunzilog 4.9152 MHz
     59  *
     60  * Linux driver for m68k Macs is the same as for PowerMac (pmac_zilog),
     61  * but registers are grouped by type and not by channel:
     62  * channel is selected by bit 0 of the address (instead of bit 1)
     63  * and register is selected by bit 1 of the address (instead of bit 0).
     64  */
     65 
     66 /*
     67  * Modifications:
     68  *  2006-Aug-10  Igor Kovalenko :   Renamed KBDQueue to SERIOQueue, implemented
     69  *                                  serial mouse queue.
     70  *                                  Implemented serial mouse protocol.
     71  *
     72  *  2010-May-23  Artyom Tarasenko:  Reworked IUS logic
     73  */
     74 
     75 #define CHN_C(s) ((s)->chn == escc_chn_b ? 'b' : 'a')
     76 
     77 #define SERIAL_CTRL 0
     78 #define SERIAL_DATA 1
     79 
     80 #define W_CMD     0
     81 #define CMD_PTR_MASK   0x07
     82 #define CMD_CMD_MASK   0x38
     83 #define CMD_HI         0x08
     84 #define CMD_CLR_TXINT  0x28
     85 #define CMD_CLR_IUS    0x38
     86 #define W_INTR    1
     87 #define INTR_INTALL    0x01
     88 #define INTR_TXINT     0x02
     89 #define INTR_PAR_SPEC  0x04
     90 #define INTR_RXMODEMSK 0x18
     91 #define INTR_RXINT1ST  0x08
     92 #define INTR_RXINTALL  0x10
     93 #define INTR_WTRQ_TXRX 0x20
     94 #define W_IVEC    2
     95 #define W_RXCTRL  3
     96 #define RXCTRL_RXEN    0x01
     97 #define RXCTRL_HUNT    0x10
     98 #define W_TXCTRL1 4
     99 #define TXCTRL1_PAREN  0x01
    100 #define TXCTRL1_PAREV  0x02
    101 #define TXCTRL1_1STOP  0x04
    102 #define TXCTRL1_1HSTOP 0x08
    103 #define TXCTRL1_2STOP  0x0c
    104 #define TXCTRL1_STPMSK 0x0c
    105 #define TXCTRL1_CLK1X  0x00
    106 #define TXCTRL1_CLK16X 0x40
    107 #define TXCTRL1_CLK32X 0x80
    108 #define TXCTRL1_CLK64X 0xc0
    109 #define TXCTRL1_CLKMSK 0xc0
    110 #define W_TXCTRL2 5
    111 #define TXCTRL2_TXCRC  0x01
    112 #define TXCTRL2_TXEN   0x08
    113 #define TXCTRL2_BITMSK 0x60
    114 #define TXCTRL2_5BITS  0x00
    115 #define TXCTRL2_7BITS  0x20
    116 #define TXCTRL2_6BITS  0x40
    117 #define TXCTRL2_8BITS  0x60
    118 #define W_SYNC1   6
    119 #define W_SYNC2   7
    120 #define W_TXBUF   8
    121 #define W_MINTR   9
    122 #define MINTR_VIS      0x01
    123 #define MINTR_NV       0x02
    124 #define MINTR_STATUSHI 0x10
    125 #define MINTR_SOFTIACK 0x20
    126 #define MINTR_RST_MASK 0xc0
    127 #define MINTR_RST_B    0x40
    128 #define MINTR_RST_A    0x80
    129 #define MINTR_RST_ALL  0xc0
    130 #define W_MISC1  10
    131 #define MISC1_ENC_MASK 0x60
    132 #define W_CLOCK  11
    133 #define CLOCK_TRXC     0x08
    134 #define W_BRGLO  12
    135 #define W_BRGHI  13
    136 #define W_MISC2  14
    137 #define MISC2_BRG_EN   0x01
    138 #define MISC2_BRG_SRC  0x02
    139 #define MISC2_LCL_LOOP 0x10
    140 #define MISC2_PLLCMD0  0x20
    141 #define MISC2_PLLCMD1  0x40
    142 #define MISC2_PLLCMD2  0x80
    143 #define W_EXTINT 15
    144 #define EXTINT_DCD     0x08
    145 #define EXTINT_SYNCINT 0x10
    146 #define EXTINT_CTSINT  0x20
    147 #define EXTINT_TXUNDRN 0x40
    148 #define EXTINT_BRKINT  0x80
    149 
    150 #define R_STATUS  0
    151 #define STATUS_RXAV    0x01
    152 #define STATUS_ZERO    0x02
    153 #define STATUS_TXEMPTY 0x04
    154 #define STATUS_DCD     0x08
    155 #define STATUS_SYNC    0x10
    156 #define STATUS_CTS     0x20
    157 #define STATUS_TXUNDRN 0x40
    158 #define STATUS_BRK     0x80
    159 #define R_SPEC    1
    160 #define SPEC_ALLSENT   0x01
    161 #define SPEC_BITS8     0x06
    162 #define R_IVEC    2
    163 #define IVEC_TXINTB    0x00
    164 #define IVEC_LONOINT   0x06
    165 #define IVEC_LORXINTA  0x0c
    166 #define IVEC_LORXINTB  0x04
    167 #define IVEC_LOTXINTA  0x08
    168 #define IVEC_HINOINT   0x60
    169 #define IVEC_HIRXINTA  0x30
    170 #define IVEC_HIRXINTB  0x20
    171 #define IVEC_HITXINTA  0x10
    172 #define R_INTR    3
    173 #define INTR_EXTINTB   0x01
    174 #define INTR_TXINTB    0x02
    175 #define INTR_RXINTB    0x04
    176 #define INTR_EXTINTA   0x08
    177 #define INTR_TXINTA    0x10
    178 #define INTR_RXINTA    0x20
    179 #define R_IPEN    4
    180 #define R_TXCTRL1 5
    181 #define R_TXCTRL2 6
    182 #define R_BC      7
    183 #define R_RXBUF   8
    184 #define R_RXCTRL  9
    185 #define R_MISC   10
    186 #define MISC_2CLKMISS  0x40
    187 #define R_MISC1  11
    188 #define R_BRGLO  12
    189 #define R_BRGHI  13
    190 #define R_MISC1I 14
    191 #define R_EXTINT 15
    192 
    193 static void handle_kbd_command(ESCCChannelState *s, int val);
    194 static int serial_can_receive(void *opaque);
    195 static void serial_receive_byte(ESCCChannelState *s, int ch);
    196 
    197 static int reg_shift(ESCCState *s)
    198 {
    199     return s->bit_swap ? s->it_shift + 1 : s->it_shift;
    200 }
    201 
    202 static int chn_shift(ESCCState *s)
    203 {
    204     return s->bit_swap ? s->it_shift : s->it_shift + 1;
    205 }
    206 
    207 static void clear_queue(void *opaque)
    208 {
    209     ESCCChannelState *s = opaque;
    210     ESCCSERIOQueue *q = &s->queue;
    211     q->rptr = q->wptr = q->count = 0;
    212 }
    213 
    214 static void put_queue(void *opaque, int b)
    215 {
    216     ESCCChannelState *s = opaque;
    217     ESCCSERIOQueue *q = &s->queue;
    218 
    219     trace_escc_put_queue(CHN_C(s), b);
    220     if (q->count >= ESCC_SERIO_QUEUE_SIZE) {
    221         return;
    222     }
    223     q->data[q->wptr] = b;
    224     if (++q->wptr == ESCC_SERIO_QUEUE_SIZE) {
    225         q->wptr = 0;
    226     }
    227     q->count++;
    228     serial_receive_byte(s, 0);
    229 }
    230 
    231 static uint32_t get_queue(void *opaque)
    232 {
    233     ESCCChannelState *s = opaque;
    234     ESCCSERIOQueue *q = &s->queue;
    235     int val;
    236 
    237     if (q->count == 0) {
    238         return 0;
    239     } else {
    240         val = q->data[q->rptr];
    241         if (++q->rptr == ESCC_SERIO_QUEUE_SIZE) {
    242             q->rptr = 0;
    243         }
    244         q->count--;
    245     }
    246     trace_escc_get_queue(CHN_C(s), val);
    247     if (q->count > 0) {
    248         serial_receive_byte(s, 0);
    249     }
    250     return val;
    251 }
    252 
    253 static int escc_update_irq_chn(ESCCChannelState *s)
    254 {
    255     if ((((s->wregs[W_INTR] & INTR_TXINT) && (s->txint == 1)) ||
    256         /* tx ints enabled, pending */
    257         ((((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINT1ST) ||
    258         ((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINTALL)) &&
    259             s->rxint == 1) ||
    260         /* rx ints enabled, pending */
    261         ((s->wregs[W_EXTINT] & EXTINT_BRKINT) &&
    262             (s->rregs[R_STATUS] & STATUS_BRK)))) {
    263         /* break int e&p */
    264         return 1;
    265     }
    266     return 0;
    267 }
    268 
    269 static void escc_update_irq(ESCCChannelState *s)
    270 {
    271     int irq;
    272 
    273     irq = escc_update_irq_chn(s);
    274     irq |= escc_update_irq_chn(s->otherchn);
    275 
    276     trace_escc_update_irq(irq);
    277     qemu_set_irq(s->irq, irq);
    278 }
    279 
    280 static void escc_reset_chn(ESCCChannelState *s)
    281 {
    282     s->reg = 0;
    283     s->rx = s->tx = 0;
    284     s->rxint = s->txint = 0;
    285     s->rxint_under_svc = s->txint_under_svc = 0;
    286     s->e0_mode = s->led_mode = s->caps_lock_mode = s->num_lock_mode = 0;
    287     clear_queue(s);
    288 }
    289 
    290 static void escc_soft_reset_chn(ESCCChannelState *s)
    291 {
    292     escc_reset_chn(s);
    293 
    294     s->wregs[W_CMD] = 0;
    295     s->wregs[W_INTR] &= INTR_PAR_SPEC | INTR_WTRQ_TXRX;
    296     s->wregs[W_RXCTRL] &= ~RXCTRL_RXEN;
    297     /* 1 stop bit */
    298     s->wregs[W_TXCTRL1] |= TXCTRL1_1STOP;
    299     s->wregs[W_TXCTRL2] &= TXCTRL2_TXCRC | TXCTRL2_8BITS;
    300     s->wregs[W_MINTR] &= ~MINTR_SOFTIACK;
    301     s->wregs[W_MISC1] &= MISC1_ENC_MASK;
    302     /* PLL disabled */
    303     s->wregs[W_MISC2] &= MISC2_BRG_EN | MISC2_BRG_SRC |
    304                          MISC2_PLLCMD1 | MISC2_PLLCMD2;
    305     s->wregs[W_MISC2] |= MISC2_PLLCMD0;
    306     /* Enable most interrupts */
    307     s->wregs[W_EXTINT] = EXTINT_DCD | EXTINT_SYNCINT | EXTINT_CTSINT |
    308                          EXTINT_TXUNDRN | EXTINT_BRKINT;
    309 
    310     s->rregs[R_STATUS] &= STATUS_DCD | STATUS_SYNC | STATUS_CTS | STATUS_BRK;
    311     s->rregs[R_STATUS] |= STATUS_TXEMPTY | STATUS_TXUNDRN;
    312     if (s->disabled) {
    313         s->rregs[R_STATUS] |= STATUS_DCD | STATUS_SYNC | STATUS_CTS;
    314     }
    315     s->rregs[R_SPEC] &= SPEC_ALLSENT;
    316     s->rregs[R_SPEC] |= SPEC_BITS8;
    317     s->rregs[R_INTR] = 0;
    318     s->rregs[R_MISC] &= MISC_2CLKMISS;
    319 }
    320 
    321 static void escc_hard_reset_chn(ESCCChannelState *s)
    322 {
    323     escc_soft_reset_chn(s);
    324 
    325     /*
    326      * Hard reset is almost identical to soft reset above, except that the
    327      * values of WR9 (W_MINTR), WR10 (W_MISC1), WR11 (W_CLOCK) and WR14
    328      * (W_MISC2) have extra bits forced to 0/1
    329      */
    330     s->wregs[W_MINTR] &= MINTR_VIS | MINTR_NV;
    331     s->wregs[W_MINTR] |= MINTR_RST_B | MINTR_RST_A;
    332     s->wregs[W_MISC1] = 0;
    333     s->wregs[W_CLOCK] = CLOCK_TRXC;
    334     s->wregs[W_MISC2] &= MISC2_PLLCMD1 | MISC2_PLLCMD2;
    335     s->wregs[W_MISC2] |= MISC2_LCL_LOOP | MISC2_PLLCMD0;
    336 }
    337 
    338 static void escc_reset(DeviceState *d)
    339 {
    340     ESCCState *s = ESCC(d);
    341     int i, j;
    342 
    343     for (i = 0; i < 2; i++) {
    344         ESCCChannelState *cs = &s->chn[i];
    345 
    346         /*
    347          * According to the ESCC datasheet "Miscellaneous Questions" section
    348          * on page 384, the values of the ESCC registers are not guaranteed on
    349          * power-on until an explicit hardware or software reset has been
    350          * issued. For now we zero the registers so that a device reset always
    351          * returns the emulated device to a fixed state.
    352          */
    353         for (j = 0; j < ESCC_SERIAL_REGS; j++) {
    354             cs->rregs[j] = 0;
    355             cs->wregs[j] = 0;
    356         }
    357 
    358         /*
    359          * ...but there is an exception. The "Transmit Interrupts and Transmit
    360          * Buffer Empty Bit" section on page 50 of the ESCC datasheet says of
    361          * the STATUS_TXEMPTY bit in R_STATUS: "After a hardware reset
    362          * (including a hardware reset by software), or a channel reset, this
    363          * bit is set to 1". The Sun PROM checks this bit early on startup and
    364          * gets stuck in an infinite loop if it is not set.
    365          */
    366         cs->rregs[R_STATUS] |= STATUS_TXEMPTY;
    367 
    368         escc_reset_chn(cs);
    369     }
    370 }
    371 
    372 static inline void set_rxint(ESCCChannelState *s)
    373 {
    374     s->rxint = 1;
    375     /*
    376      * XXX: missing daisy chaining: escc_chn_b rx should have a lower priority
    377      * than chn_a rx/tx/special_condition service
    378      */
    379     s->rxint_under_svc = 1;
    380     if (s->chn == escc_chn_a) {
    381         s->rregs[R_INTR] |= INTR_RXINTA;
    382         if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
    383             s->otherchn->rregs[R_IVEC] = IVEC_HIRXINTA;
    384         } else {
    385             s->otherchn->rregs[R_IVEC] = IVEC_LORXINTA;
    386         }
    387     } else {
    388         s->otherchn->rregs[R_INTR] |= INTR_RXINTB;
    389         if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
    390             s->rregs[R_IVEC] = IVEC_HIRXINTB;
    391         } else {
    392             s->rregs[R_IVEC] = IVEC_LORXINTB;
    393         }
    394     }
    395     escc_update_irq(s);
    396 }
    397 
    398 static inline void set_txint(ESCCChannelState *s)
    399 {
    400     s->txint = 1;
    401     if (!s->rxint_under_svc) {
    402         s->txint_under_svc = 1;
    403         if (s->chn == escc_chn_a) {
    404             if (s->wregs[W_INTR] & INTR_TXINT) {
    405                 s->rregs[R_INTR] |= INTR_TXINTA;
    406             }
    407             if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
    408                 s->otherchn->rregs[R_IVEC] = IVEC_HITXINTA;
    409             } else {
    410                 s->otherchn->rregs[R_IVEC] = IVEC_LOTXINTA;
    411             }
    412         } else {
    413             s->rregs[R_IVEC] = IVEC_TXINTB;
    414             if (s->wregs[W_INTR] & INTR_TXINT) {
    415                 s->otherchn->rregs[R_INTR] |= INTR_TXINTB;
    416             }
    417         }
    418         escc_update_irq(s);
    419     }
    420 }
    421 
    422 static inline void clr_rxint(ESCCChannelState *s)
    423 {
    424     s->rxint = 0;
    425     s->rxint_under_svc = 0;
    426     if (s->chn == escc_chn_a) {
    427         if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
    428             s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
    429         } else {
    430             s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
    431         }
    432         s->rregs[R_INTR] &= ~INTR_RXINTA;
    433     } else {
    434         if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
    435             s->rregs[R_IVEC] = IVEC_HINOINT;
    436         } else {
    437             s->rregs[R_IVEC] = IVEC_LONOINT;
    438         }
    439         s->otherchn->rregs[R_INTR] &= ~INTR_RXINTB;
    440     }
    441     if (s->txint) {
    442         set_txint(s);
    443     }
    444     escc_update_irq(s);
    445 }
    446 
    447 static inline void clr_txint(ESCCChannelState *s)
    448 {
    449     s->txint = 0;
    450     s->txint_under_svc = 0;
    451     if (s->chn == escc_chn_a) {
    452         if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
    453             s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
    454         } else {
    455             s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
    456         }
    457         s->rregs[R_INTR] &= ~INTR_TXINTA;
    458     } else {
    459         s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
    460         if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
    461             s->rregs[R_IVEC] = IVEC_HINOINT;
    462         } else {
    463             s->rregs[R_IVEC] = IVEC_LONOINT;
    464         }
    465         s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
    466     }
    467     if (s->rxint) {
    468         set_rxint(s);
    469     }
    470     escc_update_irq(s);
    471 }
    472 
    473 static void escc_update_parameters(ESCCChannelState *s)
    474 {
    475     int speed, parity, data_bits, stop_bits;
    476     QEMUSerialSetParams ssp;
    477 
    478     if (!qemu_chr_fe_backend_connected(&s->chr) || s->type != escc_serial) {
    479         return;
    480     }
    481 
    482     if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREN) {
    483         if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREV) {
    484             parity = 'E';
    485         } else {
    486             parity = 'O';
    487         }
    488     } else {
    489         parity = 'N';
    490     }
    491     if ((s->wregs[W_TXCTRL1] & TXCTRL1_STPMSK) == TXCTRL1_2STOP) {
    492         stop_bits = 2;
    493     } else {
    494         stop_bits = 1;
    495     }
    496     switch (s->wregs[W_TXCTRL2] & TXCTRL2_BITMSK) {
    497     case TXCTRL2_5BITS:
    498         data_bits = 5;
    499         break;
    500     case TXCTRL2_7BITS:
    501         data_bits = 7;
    502         break;
    503     case TXCTRL2_6BITS:
    504         data_bits = 6;
    505         break;
    506     default:
    507     case TXCTRL2_8BITS:
    508         data_bits = 8;
    509         break;
    510     }
    511     speed = s->clock / ((s->wregs[W_BRGLO] | (s->wregs[W_BRGHI] << 8)) + 2);
    512     switch (s->wregs[W_TXCTRL1] & TXCTRL1_CLKMSK) {
    513     case TXCTRL1_CLK1X:
    514         break;
    515     case TXCTRL1_CLK16X:
    516         speed /= 16;
    517         break;
    518     case TXCTRL1_CLK32X:
    519         speed /= 32;
    520         break;
    521     default:
    522     case TXCTRL1_CLK64X:
    523         speed /= 64;
    524         break;
    525     }
    526     ssp.speed = speed;
    527     ssp.parity = parity;
    528     ssp.data_bits = data_bits;
    529     ssp.stop_bits = stop_bits;
    530     trace_escc_update_parameters(CHN_C(s), speed, parity, data_bits, stop_bits);
    531     qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
    532 }
    533 
    534 static void escc_mem_write(void *opaque, hwaddr addr,
    535                            uint64_t val, unsigned size)
    536 {
    537     ESCCState *serial = opaque;
    538     ESCCChannelState *s;
    539     uint32_t saddr;
    540     int newreg, channel;
    541 
    542     val &= 0xff;
    543     saddr = (addr >> reg_shift(serial)) & 1;
    544     channel = (addr >> chn_shift(serial)) & 1;
    545     s = &serial->chn[channel];
    546     switch (saddr) {
    547     case SERIAL_CTRL:
    548         trace_escc_mem_writeb_ctrl(CHN_C(s), s->reg, val & 0xff);
    549         newreg = 0;
    550         switch (s->reg) {
    551         case W_CMD:
    552             newreg = val & CMD_PTR_MASK;
    553             val &= CMD_CMD_MASK;
    554             switch (val) {
    555             case CMD_HI:
    556                 newreg |= CMD_HI;
    557                 break;
    558             case CMD_CLR_TXINT:
    559                 clr_txint(s);
    560                 break;
    561             case CMD_CLR_IUS:
    562                 if (s->rxint_under_svc) {
    563                     s->rxint_under_svc = 0;
    564                     if (s->txint) {
    565                         set_txint(s);
    566                     }
    567                 } else if (s->txint_under_svc) {
    568                     s->txint_under_svc = 0;
    569                 }
    570                 escc_update_irq(s);
    571                 break;
    572             default:
    573                 break;
    574             }
    575             break;
    576         case W_RXCTRL:
    577             s->wregs[s->reg] = val;
    578             if (val & RXCTRL_HUNT) {
    579                 s->rregs[R_STATUS] |= STATUS_SYNC;
    580             }
    581             break;
    582         case W_INTR ... W_IVEC:
    583         case W_SYNC1 ... W_TXBUF:
    584         case W_MISC1 ... W_CLOCK:
    585         case W_MISC2 ... W_EXTINT:
    586             s->wregs[s->reg] = val;
    587             break;
    588         case W_TXCTRL1:
    589             s->wregs[s->reg] = val;
    590             /*
    591              * The ESCC datasheet states that SPEC_ALLSENT is always set in
    592              * sync mode, and set in async mode when all characters have
    593              * cleared the transmitter. Since writes to SERIAL_DATA use the
    594              * blocking qemu_chr_fe_write_all() function to write each
    595              * character, the guest can never see the state when async data
    596              * is in the process of being transmitted so we can set this bit
    597              * unconditionally regardless of the state of the W_TXCTRL1 mode
    598              * bits.
    599              */
    600             s->rregs[R_SPEC] |= SPEC_ALLSENT;
    601             escc_update_parameters(s);
    602             break;
    603         case W_TXCTRL2:
    604             s->wregs[s->reg] = val;
    605             escc_update_parameters(s);
    606             break;
    607         case W_BRGLO:
    608         case W_BRGHI:
    609             s->wregs[s->reg] = val;
    610             s->rregs[s->reg] = val;
    611             escc_update_parameters(s);
    612             break;
    613         case W_MINTR:
    614             switch (val & MINTR_RST_MASK) {
    615             case 0:
    616             default:
    617                 break;
    618             case MINTR_RST_B:
    619                 trace_escc_soft_reset_chn(CHN_C(&serial->chn[0]));
    620                 escc_soft_reset_chn(&serial->chn[0]);
    621                 return;
    622             case MINTR_RST_A:
    623                 trace_escc_soft_reset_chn(CHN_C(&serial->chn[1]));
    624                 escc_soft_reset_chn(&serial->chn[1]);
    625                 return;
    626             case MINTR_RST_ALL:
    627                 trace_escc_hard_reset();
    628                 escc_hard_reset_chn(&serial->chn[0]);
    629                 escc_hard_reset_chn(&serial->chn[1]);
    630                 return;
    631             }
    632             break;
    633         default:
    634             break;
    635         }
    636         if (s->reg == 0) {
    637             s->reg = newreg;
    638         } else {
    639             s->reg = 0;
    640         }
    641         break;
    642     case SERIAL_DATA:
    643         trace_escc_mem_writeb_data(CHN_C(s), val);
    644         /*
    645          * Lower the irq when data is written to the Tx buffer and no other
    646          * interrupts are currently pending. The irq will be raised again once
    647          * the Tx buffer becomes empty below.
    648          */
    649         s->txint = 0;
    650         escc_update_irq(s);
    651         s->tx = val;
    652         if (s->wregs[W_TXCTRL2] & TXCTRL2_TXEN) { /* tx enabled */
    653             if (qemu_chr_fe_backend_connected(&s->chr)) {
    654                 /*
    655                  * XXX this blocks entire thread. Rewrite to use
    656                  * qemu_chr_fe_write and background I/O callbacks
    657                  */
    658                 qemu_chr_fe_write_all(&s->chr, &s->tx, 1);
    659             } else if (s->type == escc_kbd && !s->disabled) {
    660                 handle_kbd_command(s, val);
    661             }
    662         }
    663         s->rregs[R_STATUS] |= STATUS_TXEMPTY; /* Tx buffer empty */
    664         s->rregs[R_SPEC] |= SPEC_ALLSENT; /* All sent */
    665         set_txint(s);
    666         break;
    667     default:
    668         break;
    669     }
    670 }
    671 
    672 static uint64_t escc_mem_read(void *opaque, hwaddr addr,
    673                               unsigned size)
    674 {
    675     ESCCState *serial = opaque;
    676     ESCCChannelState *s;
    677     uint32_t saddr;
    678     uint32_t ret;
    679     int channel;
    680 
    681     saddr = (addr >> reg_shift(serial)) & 1;
    682     channel = (addr >> chn_shift(serial)) & 1;
    683     s = &serial->chn[channel];
    684     switch (saddr) {
    685     case SERIAL_CTRL:
    686         trace_escc_mem_readb_ctrl(CHN_C(s), s->reg, s->rregs[s->reg]);
    687         ret = s->rregs[s->reg];
    688         s->reg = 0;
    689         return ret;
    690     case SERIAL_DATA:
    691         s->rregs[R_STATUS] &= ~STATUS_RXAV;
    692         clr_rxint(s);
    693         if (s->type == escc_kbd || s->type == escc_mouse) {
    694             ret = get_queue(s);
    695         } else {
    696             ret = s->rx;
    697         }
    698         trace_escc_mem_readb_data(CHN_C(s), ret);
    699         qemu_chr_fe_accept_input(&s->chr);
    700         return ret;
    701     default:
    702         break;
    703     }
    704     return 0;
    705 }
    706 
    707 static const MemoryRegionOps escc_mem_ops = {
    708     .read = escc_mem_read,
    709     .write = escc_mem_write,
    710     .endianness = DEVICE_NATIVE_ENDIAN,
    711     .valid = {
    712         .min_access_size = 1,
    713         .max_access_size = 1,
    714     },
    715 };
    716 
    717 static int serial_can_receive(void *opaque)
    718 {
    719     ESCCChannelState *s = opaque;
    720     int ret;
    721 
    722     if (((s->wregs[W_RXCTRL] & RXCTRL_RXEN) == 0) /* Rx not enabled */
    723         || ((s->rregs[R_STATUS] & STATUS_RXAV) == STATUS_RXAV)) {
    724         /* char already available */
    725         ret = 0;
    726     } else {
    727         ret = 1;
    728     }
    729     return ret;
    730 }
    731 
    732 static void serial_receive_byte(ESCCChannelState *s, int ch)
    733 {
    734     trace_escc_serial_receive_byte(CHN_C(s), ch);
    735     s->rregs[R_STATUS] |= STATUS_RXAV;
    736     s->rx = ch;
    737     set_rxint(s);
    738 }
    739 
    740 static void serial_receive_break(ESCCChannelState *s)
    741 {
    742     s->rregs[R_STATUS] |= STATUS_BRK;
    743     escc_update_irq(s);
    744 }
    745 
    746 static void serial_receive1(void *opaque, const uint8_t *buf, int size)
    747 {
    748     ESCCChannelState *s = opaque;
    749     serial_receive_byte(s, buf[0]);
    750 }
    751 
    752 static void serial_event(void *opaque, QEMUChrEvent event)
    753 {
    754     ESCCChannelState *s = opaque;
    755     if (event == CHR_EVENT_BREAK) {
    756         serial_receive_break(s);
    757     }
    758 }
    759 
    760 static const VMStateDescription vmstate_escc_chn = {
    761     .name = "escc_chn",
    762     .version_id = 2,
    763     .minimum_version_id = 1,
    764     .fields = (VMStateField[]) {
    765         VMSTATE_UINT32(vmstate_dummy, ESCCChannelState),
    766         VMSTATE_UINT32(reg, ESCCChannelState),
    767         VMSTATE_UINT32(rxint, ESCCChannelState),
    768         VMSTATE_UINT32(txint, ESCCChannelState),
    769         VMSTATE_UINT32(rxint_under_svc, ESCCChannelState),
    770         VMSTATE_UINT32(txint_under_svc, ESCCChannelState),
    771         VMSTATE_UINT8(rx, ESCCChannelState),
    772         VMSTATE_UINT8(tx, ESCCChannelState),
    773         VMSTATE_BUFFER(wregs, ESCCChannelState),
    774         VMSTATE_BUFFER(rregs, ESCCChannelState),
    775         VMSTATE_END_OF_LIST()
    776     }
    777 };
    778 
    779 static const VMStateDescription vmstate_escc = {
    780     .name = "escc",
    781     .version_id = 2,
    782     .minimum_version_id = 1,
    783     .fields = (VMStateField[]) {
    784         VMSTATE_STRUCT_ARRAY(chn, ESCCState, 2, 2, vmstate_escc_chn,
    785                              ESCCChannelState),
    786         VMSTATE_END_OF_LIST()
    787     }
    788 };
    789 
    790 static void sunkbd_handle_event(DeviceState *dev, QemuConsole *src,
    791                                 InputEvent *evt)
    792 {
    793     ESCCChannelState *s = (ESCCChannelState *)dev;
    794     int qcode, keycode;
    795     InputKeyEvent *key;
    796 
    797     assert(evt->type == INPUT_EVENT_KIND_KEY);
    798     key = evt->u.key.data;
    799     qcode = qemu_input_key_value_to_qcode(key->key);
    800     trace_escc_sunkbd_event_in(qcode, QKeyCode_str(qcode),
    801                                key->down);
    802 
    803     if (qcode == Q_KEY_CODE_CAPS_LOCK) {
    804         if (key->down) {
    805             s->caps_lock_mode ^= 1;
    806             if (s->caps_lock_mode == 2) {
    807                 return; /* Drop second press */
    808             }
    809         } else {
    810             s->caps_lock_mode ^= 2;
    811             if (s->caps_lock_mode == 3) {
    812                 return; /* Drop first release */
    813             }
    814         }
    815     }
    816 
    817     if (qcode == Q_KEY_CODE_NUM_LOCK) {
    818         if (key->down) {
    819             s->num_lock_mode ^= 1;
    820             if (s->num_lock_mode == 2) {
    821                 return; /* Drop second press */
    822             }
    823         } else {
    824             s->num_lock_mode ^= 2;
    825             if (s->num_lock_mode == 3) {
    826                 return; /* Drop first release */
    827             }
    828         }
    829     }
    830 
    831     if (qcode >= qemu_input_map_qcode_to_sun_len) {
    832         return;
    833     }
    834 
    835     keycode = qemu_input_map_qcode_to_sun[qcode];
    836     if (!key->down) {
    837         keycode |= 0x80;
    838     }
    839     trace_escc_sunkbd_event_out(keycode);
    840     put_queue(s, keycode);
    841 }
    842 
    843 static QemuInputHandler sunkbd_handler = {
    844     .name  = "sun keyboard",
    845     .mask  = INPUT_EVENT_MASK_KEY,
    846     .event = sunkbd_handle_event,
    847 };
    848 
    849 static void handle_kbd_command(ESCCChannelState *s, int val)
    850 {
    851     trace_escc_kbd_command(val);
    852     if (s->led_mode) { /* Ignore led byte */
    853         s->led_mode = 0;
    854         return;
    855     }
    856     switch (val) {
    857     case 1: /* Reset, return type code */
    858         clear_queue(s);
    859         put_queue(s, 0xff);
    860         put_queue(s, 4); /* Type 4 */
    861         put_queue(s, 0x7f);
    862         break;
    863     case 0xe: /* Set leds */
    864         s->led_mode = 1;
    865         break;
    866     case 7: /* Query layout */
    867     case 0xf:
    868         clear_queue(s);
    869         put_queue(s, 0xfe);
    870         put_queue(s, 0x21); /*  en-us layout */
    871         break;
    872     default:
    873         break;
    874     }
    875 }
    876 
    877 static void sunmouse_event(void *opaque,
    878                                int dx, int dy, int dz, int buttons_state)
    879 {
    880     ESCCChannelState *s = opaque;
    881     int ch;
    882 
    883     trace_escc_sunmouse_event(dx, dy, buttons_state);
    884     ch = 0x80 | 0x7; /* protocol start byte, no buttons pressed */
    885 
    886     if (buttons_state & MOUSE_EVENT_LBUTTON) {
    887         ch ^= 0x4;
    888     }
    889     if (buttons_state & MOUSE_EVENT_MBUTTON) {
    890         ch ^= 0x2;
    891     }
    892     if (buttons_state & MOUSE_EVENT_RBUTTON) {
    893         ch ^= 0x1;
    894     }
    895 
    896     put_queue(s, ch);
    897 
    898     ch = dx;
    899 
    900     if (ch > 127) {
    901         ch = 127;
    902     } else if (ch < -127) {
    903         ch = -127;
    904     }
    905 
    906     put_queue(s, ch & 0xff);
    907 
    908     ch = -dy;
    909 
    910     if (ch > 127) {
    911         ch = 127;
    912     } else if (ch < -127) {
    913         ch = -127;
    914     }
    915 
    916     put_queue(s, ch & 0xff);
    917 
    918     /* MSC protocol specifies two extra motion bytes */
    919 
    920     put_queue(s, 0);
    921     put_queue(s, 0);
    922 }
    923 
    924 static void escc_init1(Object *obj)
    925 {
    926     ESCCState *s = ESCC(obj);
    927     SysBusDevice *dev = SYS_BUS_DEVICE(obj);
    928     unsigned int i;
    929 
    930     for (i = 0; i < 2; i++) {
    931         sysbus_init_irq(dev, &s->chn[i].irq);
    932         s->chn[i].chn = 1 - i;
    933     }
    934     s->chn[0].otherchn = &s->chn[1];
    935     s->chn[1].otherchn = &s->chn[0];
    936 
    937     sysbus_init_mmio(dev, &s->mmio);
    938 }
    939 
    940 static void escc_realize(DeviceState *dev, Error **errp)
    941 {
    942     ESCCState *s = ESCC(dev);
    943     unsigned int i;
    944 
    945     s->chn[0].disabled = s->disabled;
    946     s->chn[1].disabled = s->disabled;
    947 
    948     memory_region_init_io(&s->mmio, OBJECT(dev), &escc_mem_ops, s, "escc",
    949                           ESCC_SIZE << s->it_shift);
    950 
    951     for (i = 0; i < 2; i++) {
    952         if (qemu_chr_fe_backend_connected(&s->chn[i].chr)) {
    953             s->chn[i].clock = s->frequency / 2;
    954             qemu_chr_fe_set_handlers(&s->chn[i].chr, serial_can_receive,
    955                                      serial_receive1, serial_event, NULL,
    956                                      &s->chn[i], NULL, true);
    957         }
    958     }
    959 
    960     if (s->chn[0].type == escc_mouse) {
    961         qemu_add_mouse_event_handler(sunmouse_event, &s->chn[0], 0,
    962                                      "QEMU Sun Mouse");
    963     }
    964     if (s->chn[1].type == escc_kbd) {
    965         s->chn[1].hs = qemu_input_handler_register((DeviceState *)(&s->chn[1]),
    966                                                    &sunkbd_handler);
    967     }
    968 }
    969 
    970 static Property escc_properties[] = {
    971     DEFINE_PROP_UINT32("frequency", ESCCState, frequency,   0),
    972     DEFINE_PROP_UINT32("it_shift",  ESCCState, it_shift,    0),
    973     DEFINE_PROP_BOOL("bit_swap",    ESCCState, bit_swap,    false),
    974     DEFINE_PROP_UINT32("disabled",  ESCCState, disabled,    0),
    975     DEFINE_PROP_UINT32("chnBtype",  ESCCState, chn[0].type, 0),
    976     DEFINE_PROP_UINT32("chnAtype",  ESCCState, chn[1].type, 0),
    977     DEFINE_PROP_CHR("chrB", ESCCState, chn[0].chr),
    978     DEFINE_PROP_CHR("chrA", ESCCState, chn[1].chr),
    979     DEFINE_PROP_END_OF_LIST(),
    980 };
    981 
    982 static void escc_class_init(ObjectClass *klass, void *data)
    983 {
    984     DeviceClass *dc = DEVICE_CLASS(klass);
    985 
    986     dc->reset = escc_reset;
    987     dc->realize = escc_realize;
    988     dc->vmsd = &vmstate_escc;
    989     device_class_set_props(dc, escc_properties);
    990     set_bit(DEVICE_CATEGORY_INPUT, dc->categories);
    991 }
    992 
    993 static const TypeInfo escc_info = {
    994     .name          = TYPE_ESCC,
    995     .parent        = TYPE_SYS_BUS_DEVICE,
    996     .instance_size = sizeof(ESCCState),
    997     .instance_init = escc_init1,
    998     .class_init    = escc_class_init,
    999 };
   1000 
   1001 static void escc_register_types(void)
   1002 {
   1003     type_register_static(&escc_info);
   1004 }
   1005 
   1006 type_init(escc_register_types)