qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

fdc.c (75097B)


      1 /*
      2  * QEMU Floppy disk emulator (Intel 82078)
      3  *
      4  * Copyright (c) 2003, 2007 Jocelyn Mayer
      5  * Copyright (c) 2008 Hervé Poussineau
      6  *
      7  * Permission is hereby granted, free of charge, to any person obtaining a copy
      8  * of this software and associated documentation files (the "Software"), to deal
      9  * in the Software without restriction, including without limitation the rights
     10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     11  * copies of the Software, and to permit persons to whom the Software is
     12  * furnished to do so, subject to the following conditions:
     13  *
     14  * The above copyright notice and this permission notice shall be included in
     15  * all copies or substantial portions of the Software.
     16  *
     17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
     20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     23  * THE SOFTWARE.
     24  */
     25 /*
     26  * The controller is used in Sun4m systems in a slightly different
     27  * way. There are changes in DOR register and DMA is not available.
     28  */
     29 
     30 #include "qemu/osdep.h"
     31 #include "hw/block/fdc.h"
     32 #include "qapi/error.h"
     33 #include "qemu/error-report.h"
     34 #include "qemu/timer.h"
     35 #include "qemu/memalign.h"
     36 #include "hw/irq.h"
     37 #include "hw/isa/isa.h"
     38 #include "hw/qdev-properties.h"
     39 #include "hw/qdev-properties-system.h"
     40 #include "migration/vmstate.h"
     41 #include "hw/block/block.h"
     42 #include "sysemu/block-backend.h"
     43 #include "sysemu/blockdev.h"
     44 #include "sysemu/sysemu.h"
     45 #include "qemu/log.h"
     46 #include "qemu/main-loop.h"
     47 #include "qemu/module.h"
     48 #include "trace.h"
     49 #include "qom/object.h"
     50 #include "fdc-internal.h"
     51 
     52 /********************************************************/
     53 /* debug Floppy devices */
     54 
     55 #define DEBUG_FLOPPY 0
     56 
     57 #define FLOPPY_DPRINTF(fmt, ...)                                \
     58     do {                                                        \
     59         if (DEBUG_FLOPPY) {                                     \
     60             fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__);   \
     61         }                                                       \
     62     } while (0)
     63 
     64 
     65 /* Anonymous BlockBackend for empty drive */
     66 static BlockBackend *blk_create_empty_drive(void)
     67 {
     68     return blk_new(qemu_get_aio_context(), 0, BLK_PERM_ALL);
     69 }
     70 
     71 /********************************************************/
     72 /* qdev floppy bus                                      */
     73 
     74 #define TYPE_FLOPPY_BUS "floppy-bus"
     75 OBJECT_DECLARE_SIMPLE_TYPE(FloppyBus, FLOPPY_BUS)
     76 
     77 static FDrive *get_drv(FDCtrl *fdctrl, int unit);
     78 
     79 static const TypeInfo floppy_bus_info = {
     80     .name = TYPE_FLOPPY_BUS,
     81     .parent = TYPE_BUS,
     82     .instance_size = sizeof(FloppyBus),
     83 };
     84 
     85 static void floppy_bus_create(FDCtrl *fdc, FloppyBus *bus, DeviceState *dev)
     86 {
     87     qbus_init(bus, sizeof(FloppyBus), TYPE_FLOPPY_BUS, dev, NULL);
     88     bus->fdc = fdc;
     89 }
     90 
     91 
     92 /********************************************************/
     93 /* Floppy drive emulation                               */
     94 
     95 /* In many cases, the total sector size of a format is enough to uniquely
     96  * identify it. However, there are some total sector collisions between
     97  * formats of different physical size, and these are noted below by
     98  * highlighting the total sector size for entries with collisions. */
     99 const FDFormat fd_formats[] = {
    100     /* First entry is default format */
    101     /* 1.44 MB 3"1/2 floppy disks */
    102     { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */
    103     { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */
    104     { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, },
    105     { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, },
    106     { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, },
    107     { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, },
    108     { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, },
    109     { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, },
    110     /* 2.88 MB 3"1/2 floppy disks */
    111     { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, },
    112     { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, },
    113     { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, },
    114     { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, },
    115     { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, },
    116     /* 720 kB 3"1/2 floppy disks */
    117     { FLOPPY_DRIVE_TYPE_144,  9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */
    118     { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, },
    119     { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, },
    120     { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, },
    121     { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, },
    122     { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, },
    123     /* 1.2 MB 5"1/4 floppy disks */
    124     { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, },
    125     { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */
    126     { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, },
    127     { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, },
    128     { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */
    129     /* 720 kB 5"1/4 floppy disks */
    130     { FLOPPY_DRIVE_TYPE_120,  9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */
    131     { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, },
    132     /* 360 kB 5"1/4 floppy disks */
    133     { FLOPPY_DRIVE_TYPE_120,  9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */
    134     { FLOPPY_DRIVE_TYPE_120,  9, 40, 0, FDRIVE_RATE_300K, },
    135     { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, },
    136     { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, },
    137     /* 320 kB 5"1/4 floppy disks */
    138     { FLOPPY_DRIVE_TYPE_120,  8, 40, 1, FDRIVE_RATE_250K, },
    139     { FLOPPY_DRIVE_TYPE_120,  8, 40, 0, FDRIVE_RATE_250K, },
    140     /* 360 kB must match 5"1/4 better than 3"1/2... */
    141     { FLOPPY_DRIVE_TYPE_144,  9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */
    142     /* end */
    143     { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, },
    144 };
    145 
    146 static FDriveSize drive_size(FloppyDriveType drive)
    147 {
    148     switch (drive) {
    149     case FLOPPY_DRIVE_TYPE_120:
    150         return FDRIVE_SIZE_525;
    151     case FLOPPY_DRIVE_TYPE_144:
    152     case FLOPPY_DRIVE_TYPE_288:
    153         return FDRIVE_SIZE_350;
    154     default:
    155         return FDRIVE_SIZE_UNKNOWN;
    156     }
    157 }
    158 
    159 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
    160 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
    161 
    162 /* Will always be a fixed parameter for us */
    163 #define FD_SECTOR_LEN          512
    164 #define FD_SECTOR_SC           2   /* Sector size code */
    165 #define FD_RESET_SENSEI_COUNT  4   /* Number of sense interrupts on RESET */
    166 
    167 
    168 static FloppyDriveType get_fallback_drive_type(FDrive *drv);
    169 
    170 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
    171  * currently goes through some pains to keep seeks within the bounds
    172  * established by last_sect and max_track. Correcting this is difficult,
    173  * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
    174  *
    175  * For now: allow empty drives to have large bounds so we can seek around,
    176  * with the understanding that when a diskette is inserted, the bounds will
    177  * properly tighten to match the geometry of that inserted medium.
    178  */
    179 static void fd_empty_seek_hack(FDrive *drv)
    180 {
    181     drv->last_sect = 0xFF;
    182     drv->max_track = 0xFF;
    183 }
    184 
    185 static void fd_init(FDrive *drv)
    186 {
    187     /* Drive */
    188     drv->perpendicular = 0;
    189     /* Disk */
    190     drv->disk = FLOPPY_DRIVE_TYPE_NONE;
    191     drv->last_sect = 0;
    192     drv->max_track = 0;
    193     drv->ro = true;
    194     drv->media_changed = 1;
    195 }
    196 
    197 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
    198 
    199 static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
    200                           uint8_t last_sect, uint8_t num_sides)
    201 {
    202     return (((track * num_sides) + head) * last_sect) + sect - 1;
    203 }
    204 
    205 /* Returns current position, in sectors, for given drive */
    206 static int fd_sector(FDrive *drv)
    207 {
    208     return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect,
    209                           NUM_SIDES(drv));
    210 }
    211 
    212 /* Returns current position, in bytes, for given drive */
    213 static int fd_offset(FDrive *drv)
    214 {
    215     g_assert(fd_sector(drv) < INT_MAX >> BDRV_SECTOR_BITS);
    216     return fd_sector(drv) << BDRV_SECTOR_BITS;
    217 }
    218 
    219 /* Seek to a new position:
    220  * returns 0 if already on right track
    221  * returns 1 if track changed
    222  * returns 2 if track is invalid
    223  * returns 3 if sector is invalid
    224  * returns 4 if seek is disabled
    225  */
    226 static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect,
    227                    int enable_seek)
    228 {
    229     uint32_t sector;
    230     int ret;
    231 
    232     if (track > drv->max_track ||
    233         (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
    234         FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
    235                        head, track, sect, 1,
    236                        (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
    237                        drv->max_track, drv->last_sect);
    238         return 2;
    239     }
    240     if (sect > drv->last_sect) {
    241         FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
    242                        head, track, sect, 1,
    243                        (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
    244                        drv->max_track, drv->last_sect);
    245         return 3;
    246     }
    247     sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
    248     ret = 0;
    249     if (sector != fd_sector(drv)) {
    250 #if 0
    251         if (!enable_seek) {
    252             FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
    253                            " (max=%d %02x %02x)\n",
    254                            head, track, sect, 1, drv->max_track,
    255                            drv->last_sect);
    256             return 4;
    257         }
    258 #endif
    259         drv->head = head;
    260         if (drv->track != track) {
    261             if (drv->blk != NULL && blk_is_inserted(drv->blk)) {
    262                 drv->media_changed = 0;
    263             }
    264             ret = 1;
    265         }
    266         drv->track = track;
    267         drv->sect = sect;
    268     }
    269 
    270     if (drv->blk == NULL || !blk_is_inserted(drv->blk)) {
    271         ret = 2;
    272     }
    273 
    274     return ret;
    275 }
    276 
    277 /* Set drive back to track 0 */
    278 static void fd_recalibrate(FDrive *drv)
    279 {
    280     FLOPPY_DPRINTF("recalibrate\n");
    281     fd_seek(drv, 0, 0, 1, 1);
    282 }
    283 
    284 /**
    285  * Determine geometry based on inserted diskette.
    286  * Will not operate on an empty drive.
    287  *
    288  * @return: 0 on success, -1 if the drive is empty.
    289  */
    290 static int pick_geometry(FDrive *drv)
    291 {
    292     BlockBackend *blk = drv->blk;
    293     const FDFormat *parse;
    294     uint64_t nb_sectors, size;
    295     int i;
    296     int match, size_match, type_match;
    297     bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO;
    298 
    299     /* We can only pick a geometry if we have a diskette. */
    300     if (!drv->blk || !blk_is_inserted(drv->blk) ||
    301         drv->drive == FLOPPY_DRIVE_TYPE_NONE)
    302     {
    303         return -1;
    304     }
    305 
    306     /* We need to determine the likely geometry of the inserted medium.
    307      * In order of preference, we look for:
    308      * (1) The same drive type and number of sectors,
    309      * (2) The same diskette size and number of sectors,
    310      * (3) The same drive type.
    311      *
    312      * In all cases, matches that occur higher in the drive table will take
    313      * precedence over matches that occur later in the table.
    314      */
    315     blk_get_geometry(blk, &nb_sectors);
    316     match = size_match = type_match = -1;
    317     for (i = 0; ; i++) {
    318         parse = &fd_formats[i];
    319         if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) {
    320             break;
    321         }
    322         size = (parse->max_head + 1) * parse->max_track * parse->last_sect;
    323         if (nb_sectors == size) {
    324             if (magic || parse->drive == drv->drive) {
    325                 /* (1) perfect match -- nb_sectors and drive type */
    326                 goto out;
    327             } else if (drive_size(parse->drive) == drive_size(drv->drive)) {
    328                 /* (2) size match -- nb_sectors and physical medium size */
    329                 match = (match == -1) ? i : match;
    330             } else {
    331                 /* This is suspicious -- Did the user misconfigure? */
    332                 size_match = (size_match == -1) ? i : size_match;
    333             }
    334         } else if (type_match == -1) {
    335             if ((parse->drive == drv->drive) ||
    336                 (magic && (parse->drive == get_fallback_drive_type(drv)))) {
    337                 /* (3) type match -- nb_sectors mismatch, but matches the type
    338                  *     specified explicitly by the user, or matches the fallback
    339                  *     default type when using the drive autodetect mechanism */
    340                 type_match = i;
    341             }
    342         }
    343     }
    344 
    345     /* No exact match found */
    346     if (match == -1) {
    347         if (size_match != -1) {
    348             parse = &fd_formats[size_match];
    349             FLOPPY_DPRINTF("User requested floppy drive type '%s', "
    350                            "but inserted medium appears to be a "
    351                            "%"PRId64" sector '%s' type\n",
    352                            FloppyDriveType_str(drv->drive),
    353                            nb_sectors,
    354                            FloppyDriveType_str(parse->drive));
    355         }
    356         assert(type_match != -1 && "misconfigured fd_format");
    357         match = type_match;
    358     }
    359     parse = &(fd_formats[match]);
    360 
    361  out:
    362     if (parse->max_head == 0) {
    363         drv->flags &= ~FDISK_DBL_SIDES;
    364     } else {
    365         drv->flags |= FDISK_DBL_SIDES;
    366     }
    367     drv->max_track = parse->max_track;
    368     drv->last_sect = parse->last_sect;
    369     drv->disk = parse->drive;
    370     drv->media_rate = parse->rate;
    371     return 0;
    372 }
    373 
    374 static void pick_drive_type(FDrive *drv)
    375 {
    376     if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) {
    377         return;
    378     }
    379 
    380     if (pick_geometry(drv) == 0) {
    381         drv->drive = drv->disk;
    382     } else {
    383         drv->drive = get_fallback_drive_type(drv);
    384     }
    385 
    386     g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO);
    387 }
    388 
    389 /* Revalidate a disk drive after a disk change */
    390 static void fd_revalidate(FDrive *drv)
    391 {
    392     int rc;
    393 
    394     FLOPPY_DPRINTF("revalidate\n");
    395     if (drv->blk != NULL) {
    396         drv->ro = !blk_is_writable(drv->blk);
    397         if (!blk_is_inserted(drv->blk)) {
    398             FLOPPY_DPRINTF("No disk in drive\n");
    399             drv->disk = FLOPPY_DRIVE_TYPE_NONE;
    400             fd_empty_seek_hack(drv);
    401         } else if (!drv->media_validated) {
    402             rc = pick_geometry(drv);
    403             if (rc) {
    404                 FLOPPY_DPRINTF("Could not validate floppy drive media");
    405             } else {
    406                 drv->media_validated = true;
    407                 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
    408                                (drv->flags & FDISK_DBL_SIDES) ? 2 : 1,
    409                                drv->max_track, drv->last_sect,
    410                                drv->ro ? "ro" : "rw");
    411             }
    412         }
    413     } else {
    414         FLOPPY_DPRINTF("No drive connected\n");
    415         drv->last_sect = 0;
    416         drv->max_track = 0;
    417         drv->flags &= ~FDISK_DBL_SIDES;
    418         drv->drive = FLOPPY_DRIVE_TYPE_NONE;
    419         drv->disk = FLOPPY_DRIVE_TYPE_NONE;
    420     }
    421 }
    422 
    423 static void fd_change_cb(void *opaque, bool load, Error **errp)
    424 {
    425     FDrive *drive = opaque;
    426 
    427     if (!load) {
    428         blk_set_perm(drive->blk, 0, BLK_PERM_ALL, &error_abort);
    429     } else {
    430         if (!blkconf_apply_backend_options(drive->conf,
    431                                            !blk_supports_write_perm(drive->blk),
    432                                            false, errp)) {
    433             return;
    434         }
    435     }
    436 
    437     drive->media_changed = 1;
    438     drive->media_validated = false;
    439     fd_revalidate(drive);
    440 }
    441 
    442 static const BlockDevOps fd_block_ops = {
    443     .change_media_cb = fd_change_cb,
    444 };
    445 
    446 
    447 #define TYPE_FLOPPY_DRIVE "floppy"
    448 OBJECT_DECLARE_SIMPLE_TYPE(FloppyDrive, FLOPPY_DRIVE)
    449 
    450 struct FloppyDrive {
    451     DeviceState     qdev;
    452     uint32_t        unit;
    453     BlockConf       conf;
    454     FloppyDriveType type;
    455 };
    456 
    457 static Property floppy_drive_properties[] = {
    458     DEFINE_PROP_UINT32("unit", FloppyDrive, unit, -1),
    459     DEFINE_BLOCK_PROPERTIES(FloppyDrive, conf),
    460     DEFINE_PROP_SIGNED("drive-type", FloppyDrive, type,
    461                         FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
    462                         FloppyDriveType),
    463     DEFINE_PROP_END_OF_LIST(),
    464 };
    465 
    466 static void floppy_drive_realize(DeviceState *qdev, Error **errp)
    467 {
    468     FloppyDrive *dev = FLOPPY_DRIVE(qdev);
    469     FloppyBus *bus = FLOPPY_BUS(qdev->parent_bus);
    470     FDrive *drive;
    471     bool read_only;
    472     int ret;
    473 
    474     if (dev->unit == -1) {
    475         for (dev->unit = 0; dev->unit < MAX_FD; dev->unit++) {
    476             drive = get_drv(bus->fdc, dev->unit);
    477             if (!drive->blk) {
    478                 break;
    479             }
    480         }
    481     }
    482 
    483     if (dev->unit >= MAX_FD) {
    484         error_setg(errp, "Can't create floppy unit %d, bus supports "
    485                    "only %d units", dev->unit, MAX_FD);
    486         return;
    487     }
    488 
    489     drive = get_drv(bus->fdc, dev->unit);
    490     if (drive->blk) {
    491         error_setg(errp, "Floppy unit %d is in use", dev->unit);
    492         return;
    493     }
    494 
    495     if (!dev->conf.blk) {
    496         dev->conf.blk = blk_create_empty_drive();
    497         ret = blk_attach_dev(dev->conf.blk, qdev);
    498         assert(ret == 0);
    499 
    500         /* Don't take write permissions on an empty drive to allow attaching a
    501          * read-only node later */
    502         read_only = true;
    503     } else {
    504         read_only = !blk_bs(dev->conf.blk) ||
    505                     !blk_supports_write_perm(dev->conf.blk);
    506     }
    507 
    508     if (!blkconf_blocksizes(&dev->conf, errp)) {
    509         return;
    510     }
    511 
    512     if (dev->conf.logical_block_size != 512 ||
    513         dev->conf.physical_block_size != 512)
    514     {
    515         error_setg(errp, "Physical and logical block size must "
    516                    "be 512 for floppy");
    517         return;
    518     }
    519 
    520     /* rerror/werror aren't supported by fdc and therefore not even registered
    521      * with qdev. So set the defaults manually before they are used in
    522      * blkconf_apply_backend_options(). */
    523     dev->conf.rerror = BLOCKDEV_ON_ERROR_AUTO;
    524     dev->conf.werror = BLOCKDEV_ON_ERROR_AUTO;
    525 
    526     if (!blkconf_apply_backend_options(&dev->conf, read_only, false, errp)) {
    527         return;
    528     }
    529 
    530     /* 'enospc' is the default for -drive, 'report' is what blk_new() gives us
    531      * for empty drives. */
    532     if (blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC &&
    533         blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_REPORT) {
    534         error_setg(errp, "fdc doesn't support drive option werror");
    535         return;
    536     }
    537     if (blk_get_on_error(dev->conf.blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
    538         error_setg(errp, "fdc doesn't support drive option rerror");
    539         return;
    540     }
    541 
    542     drive->conf = &dev->conf;
    543     drive->blk = dev->conf.blk;
    544     drive->fdctrl = bus->fdc;
    545 
    546     fd_init(drive);
    547     blk_set_dev_ops(drive->blk, &fd_block_ops, drive);
    548 
    549     /* Keep 'type' qdev property and FDrive->drive in sync */
    550     drive->drive = dev->type;
    551     pick_drive_type(drive);
    552     dev->type = drive->drive;
    553 
    554     fd_revalidate(drive);
    555 }
    556 
    557 static void floppy_drive_class_init(ObjectClass *klass, void *data)
    558 {
    559     DeviceClass *k = DEVICE_CLASS(klass);
    560     k->realize = floppy_drive_realize;
    561     set_bit(DEVICE_CATEGORY_STORAGE, k->categories);
    562     k->bus_type = TYPE_FLOPPY_BUS;
    563     device_class_set_props(k, floppy_drive_properties);
    564     k->desc = "virtual floppy drive";
    565 }
    566 
    567 static const TypeInfo floppy_drive_info = {
    568     .name = TYPE_FLOPPY_DRIVE,
    569     .parent = TYPE_DEVICE,
    570     .instance_size = sizeof(FloppyDrive),
    571     .class_init = floppy_drive_class_init,
    572 };
    573 
    574 /********************************************************/
    575 /* Intel 82078 floppy disk controller emulation          */
    576 
    577 static void fdctrl_to_command_phase(FDCtrl *fdctrl);
    578 static void fdctrl_raise_irq(FDCtrl *fdctrl);
    579 static FDrive *get_cur_drv(FDCtrl *fdctrl);
    580 
    581 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
    582 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl);
    583 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl);
    584 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value);
    585 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl);
    586 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value);
    587 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl);
    588 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value);
    589 static uint32_t fdctrl_read_data(FDCtrl *fdctrl);
    590 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value);
    591 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl);
    592 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value);
    593 
    594 enum {
    595     FD_DIR_WRITE   = 0,
    596     FD_DIR_READ    = 1,
    597     FD_DIR_SCANE   = 2,
    598     FD_DIR_SCANL   = 3,
    599     FD_DIR_SCANH   = 4,
    600     FD_DIR_VERIFY  = 5,
    601 };
    602 
    603 enum {
    604     FD_STATE_MULTI  = 0x01,	/* multi track flag */
    605     FD_STATE_FORMAT = 0x02,	/* format flag */
    606 };
    607 
    608 enum {
    609     FD_REG_SRA = 0x00,
    610     FD_REG_SRB = 0x01,
    611     FD_REG_DOR = 0x02,
    612     FD_REG_TDR = 0x03,
    613     FD_REG_MSR = 0x04,
    614     FD_REG_DSR = 0x04,
    615     FD_REG_FIFO = 0x05,
    616     FD_REG_DIR = 0x07,
    617     FD_REG_CCR = 0x07,
    618 };
    619 
    620 enum {
    621     FD_CMD_READ_TRACK = 0x02,
    622     FD_CMD_SPECIFY = 0x03,
    623     FD_CMD_SENSE_DRIVE_STATUS = 0x04,
    624     FD_CMD_WRITE = 0x05,
    625     FD_CMD_READ = 0x06,
    626     FD_CMD_RECALIBRATE = 0x07,
    627     FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
    628     FD_CMD_WRITE_DELETED = 0x09,
    629     FD_CMD_READ_ID = 0x0a,
    630     FD_CMD_READ_DELETED = 0x0c,
    631     FD_CMD_FORMAT_TRACK = 0x0d,
    632     FD_CMD_DUMPREG = 0x0e,
    633     FD_CMD_SEEK = 0x0f,
    634     FD_CMD_VERSION = 0x10,
    635     FD_CMD_SCAN_EQUAL = 0x11,
    636     FD_CMD_PERPENDICULAR_MODE = 0x12,
    637     FD_CMD_CONFIGURE = 0x13,
    638     FD_CMD_LOCK = 0x14,
    639     FD_CMD_VERIFY = 0x16,
    640     FD_CMD_POWERDOWN_MODE = 0x17,
    641     FD_CMD_PART_ID = 0x18,
    642     FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
    643     FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
    644     FD_CMD_SAVE = 0x2e,
    645     FD_CMD_OPTION = 0x33,
    646     FD_CMD_RESTORE = 0x4e,
    647     FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
    648     FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
    649     FD_CMD_FORMAT_AND_WRITE = 0xcd,
    650     FD_CMD_RELATIVE_SEEK_IN = 0xcf,
    651 };
    652 
    653 enum {
    654     FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
    655     FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
    656     FD_CONFIG_POLL  = 0x10, /* Poll enabled */
    657     FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
    658     FD_CONFIG_EIS   = 0x40, /* No implied seeks */
    659 };
    660 
    661 enum {
    662     FD_SR0_DS0      = 0x01,
    663     FD_SR0_DS1      = 0x02,
    664     FD_SR0_HEAD     = 0x04,
    665     FD_SR0_EQPMT    = 0x10,
    666     FD_SR0_SEEK     = 0x20,
    667     FD_SR0_ABNTERM  = 0x40,
    668     FD_SR0_INVCMD   = 0x80,
    669     FD_SR0_RDYCHG   = 0xc0,
    670 };
    671 
    672 enum {
    673     FD_SR1_MA       = 0x01, /* Missing address mark */
    674     FD_SR1_NW       = 0x02, /* Not writable */
    675     FD_SR1_EC       = 0x80, /* End of cylinder */
    676 };
    677 
    678 enum {
    679     FD_SR2_SNS      = 0x04, /* Scan not satisfied */
    680     FD_SR2_SEH      = 0x08, /* Scan equal hit */
    681 };
    682 
    683 enum {
    684     FD_SRA_DIR      = 0x01,
    685     FD_SRA_nWP      = 0x02,
    686     FD_SRA_nINDX    = 0x04,
    687     FD_SRA_HDSEL    = 0x08,
    688     FD_SRA_nTRK0    = 0x10,
    689     FD_SRA_STEP     = 0x20,
    690     FD_SRA_nDRV2    = 0x40,
    691     FD_SRA_INTPEND  = 0x80,
    692 };
    693 
    694 enum {
    695     FD_SRB_MTR0     = 0x01,
    696     FD_SRB_MTR1     = 0x02,
    697     FD_SRB_WGATE    = 0x04,
    698     FD_SRB_RDATA    = 0x08,
    699     FD_SRB_WDATA    = 0x10,
    700     FD_SRB_DR0      = 0x20,
    701 };
    702 
    703 enum {
    704 #if MAX_FD == 4
    705     FD_DOR_SELMASK  = 0x03,
    706 #else
    707     FD_DOR_SELMASK  = 0x01,
    708 #endif
    709     FD_DOR_nRESET   = 0x04,
    710     FD_DOR_DMAEN    = 0x08,
    711     FD_DOR_MOTEN0   = 0x10,
    712     FD_DOR_MOTEN1   = 0x20,
    713     FD_DOR_MOTEN2   = 0x40,
    714     FD_DOR_MOTEN3   = 0x80,
    715 };
    716 
    717 enum {
    718 #if MAX_FD == 4
    719     FD_TDR_BOOTSEL  = 0x0c,
    720 #else
    721     FD_TDR_BOOTSEL  = 0x04,
    722 #endif
    723 };
    724 
    725 enum {
    726     FD_DSR_DRATEMASK= 0x03,
    727     FD_DSR_PWRDOWN  = 0x40,
    728     FD_DSR_SWRESET  = 0x80,
    729 };
    730 
    731 enum {
    732     FD_MSR_DRV0BUSY = 0x01,
    733     FD_MSR_DRV1BUSY = 0x02,
    734     FD_MSR_DRV2BUSY = 0x04,
    735     FD_MSR_DRV3BUSY = 0x08,
    736     FD_MSR_CMDBUSY  = 0x10,
    737     FD_MSR_NONDMA   = 0x20,
    738     FD_MSR_DIO      = 0x40,
    739     FD_MSR_RQM      = 0x80,
    740 };
    741 
    742 enum {
    743     FD_DIR_DSKCHG   = 0x80,
    744 };
    745 
    746 /*
    747  * See chapter 5.0 "Controller phases" of the spec:
    748  *
    749  * Command phase:
    750  * The host writes a command and its parameters into the FIFO. The command
    751  * phase is completed when all parameters for the command have been supplied,
    752  * and execution phase is entered.
    753  *
    754  * Execution phase:
    755  * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
    756  * contains the payload now, otherwise it's unused. When all bytes of the
    757  * required data have been transferred, the state is switched to either result
    758  * phase (if the command produces status bytes) or directly back into the
    759  * command phase for the next command.
    760  *
    761  * Result phase:
    762  * The host reads out the FIFO, which contains one or more result bytes now.
    763  */
    764 enum {
    765     /* Only for migration: reconstruct phase from registers like qemu 2.3 */
    766     FD_PHASE_RECONSTRUCT    = 0,
    767 
    768     FD_PHASE_COMMAND        = 1,
    769     FD_PHASE_EXECUTION      = 2,
    770     FD_PHASE_RESULT         = 3,
    771 };
    772 
    773 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
    774 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
    775 
    776 static FloppyDriveType get_fallback_drive_type(FDrive *drv)
    777 {
    778     return drv->fdctrl->fallback;
    779 }
    780 
    781 uint32_t fdctrl_read(void *opaque, uint32_t reg)
    782 {
    783     FDCtrl *fdctrl = opaque;
    784     uint32_t retval;
    785 
    786     reg &= 7;
    787     switch (reg) {
    788     case FD_REG_SRA:
    789         retval = fdctrl_read_statusA(fdctrl);
    790         break;
    791     case FD_REG_SRB:
    792         retval = fdctrl_read_statusB(fdctrl);
    793         break;
    794     case FD_REG_DOR:
    795         retval = fdctrl_read_dor(fdctrl);
    796         break;
    797     case FD_REG_TDR:
    798         retval = fdctrl_read_tape(fdctrl);
    799         break;
    800     case FD_REG_MSR:
    801         retval = fdctrl_read_main_status(fdctrl);
    802         break;
    803     case FD_REG_FIFO:
    804         retval = fdctrl_read_data(fdctrl);
    805         break;
    806     case FD_REG_DIR:
    807         retval = fdctrl_read_dir(fdctrl);
    808         break;
    809     default:
    810         retval = (uint32_t)(-1);
    811         break;
    812     }
    813     trace_fdc_ioport_read(reg, retval);
    814 
    815     return retval;
    816 }
    817 
    818 void fdctrl_write(void *opaque, uint32_t reg, uint32_t value)
    819 {
    820     FDCtrl *fdctrl = opaque;
    821 
    822     reg &= 7;
    823     trace_fdc_ioport_write(reg, value);
    824     switch (reg) {
    825     case FD_REG_DOR:
    826         fdctrl_write_dor(fdctrl, value);
    827         break;
    828     case FD_REG_TDR:
    829         fdctrl_write_tape(fdctrl, value);
    830         break;
    831     case FD_REG_DSR:
    832         fdctrl_write_rate(fdctrl, value);
    833         break;
    834     case FD_REG_FIFO:
    835         fdctrl_write_data(fdctrl, value);
    836         break;
    837     case FD_REG_CCR:
    838         fdctrl_write_ccr(fdctrl, value);
    839         break;
    840     default:
    841         break;
    842     }
    843 }
    844 
    845 static bool fdrive_media_changed_needed(void *opaque)
    846 {
    847     FDrive *drive = opaque;
    848 
    849     return (drive->blk != NULL && drive->media_changed != 1);
    850 }
    851 
    852 static const VMStateDescription vmstate_fdrive_media_changed = {
    853     .name = "fdrive/media_changed",
    854     .version_id = 1,
    855     .minimum_version_id = 1,
    856     .needed = fdrive_media_changed_needed,
    857     .fields = (VMStateField[]) {
    858         VMSTATE_UINT8(media_changed, FDrive),
    859         VMSTATE_END_OF_LIST()
    860     }
    861 };
    862 
    863 static const VMStateDescription vmstate_fdrive_media_rate = {
    864     .name = "fdrive/media_rate",
    865     .version_id = 1,
    866     .minimum_version_id = 1,
    867     .fields = (VMStateField[]) {
    868         VMSTATE_UINT8(media_rate, FDrive),
    869         VMSTATE_END_OF_LIST()
    870     }
    871 };
    872 
    873 static bool fdrive_perpendicular_needed(void *opaque)
    874 {
    875     FDrive *drive = opaque;
    876 
    877     return drive->perpendicular != 0;
    878 }
    879 
    880 static const VMStateDescription vmstate_fdrive_perpendicular = {
    881     .name = "fdrive/perpendicular",
    882     .version_id = 1,
    883     .minimum_version_id = 1,
    884     .needed = fdrive_perpendicular_needed,
    885     .fields = (VMStateField[]) {
    886         VMSTATE_UINT8(perpendicular, FDrive),
    887         VMSTATE_END_OF_LIST()
    888     }
    889 };
    890 
    891 static int fdrive_post_load(void *opaque, int version_id)
    892 {
    893     fd_revalidate(opaque);
    894     return 0;
    895 }
    896 
    897 static const VMStateDescription vmstate_fdrive = {
    898     .name = "fdrive",
    899     .version_id = 1,
    900     .minimum_version_id = 1,
    901     .post_load = fdrive_post_load,
    902     .fields = (VMStateField[]) {
    903         VMSTATE_UINT8(head, FDrive),
    904         VMSTATE_UINT8(track, FDrive),
    905         VMSTATE_UINT8(sect, FDrive),
    906         VMSTATE_END_OF_LIST()
    907     },
    908     .subsections = (const VMStateDescription*[]) {
    909         &vmstate_fdrive_media_changed,
    910         &vmstate_fdrive_media_rate,
    911         &vmstate_fdrive_perpendicular,
    912         NULL
    913     }
    914 };
    915 
    916 /*
    917  * Reconstructs the phase from register values according to the logic that was
    918  * implemented in qemu 2.3. This is the default value that is used if the phase
    919  * subsection is not present on migration.
    920  *
    921  * Don't change this function to reflect newer qemu versions, it is part of
    922  * the migration ABI.
    923  */
    924 static int reconstruct_phase(FDCtrl *fdctrl)
    925 {
    926     if (fdctrl->msr & FD_MSR_NONDMA) {
    927         return FD_PHASE_EXECUTION;
    928     } else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
    929         /* qemu 2.3 disabled RQM only during DMA transfers */
    930         return FD_PHASE_EXECUTION;
    931     } else if (fdctrl->msr & FD_MSR_DIO) {
    932         return FD_PHASE_RESULT;
    933     } else {
    934         return FD_PHASE_COMMAND;
    935     }
    936 }
    937 
    938 static int fdc_pre_save(void *opaque)
    939 {
    940     FDCtrl *s = opaque;
    941 
    942     s->dor_vmstate = s->dor | GET_CUR_DRV(s);
    943 
    944     return 0;
    945 }
    946 
    947 static int fdc_pre_load(void *opaque)
    948 {
    949     FDCtrl *s = opaque;
    950     s->phase = FD_PHASE_RECONSTRUCT;
    951     return 0;
    952 }
    953 
    954 static int fdc_post_load(void *opaque, int version_id)
    955 {
    956     FDCtrl *s = opaque;
    957 
    958     SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
    959     s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
    960 
    961     if (s->phase == FD_PHASE_RECONSTRUCT) {
    962         s->phase = reconstruct_phase(s);
    963     }
    964 
    965     return 0;
    966 }
    967 
    968 static bool fdc_reset_sensei_needed(void *opaque)
    969 {
    970     FDCtrl *s = opaque;
    971 
    972     return s->reset_sensei != 0;
    973 }
    974 
    975 static const VMStateDescription vmstate_fdc_reset_sensei = {
    976     .name = "fdc/reset_sensei",
    977     .version_id = 1,
    978     .minimum_version_id = 1,
    979     .needed = fdc_reset_sensei_needed,
    980     .fields = (VMStateField[]) {
    981         VMSTATE_INT32(reset_sensei, FDCtrl),
    982         VMSTATE_END_OF_LIST()
    983     }
    984 };
    985 
    986 static bool fdc_result_timer_needed(void *opaque)
    987 {
    988     FDCtrl *s = opaque;
    989 
    990     return timer_pending(s->result_timer);
    991 }
    992 
    993 static const VMStateDescription vmstate_fdc_result_timer = {
    994     .name = "fdc/result_timer",
    995     .version_id = 1,
    996     .minimum_version_id = 1,
    997     .needed = fdc_result_timer_needed,
    998     .fields = (VMStateField[]) {
    999         VMSTATE_TIMER_PTR(result_timer, FDCtrl),
   1000         VMSTATE_END_OF_LIST()
   1001     }
   1002 };
   1003 
   1004 static bool fdc_phase_needed(void *opaque)
   1005 {
   1006     FDCtrl *fdctrl = opaque;
   1007 
   1008     return reconstruct_phase(fdctrl) != fdctrl->phase;
   1009 }
   1010 
   1011 static const VMStateDescription vmstate_fdc_phase = {
   1012     .name = "fdc/phase",
   1013     .version_id = 1,
   1014     .minimum_version_id = 1,
   1015     .needed = fdc_phase_needed,
   1016     .fields = (VMStateField[]) {
   1017         VMSTATE_UINT8(phase, FDCtrl),
   1018         VMSTATE_END_OF_LIST()
   1019     }
   1020 };
   1021 
   1022 const VMStateDescription vmstate_fdc = {
   1023     .name = "fdc",
   1024     .version_id = 2,
   1025     .minimum_version_id = 2,
   1026     .pre_save = fdc_pre_save,
   1027     .pre_load = fdc_pre_load,
   1028     .post_load = fdc_post_load,
   1029     .fields = (VMStateField[]) {
   1030         /* Controller State */
   1031         VMSTATE_UINT8(sra, FDCtrl),
   1032         VMSTATE_UINT8(srb, FDCtrl),
   1033         VMSTATE_UINT8(dor_vmstate, FDCtrl),
   1034         VMSTATE_UINT8(tdr, FDCtrl),
   1035         VMSTATE_UINT8(dsr, FDCtrl),
   1036         VMSTATE_UINT8(msr, FDCtrl),
   1037         VMSTATE_UINT8(status0, FDCtrl),
   1038         VMSTATE_UINT8(status1, FDCtrl),
   1039         VMSTATE_UINT8(status2, FDCtrl),
   1040         /* Command FIFO */
   1041         VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8,
   1042                              uint8_t),
   1043         VMSTATE_UINT32(data_pos, FDCtrl),
   1044         VMSTATE_UINT32(data_len, FDCtrl),
   1045         VMSTATE_UINT8(data_state, FDCtrl),
   1046         VMSTATE_UINT8(data_dir, FDCtrl),
   1047         VMSTATE_UINT8(eot, FDCtrl),
   1048         /* States kept only to be returned back */
   1049         VMSTATE_UINT8(timer0, FDCtrl),
   1050         VMSTATE_UINT8(timer1, FDCtrl),
   1051         VMSTATE_UINT8(precomp_trk, FDCtrl),
   1052         VMSTATE_UINT8(config, FDCtrl),
   1053         VMSTATE_UINT8(lock, FDCtrl),
   1054         VMSTATE_UINT8(pwrd, FDCtrl),
   1055         VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl, NULL),
   1056         VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1,
   1057                              vmstate_fdrive, FDrive),
   1058         VMSTATE_END_OF_LIST()
   1059     },
   1060     .subsections = (const VMStateDescription*[]) {
   1061         &vmstate_fdc_reset_sensei,
   1062         &vmstate_fdc_result_timer,
   1063         &vmstate_fdc_phase,
   1064         NULL
   1065     }
   1066 };
   1067 
   1068 /* Change IRQ state */
   1069 static void fdctrl_reset_irq(FDCtrl *fdctrl)
   1070 {
   1071     fdctrl->status0 = 0;
   1072     if (!(fdctrl->sra & FD_SRA_INTPEND))
   1073         return;
   1074     FLOPPY_DPRINTF("Reset interrupt\n");
   1075     qemu_set_irq(fdctrl->irq, 0);
   1076     fdctrl->sra &= ~FD_SRA_INTPEND;
   1077 }
   1078 
   1079 static void fdctrl_raise_irq(FDCtrl *fdctrl)
   1080 {
   1081     if (!(fdctrl->sra & FD_SRA_INTPEND)) {
   1082         qemu_set_irq(fdctrl->irq, 1);
   1083         fdctrl->sra |= FD_SRA_INTPEND;
   1084     }
   1085 
   1086     fdctrl->reset_sensei = 0;
   1087     FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
   1088 }
   1089 
   1090 /* Reset controller */
   1091 void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
   1092 {
   1093     int i;
   1094 
   1095     FLOPPY_DPRINTF("reset controller\n");
   1096     fdctrl_reset_irq(fdctrl);
   1097     /* Initialise controller */
   1098     fdctrl->sra = 0;
   1099     fdctrl->srb = 0xc0;
   1100     if (!fdctrl->drives[1].blk) {
   1101         fdctrl->sra |= FD_SRA_nDRV2;
   1102     }
   1103     fdctrl->cur_drv = 0;
   1104     fdctrl->dor = FD_DOR_nRESET;
   1105     fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
   1106     fdctrl->msr = FD_MSR_RQM;
   1107     fdctrl->reset_sensei = 0;
   1108     timer_del(fdctrl->result_timer);
   1109     /* FIFO state */
   1110     fdctrl->data_pos = 0;
   1111     fdctrl->data_len = 0;
   1112     fdctrl->data_state = 0;
   1113     fdctrl->data_dir = FD_DIR_WRITE;
   1114     for (i = 0; i < MAX_FD; i++)
   1115         fd_recalibrate(&fdctrl->drives[i]);
   1116     fdctrl_to_command_phase(fdctrl);
   1117     if (do_irq) {
   1118         fdctrl->status0 |= FD_SR0_RDYCHG;
   1119         fdctrl_raise_irq(fdctrl);
   1120         fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
   1121     }
   1122 }
   1123 
   1124 static inline FDrive *drv0(FDCtrl *fdctrl)
   1125 {
   1126     return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
   1127 }
   1128 
   1129 static inline FDrive *drv1(FDCtrl *fdctrl)
   1130 {
   1131     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
   1132         return &fdctrl->drives[1];
   1133     else
   1134         return &fdctrl->drives[0];
   1135 }
   1136 
   1137 #if MAX_FD == 4
   1138 static inline FDrive *drv2(FDCtrl *fdctrl)
   1139 {
   1140     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
   1141         return &fdctrl->drives[2];
   1142     else
   1143         return &fdctrl->drives[1];
   1144 }
   1145 
   1146 static inline FDrive *drv3(FDCtrl *fdctrl)
   1147 {
   1148     if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
   1149         return &fdctrl->drives[3];
   1150     else
   1151         return &fdctrl->drives[2];
   1152 }
   1153 #endif
   1154 
   1155 static FDrive *get_drv(FDCtrl *fdctrl, int unit)
   1156 {
   1157     switch (unit) {
   1158         case 0: return drv0(fdctrl);
   1159         case 1: return drv1(fdctrl);
   1160 #if MAX_FD == 4
   1161         case 2: return drv2(fdctrl);
   1162         case 3: return drv3(fdctrl);
   1163 #endif
   1164         default: return NULL;
   1165     }
   1166 }
   1167 
   1168 static FDrive *get_cur_drv(FDCtrl *fdctrl)
   1169 {
   1170     FDrive *cur_drv = get_drv(fdctrl, fdctrl->cur_drv);
   1171 
   1172     if (!cur_drv->blk) {
   1173         /*
   1174          * Kludge: empty drive line selected. Create an anonymous
   1175          * BlockBackend to avoid NULL deref with various BlockBackend
   1176          * API calls within this model (CVE-2021-20196).
   1177          * Due to the controller QOM model limitations, we don't
   1178          * attach the created to the controller device.
   1179          */
   1180         cur_drv->blk = blk_create_empty_drive();
   1181     }
   1182     return cur_drv;
   1183 }
   1184 
   1185 /* Status A register : 0x00 (read-only) */
   1186 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl)
   1187 {
   1188     uint32_t retval = fdctrl->sra;
   1189 
   1190     FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
   1191 
   1192     return retval;
   1193 }
   1194 
   1195 /* Status B register : 0x01 (read-only) */
   1196 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl)
   1197 {
   1198     uint32_t retval = fdctrl->srb;
   1199 
   1200     FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
   1201 
   1202     return retval;
   1203 }
   1204 
   1205 /* Digital output register : 0x02 */
   1206 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl)
   1207 {
   1208     uint32_t retval = fdctrl->dor;
   1209 
   1210     /* Selected drive */
   1211     retval |= fdctrl->cur_drv;
   1212     FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
   1213 
   1214     return retval;
   1215 }
   1216 
   1217 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value)
   1218 {
   1219     FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
   1220 
   1221     /* Motors */
   1222     if (value & FD_DOR_MOTEN0)
   1223         fdctrl->srb |= FD_SRB_MTR0;
   1224     else
   1225         fdctrl->srb &= ~FD_SRB_MTR0;
   1226     if (value & FD_DOR_MOTEN1)
   1227         fdctrl->srb |= FD_SRB_MTR1;
   1228     else
   1229         fdctrl->srb &= ~FD_SRB_MTR1;
   1230 
   1231     /* Drive */
   1232     if (value & 1)
   1233         fdctrl->srb |= FD_SRB_DR0;
   1234     else
   1235         fdctrl->srb &= ~FD_SRB_DR0;
   1236 
   1237     /* Reset */
   1238     if (!(value & FD_DOR_nRESET)) {
   1239         if (fdctrl->dor & FD_DOR_nRESET) {
   1240             FLOPPY_DPRINTF("controller enter RESET state\n");
   1241         }
   1242     } else {
   1243         if (!(fdctrl->dor & FD_DOR_nRESET)) {
   1244             FLOPPY_DPRINTF("controller out of RESET state\n");
   1245             fdctrl_reset(fdctrl, 1);
   1246             fdctrl->dsr &= ~FD_DSR_PWRDOWN;
   1247         }
   1248     }
   1249     /* Selected drive */
   1250     fdctrl->cur_drv = value & FD_DOR_SELMASK;
   1251 
   1252     fdctrl->dor = value;
   1253 }
   1254 
   1255 /* Tape drive register : 0x03 */
   1256 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl)
   1257 {
   1258     uint32_t retval = fdctrl->tdr;
   1259 
   1260     FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
   1261 
   1262     return retval;
   1263 }
   1264 
   1265 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value)
   1266 {
   1267     /* Reset mode */
   1268     if (!(fdctrl->dor & FD_DOR_nRESET)) {
   1269         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
   1270         return;
   1271     }
   1272     FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
   1273     /* Disk boot selection indicator */
   1274     fdctrl->tdr = value & FD_TDR_BOOTSEL;
   1275     /* Tape indicators: never allow */
   1276 }
   1277 
   1278 /* Main status register : 0x04 (read) */
   1279 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl)
   1280 {
   1281     uint32_t retval = fdctrl->msr;
   1282 
   1283     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
   1284     fdctrl->dor |= FD_DOR_nRESET;
   1285 
   1286     FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
   1287 
   1288     return retval;
   1289 }
   1290 
   1291 /* Data select rate register : 0x04 (write) */
   1292 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value)
   1293 {
   1294     /* Reset mode */
   1295     if (!(fdctrl->dor & FD_DOR_nRESET)) {
   1296         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
   1297         return;
   1298     }
   1299     FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
   1300     /* Reset: autoclear */
   1301     if (value & FD_DSR_SWRESET) {
   1302         fdctrl->dor &= ~FD_DOR_nRESET;
   1303         fdctrl_reset(fdctrl, 1);
   1304         fdctrl->dor |= FD_DOR_nRESET;
   1305     }
   1306     if (value & FD_DSR_PWRDOWN) {
   1307         fdctrl_reset(fdctrl, 1);
   1308     }
   1309     fdctrl->dsr = value;
   1310 }
   1311 
   1312 /* Configuration control register: 0x07 (write) */
   1313 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value)
   1314 {
   1315     /* Reset mode */
   1316     if (!(fdctrl->dor & FD_DOR_nRESET)) {
   1317         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
   1318         return;
   1319     }
   1320     FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
   1321 
   1322     /* Only the rate selection bits used in AT mode, and we
   1323      * store those in the DSR.
   1324      */
   1325     fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) |
   1326                   (value & FD_DSR_DRATEMASK);
   1327 }
   1328 
   1329 static int fdctrl_media_changed(FDrive *drv)
   1330 {
   1331     return drv->media_changed;
   1332 }
   1333 
   1334 /* Digital input register : 0x07 (read-only) */
   1335 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
   1336 {
   1337     uint32_t retval = 0;
   1338 
   1339     if (fdctrl_media_changed(get_cur_drv(fdctrl))) {
   1340         retval |= FD_DIR_DSKCHG;
   1341     }
   1342     if (retval != 0) {
   1343         FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
   1344     }
   1345 
   1346     return retval;
   1347 }
   1348 
   1349 /* Clear the FIFO and update the state for receiving the next command */
   1350 static void fdctrl_to_command_phase(FDCtrl *fdctrl)
   1351 {
   1352     fdctrl->phase = FD_PHASE_COMMAND;
   1353     fdctrl->data_dir = FD_DIR_WRITE;
   1354     fdctrl->data_pos = 0;
   1355     fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
   1356     fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
   1357     fdctrl->msr |= FD_MSR_RQM;
   1358 }
   1359 
   1360 /* Update the state to allow the guest to read out the command status.
   1361  * @fifo_len is the number of result bytes to be read out. */
   1362 static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
   1363 {
   1364     fdctrl->phase = FD_PHASE_RESULT;
   1365     fdctrl->data_dir = FD_DIR_READ;
   1366     fdctrl->data_len = fifo_len;
   1367     fdctrl->data_pos = 0;
   1368     fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
   1369 }
   1370 
   1371 /* Set an error: unimplemented/unknown command */
   1372 static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
   1373 {
   1374     qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
   1375                   fdctrl->fifo[0]);
   1376     fdctrl->fifo[0] = FD_SR0_INVCMD;
   1377     fdctrl_to_result_phase(fdctrl, 1);
   1378 }
   1379 
   1380 /* Seek to next sector
   1381  * returns 0 when end of track reached (for DBL_SIDES on head 1)
   1382  * otherwise returns 1
   1383  */
   1384 static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv)
   1385 {
   1386     FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
   1387                    cur_drv->head, cur_drv->track, cur_drv->sect,
   1388                    fd_sector(cur_drv));
   1389     /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
   1390        error in fact */
   1391     uint8_t new_head = cur_drv->head;
   1392     uint8_t new_track = cur_drv->track;
   1393     uint8_t new_sect = cur_drv->sect;
   1394 
   1395     int ret = 1;
   1396 
   1397     if (new_sect >= cur_drv->last_sect ||
   1398         new_sect == fdctrl->eot) {
   1399         new_sect = 1;
   1400         if (FD_MULTI_TRACK(fdctrl->data_state)) {
   1401             if (new_head == 0 &&
   1402                 (cur_drv->flags & FDISK_DBL_SIDES) != 0) {
   1403                 new_head = 1;
   1404             } else {
   1405                 new_head = 0;
   1406                 new_track++;
   1407                 fdctrl->status0 |= FD_SR0_SEEK;
   1408                 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
   1409                     ret = 0;
   1410                 }
   1411             }
   1412         } else {
   1413             fdctrl->status0 |= FD_SR0_SEEK;
   1414             new_track++;
   1415             ret = 0;
   1416         }
   1417         if (ret == 1) {
   1418             FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
   1419                     new_head, new_track, new_sect, fd_sector(cur_drv));
   1420         }
   1421     } else {
   1422         new_sect++;
   1423     }
   1424     fd_seek(cur_drv, new_head, new_track, new_sect, 1);
   1425     return ret;
   1426 }
   1427 
   1428 /* Callback for transfer end (stop or abort) */
   1429 static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
   1430                                  uint8_t status1, uint8_t status2)
   1431 {
   1432     FDrive *cur_drv;
   1433     cur_drv = get_cur_drv(fdctrl);
   1434 
   1435     fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
   1436     fdctrl->status0 |= GET_CUR_DRV(fdctrl);
   1437     if (cur_drv->head) {
   1438         fdctrl->status0 |= FD_SR0_HEAD;
   1439     }
   1440     fdctrl->status0 |= status0;
   1441 
   1442     FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
   1443                    status0, status1, status2, fdctrl->status0);
   1444     fdctrl->fifo[0] = fdctrl->status0;
   1445     fdctrl->fifo[1] = status1;
   1446     fdctrl->fifo[2] = status2;
   1447     fdctrl->fifo[3] = cur_drv->track;
   1448     fdctrl->fifo[4] = cur_drv->head;
   1449     fdctrl->fifo[5] = cur_drv->sect;
   1450     fdctrl->fifo[6] = FD_SECTOR_SC;
   1451     fdctrl->data_dir = FD_DIR_READ;
   1452     if (fdctrl->dma_chann != -1 && !(fdctrl->msr & FD_MSR_NONDMA)) {
   1453         IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
   1454         k->release_DREQ(fdctrl->dma, fdctrl->dma_chann);
   1455     }
   1456     fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
   1457     fdctrl->msr &= ~FD_MSR_NONDMA;
   1458 
   1459     fdctrl_to_result_phase(fdctrl, 7);
   1460     fdctrl_raise_irq(fdctrl);
   1461 }
   1462 
   1463 /* Prepare a data transfer (either DMA or FIFO) */
   1464 static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
   1465 {
   1466     FDrive *cur_drv;
   1467     uint8_t kh, kt, ks;
   1468 
   1469     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
   1470     cur_drv = get_cur_drv(fdctrl);
   1471     kt = fdctrl->fifo[2];
   1472     kh = fdctrl->fifo[3];
   1473     ks = fdctrl->fifo[4];
   1474     FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
   1475                    GET_CUR_DRV(fdctrl), kh, kt, ks,
   1476                    fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
   1477                                   NUM_SIDES(cur_drv)));
   1478     switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
   1479     case 2:
   1480         /* sect too big */
   1481         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
   1482         fdctrl->fifo[3] = kt;
   1483         fdctrl->fifo[4] = kh;
   1484         fdctrl->fifo[5] = ks;
   1485         return;
   1486     case 3:
   1487         /* track too big */
   1488         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
   1489         fdctrl->fifo[3] = kt;
   1490         fdctrl->fifo[4] = kh;
   1491         fdctrl->fifo[5] = ks;
   1492         return;
   1493     case 4:
   1494         /* No seek enabled */
   1495         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
   1496         fdctrl->fifo[3] = kt;
   1497         fdctrl->fifo[4] = kh;
   1498         fdctrl->fifo[5] = ks;
   1499         return;
   1500     case 1:
   1501         fdctrl->status0 |= FD_SR0_SEEK;
   1502         break;
   1503     default:
   1504         break;
   1505     }
   1506 
   1507     /* Check the data rate. If the programmed data rate does not match
   1508      * the currently inserted medium, the operation has to fail. */
   1509     if ((fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
   1510         FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
   1511                        fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
   1512         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
   1513         fdctrl->fifo[3] = kt;
   1514         fdctrl->fifo[4] = kh;
   1515         fdctrl->fifo[5] = ks;
   1516         return;
   1517     }
   1518 
   1519     /* Set the FIFO state */
   1520     fdctrl->data_dir = direction;
   1521     fdctrl->data_pos = 0;
   1522     assert(fdctrl->msr & FD_MSR_CMDBUSY);
   1523     if (fdctrl->fifo[0] & 0x80)
   1524         fdctrl->data_state |= FD_STATE_MULTI;
   1525     else
   1526         fdctrl->data_state &= ~FD_STATE_MULTI;
   1527     if (fdctrl->fifo[5] == 0) {
   1528         fdctrl->data_len = fdctrl->fifo[8];
   1529     } else {
   1530         int tmp;
   1531         fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
   1532         tmp = (fdctrl->fifo[6] - ks + 1);
   1533         if (tmp < 0) {
   1534             FLOPPY_DPRINTF("invalid EOT: %d\n", tmp);
   1535             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
   1536             fdctrl->fifo[3] = kt;
   1537             fdctrl->fifo[4] = kh;
   1538             fdctrl->fifo[5] = ks;
   1539             return;
   1540         }
   1541         if (fdctrl->fifo[0] & 0x80)
   1542             tmp += fdctrl->fifo[6];
   1543         fdctrl->data_len *= tmp;
   1544     }
   1545     fdctrl->eot = fdctrl->fifo[6];
   1546     if (fdctrl->dor & FD_DOR_DMAEN) {
   1547         /* DMA transfer is enabled. */
   1548         IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
   1549 
   1550         FLOPPY_DPRINTF("direction=%d (%d - %d)\n",
   1551                        direction, (128 << fdctrl->fifo[5]) *
   1552                        (cur_drv->last_sect - ks + 1), fdctrl->data_len);
   1553 
   1554         /* No access is allowed until DMA transfer has completed */
   1555         fdctrl->msr &= ~FD_MSR_RQM;
   1556         if (direction != FD_DIR_VERIFY) {
   1557             /*
   1558              * Now, we just have to wait for the DMA controller to
   1559              * recall us...
   1560              */
   1561             k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann);
   1562             k->schedule(fdctrl->dma);
   1563         } else {
   1564             /* Start transfer */
   1565             fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
   1566                     fdctrl->data_len);
   1567         }
   1568         return;
   1569     }
   1570     FLOPPY_DPRINTF("start non-DMA transfer\n");
   1571     fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
   1572     if (direction != FD_DIR_WRITE)
   1573         fdctrl->msr |= FD_MSR_DIO;
   1574     /* IO based transfer: calculate len */
   1575     fdctrl_raise_irq(fdctrl);
   1576 }
   1577 
   1578 /* Prepare a transfer of deleted data */
   1579 static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction)
   1580 {
   1581     qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n");
   1582 
   1583     /* We don't handle deleted data,
   1584      * so we don't return *ANYTHING*
   1585      */
   1586     fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
   1587 }
   1588 
   1589 /* handlers for DMA transfers */
   1590 int fdctrl_transfer_handler(void *opaque, int nchan, int dma_pos, int dma_len)
   1591 {
   1592     FDCtrl *fdctrl;
   1593     FDrive *cur_drv;
   1594     int len, start_pos, rel_pos;
   1595     uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
   1596     IsaDmaClass *k;
   1597 
   1598     fdctrl = opaque;
   1599     if (fdctrl->msr & FD_MSR_RQM) {
   1600         FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
   1601         return 0;
   1602     }
   1603     k = ISADMA_GET_CLASS(fdctrl->dma);
   1604     cur_drv = get_cur_drv(fdctrl);
   1605     if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
   1606         fdctrl->data_dir == FD_DIR_SCANH)
   1607         status2 = FD_SR2_SNS;
   1608     if (dma_len > fdctrl->data_len)
   1609         dma_len = fdctrl->data_len;
   1610     if (cur_drv->blk == NULL) {
   1611         if (fdctrl->data_dir == FD_DIR_WRITE)
   1612             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
   1613         else
   1614             fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
   1615         len = 0;
   1616         goto transfer_error;
   1617     }
   1618     rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
   1619     for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
   1620         len = dma_len - fdctrl->data_pos;
   1621         if (len + rel_pos > FD_SECTOR_LEN)
   1622             len = FD_SECTOR_LEN - rel_pos;
   1623         FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
   1624                        "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
   1625                        fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
   1626                        cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
   1627                        fd_sector(cur_drv) * FD_SECTOR_LEN);
   1628         if (fdctrl->data_dir != FD_DIR_WRITE ||
   1629             len < FD_SECTOR_LEN || rel_pos != 0) {
   1630             /* READ & SCAN commands and realign to a sector for WRITE */
   1631             if (blk_pread(cur_drv->blk, fd_offset(cur_drv), BDRV_SECTOR_SIZE,
   1632                           fdctrl->fifo, 0) < 0) {
   1633                 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
   1634                                fd_sector(cur_drv));
   1635                 /* Sure, image size is too small... */
   1636                 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
   1637             }
   1638         }
   1639         switch (fdctrl->data_dir) {
   1640         case FD_DIR_READ:
   1641             /* READ commands */
   1642             k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
   1643                             fdctrl->data_pos, len);
   1644             break;
   1645         case FD_DIR_WRITE:
   1646             /* WRITE commands */
   1647             if (cur_drv->ro) {
   1648                 /* Handle readonly medium early, no need to do DMA, touch the
   1649                  * LED or attempt any writes. A real floppy doesn't attempt
   1650                  * to write to readonly media either. */
   1651                 fdctrl_stop_transfer(fdctrl,
   1652                                      FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
   1653                                      0x00);
   1654                 goto transfer_error;
   1655             }
   1656 
   1657             k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
   1658                            fdctrl->data_pos, len);
   1659             if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), BDRV_SECTOR_SIZE,
   1660                            fdctrl->fifo, 0) < 0) {
   1661                 FLOPPY_DPRINTF("error writing sector %d\n",
   1662                                fd_sector(cur_drv));
   1663                 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
   1664                 goto transfer_error;
   1665             }
   1666             break;
   1667         case FD_DIR_VERIFY:
   1668             /* VERIFY commands */
   1669             break;
   1670         default:
   1671             /* SCAN commands */
   1672             {
   1673                 uint8_t tmpbuf[FD_SECTOR_LEN];
   1674                 int ret;
   1675                 k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos,
   1676                                len);
   1677                 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
   1678                 if (ret == 0) {
   1679                     status2 = FD_SR2_SEH;
   1680                     goto end_transfer;
   1681                 }
   1682                 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
   1683                     (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
   1684                     status2 = 0x00;
   1685                     goto end_transfer;
   1686                 }
   1687             }
   1688             break;
   1689         }
   1690         fdctrl->data_pos += len;
   1691         rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
   1692         if (rel_pos == 0) {
   1693             /* Seek to next sector */
   1694             if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
   1695                 break;
   1696         }
   1697     }
   1698  end_transfer:
   1699     len = fdctrl->data_pos - start_pos;
   1700     FLOPPY_DPRINTF("end transfer %d %d %d\n",
   1701                    fdctrl->data_pos, len, fdctrl->data_len);
   1702     if (fdctrl->data_dir == FD_DIR_SCANE ||
   1703         fdctrl->data_dir == FD_DIR_SCANL ||
   1704         fdctrl->data_dir == FD_DIR_SCANH)
   1705         status2 = FD_SR2_SEH;
   1706     fdctrl->data_len -= len;
   1707     fdctrl_stop_transfer(fdctrl, status0, status1, status2);
   1708  transfer_error:
   1709 
   1710     return len;
   1711 }
   1712 
   1713 /* Data register : 0x05 */
   1714 static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
   1715 {
   1716     FDrive *cur_drv;
   1717     uint32_t retval = 0;
   1718     uint32_t pos;
   1719 
   1720     cur_drv = get_cur_drv(fdctrl);
   1721     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
   1722     if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
   1723         FLOPPY_DPRINTF("error: controller not ready for reading\n");
   1724         return 0;
   1725     }
   1726 
   1727     /* If data_len spans multiple sectors, the current position in the FIFO
   1728      * wraps around while fdctrl->data_pos is the real position in the whole
   1729      * request. */
   1730     pos = fdctrl->data_pos;
   1731     pos %= FD_SECTOR_LEN;
   1732 
   1733     switch (fdctrl->phase) {
   1734     case FD_PHASE_EXECUTION:
   1735         assert(fdctrl->msr & FD_MSR_NONDMA);
   1736         if (pos == 0) {
   1737             if (fdctrl->data_pos != 0)
   1738                 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
   1739                     FLOPPY_DPRINTF("error seeking to next sector %d\n",
   1740                                    fd_sector(cur_drv));
   1741                     return 0;
   1742                 }
   1743             if (blk_pread(cur_drv->blk, fd_offset(cur_drv), BDRV_SECTOR_SIZE,
   1744                           fdctrl->fifo, 0)
   1745                 < 0) {
   1746                 FLOPPY_DPRINTF("error getting sector %d\n",
   1747                                fd_sector(cur_drv));
   1748                 /* Sure, image size is too small... */
   1749                 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
   1750             }
   1751         }
   1752 
   1753         if (++fdctrl->data_pos == fdctrl->data_len) {
   1754             fdctrl->msr &= ~FD_MSR_RQM;
   1755             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
   1756         }
   1757         break;
   1758 
   1759     case FD_PHASE_RESULT:
   1760         assert(!(fdctrl->msr & FD_MSR_NONDMA));
   1761         if (++fdctrl->data_pos == fdctrl->data_len) {
   1762             fdctrl->msr &= ~FD_MSR_RQM;
   1763             fdctrl_to_command_phase(fdctrl);
   1764             fdctrl_reset_irq(fdctrl);
   1765         }
   1766         break;
   1767 
   1768     case FD_PHASE_COMMAND:
   1769     default:
   1770         abort();
   1771     }
   1772 
   1773     retval = fdctrl->fifo[pos];
   1774     FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
   1775 
   1776     return retval;
   1777 }
   1778 
   1779 static void fdctrl_format_sector(FDCtrl *fdctrl)
   1780 {
   1781     FDrive *cur_drv;
   1782     uint8_t kh, kt, ks;
   1783 
   1784     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
   1785     cur_drv = get_cur_drv(fdctrl);
   1786     kt = fdctrl->fifo[6];
   1787     kh = fdctrl->fifo[7];
   1788     ks = fdctrl->fifo[8];
   1789     FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
   1790                    GET_CUR_DRV(fdctrl), kh, kt, ks,
   1791                    fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
   1792                                   NUM_SIDES(cur_drv)));
   1793     switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
   1794     case 2:
   1795         /* sect too big */
   1796         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
   1797         fdctrl->fifo[3] = kt;
   1798         fdctrl->fifo[4] = kh;
   1799         fdctrl->fifo[5] = ks;
   1800         return;
   1801     case 3:
   1802         /* track too big */
   1803         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
   1804         fdctrl->fifo[3] = kt;
   1805         fdctrl->fifo[4] = kh;
   1806         fdctrl->fifo[5] = ks;
   1807         return;
   1808     case 4:
   1809         /* No seek enabled */
   1810         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
   1811         fdctrl->fifo[3] = kt;
   1812         fdctrl->fifo[4] = kh;
   1813         fdctrl->fifo[5] = ks;
   1814         return;
   1815     case 1:
   1816         fdctrl->status0 |= FD_SR0_SEEK;
   1817         break;
   1818     default:
   1819         break;
   1820     }
   1821     memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
   1822     if (cur_drv->blk == NULL ||
   1823         blk_pwrite(cur_drv->blk, fd_offset(cur_drv), BDRV_SECTOR_SIZE,
   1824                    fdctrl->fifo, 0) < 0) {
   1825         FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv));
   1826         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
   1827     } else {
   1828         if (cur_drv->sect == cur_drv->last_sect) {
   1829             fdctrl->data_state &= ~FD_STATE_FORMAT;
   1830             /* Last sector done */
   1831             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
   1832         } else {
   1833             /* More to do */
   1834             fdctrl->data_pos = 0;
   1835             fdctrl->data_len = 4;
   1836         }
   1837     }
   1838 }
   1839 
   1840 static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
   1841 {
   1842     fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
   1843     fdctrl->fifo[0] = fdctrl->lock << 4;
   1844     fdctrl_to_result_phase(fdctrl, 1);
   1845 }
   1846 
   1847 static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
   1848 {
   1849     FDrive *cur_drv = get_cur_drv(fdctrl);
   1850 
   1851     /* Drives position */
   1852     fdctrl->fifo[0] = drv0(fdctrl)->track;
   1853     fdctrl->fifo[1] = drv1(fdctrl)->track;
   1854 #if MAX_FD == 4
   1855     fdctrl->fifo[2] = drv2(fdctrl)->track;
   1856     fdctrl->fifo[3] = drv3(fdctrl)->track;
   1857 #else
   1858     fdctrl->fifo[2] = 0;
   1859     fdctrl->fifo[3] = 0;
   1860 #endif
   1861     /* timers */
   1862     fdctrl->fifo[4] = fdctrl->timer0;
   1863     fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
   1864     fdctrl->fifo[6] = cur_drv->last_sect;
   1865     fdctrl->fifo[7] = (fdctrl->lock << 7) |
   1866         (cur_drv->perpendicular << 2);
   1867     fdctrl->fifo[8] = fdctrl->config;
   1868     fdctrl->fifo[9] = fdctrl->precomp_trk;
   1869     fdctrl_to_result_phase(fdctrl, 10);
   1870 }
   1871 
   1872 static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
   1873 {
   1874     /* Controller's version */
   1875     fdctrl->fifo[0] = fdctrl->version;
   1876     fdctrl_to_result_phase(fdctrl, 1);
   1877 }
   1878 
   1879 static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
   1880 {
   1881     fdctrl->fifo[0] = 0x41; /* Stepping 1 */
   1882     fdctrl_to_result_phase(fdctrl, 1);
   1883 }
   1884 
   1885 static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
   1886 {
   1887     FDrive *cur_drv = get_cur_drv(fdctrl);
   1888 
   1889     /* Drives position */
   1890     drv0(fdctrl)->track = fdctrl->fifo[3];
   1891     drv1(fdctrl)->track = fdctrl->fifo[4];
   1892 #if MAX_FD == 4
   1893     drv2(fdctrl)->track = fdctrl->fifo[5];
   1894     drv3(fdctrl)->track = fdctrl->fifo[6];
   1895 #endif
   1896     /* timers */
   1897     fdctrl->timer0 = fdctrl->fifo[7];
   1898     fdctrl->timer1 = fdctrl->fifo[8];
   1899     cur_drv->last_sect = fdctrl->fifo[9];
   1900     fdctrl->lock = fdctrl->fifo[10] >> 7;
   1901     cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
   1902     fdctrl->config = fdctrl->fifo[11];
   1903     fdctrl->precomp_trk = fdctrl->fifo[12];
   1904     fdctrl->pwrd = fdctrl->fifo[13];
   1905     fdctrl_to_command_phase(fdctrl);
   1906 }
   1907 
   1908 static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
   1909 {
   1910     FDrive *cur_drv = get_cur_drv(fdctrl);
   1911 
   1912     fdctrl->fifo[0] = 0;
   1913     fdctrl->fifo[1] = 0;
   1914     /* Drives position */
   1915     fdctrl->fifo[2] = drv0(fdctrl)->track;
   1916     fdctrl->fifo[3] = drv1(fdctrl)->track;
   1917 #if MAX_FD == 4
   1918     fdctrl->fifo[4] = drv2(fdctrl)->track;
   1919     fdctrl->fifo[5] = drv3(fdctrl)->track;
   1920 #else
   1921     fdctrl->fifo[4] = 0;
   1922     fdctrl->fifo[5] = 0;
   1923 #endif
   1924     /* timers */
   1925     fdctrl->fifo[6] = fdctrl->timer0;
   1926     fdctrl->fifo[7] = fdctrl->timer1;
   1927     fdctrl->fifo[8] = cur_drv->last_sect;
   1928     fdctrl->fifo[9] = (fdctrl->lock << 7) |
   1929         (cur_drv->perpendicular << 2);
   1930     fdctrl->fifo[10] = fdctrl->config;
   1931     fdctrl->fifo[11] = fdctrl->precomp_trk;
   1932     fdctrl->fifo[12] = fdctrl->pwrd;
   1933     fdctrl->fifo[13] = 0;
   1934     fdctrl->fifo[14] = 0;
   1935     fdctrl_to_result_phase(fdctrl, 15);
   1936 }
   1937 
   1938 static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
   1939 {
   1940     FDrive *cur_drv = get_cur_drv(fdctrl);
   1941 
   1942     cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
   1943     timer_mod(fdctrl->result_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
   1944              (NANOSECONDS_PER_SECOND / 50));
   1945 }
   1946 
   1947 static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction)
   1948 {
   1949     FDrive *cur_drv;
   1950 
   1951     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
   1952     cur_drv = get_cur_drv(fdctrl);
   1953     fdctrl->data_state |= FD_STATE_FORMAT;
   1954     if (fdctrl->fifo[0] & 0x80)
   1955         fdctrl->data_state |= FD_STATE_MULTI;
   1956     else
   1957         fdctrl->data_state &= ~FD_STATE_MULTI;
   1958     cur_drv->bps =
   1959         fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
   1960 #if 0
   1961     cur_drv->last_sect =
   1962         cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
   1963         fdctrl->fifo[3] / 2;
   1964 #else
   1965     cur_drv->last_sect = fdctrl->fifo[3];
   1966 #endif
   1967     /* TODO: implement format using DMA expected by the Bochs BIOS
   1968      * and Linux fdformat (read 3 bytes per sector via DMA and fill
   1969      * the sector with the specified fill byte
   1970      */
   1971     fdctrl->data_state &= ~FD_STATE_FORMAT;
   1972     fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
   1973 }
   1974 
   1975 static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
   1976 {
   1977     fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
   1978     fdctrl->timer1 = fdctrl->fifo[2] >> 1;
   1979     if (fdctrl->fifo[2] & 1)
   1980         fdctrl->dor &= ~FD_DOR_DMAEN;
   1981     else
   1982         fdctrl->dor |= FD_DOR_DMAEN;
   1983     /* No result back */
   1984     fdctrl_to_command_phase(fdctrl);
   1985 }
   1986 
   1987 static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
   1988 {
   1989     FDrive *cur_drv;
   1990 
   1991     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
   1992     cur_drv = get_cur_drv(fdctrl);
   1993     cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
   1994     /* 1 Byte status back */
   1995     fdctrl->fifo[0] = (cur_drv->ro << 6) |
   1996         (cur_drv->track == 0 ? 0x10 : 0x00) |
   1997         (cur_drv->head << 2) |
   1998         GET_CUR_DRV(fdctrl) |
   1999         0x28;
   2000     fdctrl_to_result_phase(fdctrl, 1);
   2001 }
   2002 
   2003 static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
   2004 {
   2005     FDrive *cur_drv;
   2006 
   2007     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
   2008     cur_drv = get_cur_drv(fdctrl);
   2009     fd_recalibrate(cur_drv);
   2010     fdctrl_to_command_phase(fdctrl);
   2011     /* Raise Interrupt */
   2012     fdctrl->status0 |= FD_SR0_SEEK;
   2013     fdctrl_raise_irq(fdctrl);
   2014 }
   2015 
   2016 static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
   2017 {
   2018     FDrive *cur_drv = get_cur_drv(fdctrl);
   2019 
   2020     if (fdctrl->reset_sensei > 0) {
   2021         fdctrl->fifo[0] =
   2022             FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
   2023         fdctrl->reset_sensei--;
   2024     } else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
   2025         fdctrl->fifo[0] = FD_SR0_INVCMD;
   2026         fdctrl_to_result_phase(fdctrl, 1);
   2027         return;
   2028     } else {
   2029         fdctrl->fifo[0] =
   2030                 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0))
   2031                 | GET_CUR_DRV(fdctrl);
   2032     }
   2033 
   2034     fdctrl->fifo[1] = cur_drv->track;
   2035     fdctrl_to_result_phase(fdctrl, 2);
   2036     fdctrl_reset_irq(fdctrl);
   2037     fdctrl->status0 = FD_SR0_RDYCHG;
   2038 }
   2039 
   2040 static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
   2041 {
   2042     FDrive *cur_drv;
   2043 
   2044     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
   2045     cur_drv = get_cur_drv(fdctrl);
   2046     fdctrl_to_command_phase(fdctrl);
   2047     /* The seek command just sends step pulses to the drive and doesn't care if
   2048      * there is a medium inserted of if it's banging the head against the drive.
   2049      */
   2050     fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
   2051     /* Raise Interrupt */
   2052     fdctrl->status0 |= FD_SR0_SEEK;
   2053     fdctrl_raise_irq(fdctrl);
   2054 }
   2055 
   2056 static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
   2057 {
   2058     FDrive *cur_drv = get_cur_drv(fdctrl);
   2059 
   2060     if (fdctrl->fifo[1] & 0x80)
   2061         cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
   2062     /* No result back */
   2063     fdctrl_to_command_phase(fdctrl);
   2064 }
   2065 
   2066 static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
   2067 {
   2068     fdctrl->config = fdctrl->fifo[2];
   2069     fdctrl->precomp_trk =  fdctrl->fifo[3];
   2070     /* No result back */
   2071     fdctrl_to_command_phase(fdctrl);
   2072 }
   2073 
   2074 static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
   2075 {
   2076     fdctrl->pwrd = fdctrl->fifo[1];
   2077     fdctrl->fifo[0] = fdctrl->fifo[1];
   2078     fdctrl_to_result_phase(fdctrl, 1);
   2079 }
   2080 
   2081 static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
   2082 {
   2083     /* No result back */
   2084     fdctrl_to_command_phase(fdctrl);
   2085 }
   2086 
   2087 static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
   2088 {
   2089     FDrive *cur_drv = get_cur_drv(fdctrl);
   2090     uint32_t pos;
   2091 
   2092     pos = fdctrl->data_pos - 1;
   2093     pos %= FD_SECTOR_LEN;
   2094     if (fdctrl->fifo[pos] & 0x80) {
   2095         /* Command parameters done */
   2096         if (fdctrl->fifo[pos] & 0x40) {
   2097             fdctrl->fifo[0] = fdctrl->fifo[1];
   2098             fdctrl->fifo[2] = 0;
   2099             fdctrl->fifo[3] = 0;
   2100             fdctrl_to_result_phase(fdctrl, 4);
   2101         } else {
   2102             fdctrl_to_command_phase(fdctrl);
   2103         }
   2104     } else if (fdctrl->data_len > 7) {
   2105         /* ERROR */
   2106         fdctrl->fifo[0] = 0x80 |
   2107             (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
   2108         fdctrl_to_result_phase(fdctrl, 1);
   2109     }
   2110 }
   2111 
   2112 static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
   2113 {
   2114     FDrive *cur_drv;
   2115 
   2116     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
   2117     cur_drv = get_cur_drv(fdctrl);
   2118     if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
   2119         fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1,
   2120                 cur_drv->sect, 1);
   2121     } else {
   2122         fd_seek(cur_drv, cur_drv->head,
   2123                 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
   2124     }
   2125     fdctrl_to_command_phase(fdctrl);
   2126     /* Raise Interrupt */
   2127     fdctrl->status0 |= FD_SR0_SEEK;
   2128     fdctrl_raise_irq(fdctrl);
   2129 }
   2130 
   2131 static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
   2132 {
   2133     FDrive *cur_drv;
   2134 
   2135     SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
   2136     cur_drv = get_cur_drv(fdctrl);
   2137     if (fdctrl->fifo[2] > cur_drv->track) {
   2138         fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1);
   2139     } else {
   2140         fd_seek(cur_drv, cur_drv->head,
   2141                 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
   2142     }
   2143     fdctrl_to_command_phase(fdctrl);
   2144     /* Raise Interrupt */
   2145     fdctrl->status0 |= FD_SR0_SEEK;
   2146     fdctrl_raise_irq(fdctrl);
   2147 }
   2148 
   2149 /*
   2150  * Handlers for the execution phase of each command
   2151  */
   2152 typedef struct FDCtrlCommand {
   2153     uint8_t value;
   2154     uint8_t mask;
   2155     const char* name;
   2156     int parameters;
   2157     void (*handler)(FDCtrl *fdctrl, int direction);
   2158     int direction;
   2159 } FDCtrlCommand;
   2160 
   2161 static const FDCtrlCommand handlers[] = {
   2162     { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
   2163     { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
   2164     { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
   2165     { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
   2166     { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
   2167     { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
   2168     { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
   2169     { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
   2170     { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
   2171     { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
   2172     { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
   2173     { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
   2174     { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
   2175     { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
   2176     { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
   2177     { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
   2178     { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
   2179     { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
   2180     { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
   2181     { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
   2182     { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
   2183     { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
   2184     { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
   2185     { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
   2186     { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
   2187     { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
   2188     { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
   2189     { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
   2190     { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
   2191     { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
   2192     { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
   2193     { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
   2194 };
   2195 /* Associate command to an index in the 'handlers' array */
   2196 static uint8_t command_to_handler[256];
   2197 
   2198 static const FDCtrlCommand *get_command(uint8_t cmd)
   2199 {
   2200     int idx;
   2201 
   2202     idx = command_to_handler[cmd];
   2203     FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
   2204     return &handlers[idx];
   2205 }
   2206 
   2207 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
   2208 {
   2209     FDrive *cur_drv;
   2210     const FDCtrlCommand *cmd;
   2211     uint32_t pos;
   2212 
   2213     /* Reset mode */
   2214     if (!(fdctrl->dor & FD_DOR_nRESET)) {
   2215         FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
   2216         return;
   2217     }
   2218     if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
   2219         FLOPPY_DPRINTF("error: controller not ready for writing\n");
   2220         return;
   2221     }
   2222     fdctrl->dsr &= ~FD_DSR_PWRDOWN;
   2223 
   2224     FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
   2225 
   2226     /* If data_len spans multiple sectors, the current position in the FIFO
   2227      * wraps around while fdctrl->data_pos is the real position in the whole
   2228      * request. */
   2229     pos = fdctrl->data_pos++;
   2230     pos %= FD_SECTOR_LEN;
   2231     fdctrl->fifo[pos] = value;
   2232 
   2233     if (fdctrl->data_pos == fdctrl->data_len) {
   2234         fdctrl->msr &= ~FD_MSR_RQM;
   2235     }
   2236 
   2237     switch (fdctrl->phase) {
   2238     case FD_PHASE_EXECUTION:
   2239         /* For DMA requests, RQM should be cleared during execution phase, so
   2240          * we would have errored out above. */
   2241         assert(fdctrl->msr & FD_MSR_NONDMA);
   2242 
   2243         /* FIFO data write */
   2244         if (pos == FD_SECTOR_LEN - 1 ||
   2245             fdctrl->data_pos == fdctrl->data_len) {
   2246             cur_drv = get_cur_drv(fdctrl);
   2247             if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), BDRV_SECTOR_SIZE,
   2248                            fdctrl->fifo, 0) < 0) {
   2249                 FLOPPY_DPRINTF("error writing sector %d\n",
   2250                                fd_sector(cur_drv));
   2251                 break;
   2252             }
   2253             if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
   2254                 FLOPPY_DPRINTF("error seeking to next sector %d\n",
   2255                                fd_sector(cur_drv));
   2256                 break;
   2257             }
   2258         }
   2259 
   2260         /* Switch to result phase when done with the transfer */
   2261         if (fdctrl->data_pos == fdctrl->data_len) {
   2262             fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
   2263         }
   2264         break;
   2265 
   2266     case FD_PHASE_COMMAND:
   2267         assert(!(fdctrl->msr & FD_MSR_NONDMA));
   2268         assert(fdctrl->data_pos < FD_SECTOR_LEN);
   2269 
   2270         if (pos == 0) {
   2271             /* The first byte specifies the command. Now we start reading
   2272              * as many parameters as this command requires. */
   2273             cmd = get_command(value);
   2274             fdctrl->data_len = cmd->parameters + 1;
   2275             if (cmd->parameters) {
   2276                 fdctrl->msr |= FD_MSR_RQM;
   2277             }
   2278             fdctrl->msr |= FD_MSR_CMDBUSY;
   2279         }
   2280 
   2281         if (fdctrl->data_pos == fdctrl->data_len) {
   2282             /* We have all parameters now, execute the command */
   2283             fdctrl->phase = FD_PHASE_EXECUTION;
   2284 
   2285             if (fdctrl->data_state & FD_STATE_FORMAT) {
   2286                 fdctrl_format_sector(fdctrl);
   2287                 break;
   2288             }
   2289 
   2290             cmd = get_command(fdctrl->fifo[0]);
   2291             FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
   2292             cmd->handler(fdctrl, cmd->direction);
   2293         }
   2294         break;
   2295 
   2296     case FD_PHASE_RESULT:
   2297     default:
   2298         abort();
   2299     }
   2300 }
   2301 
   2302 static void fdctrl_result_timer(void *opaque)
   2303 {
   2304     FDCtrl *fdctrl = opaque;
   2305     FDrive *cur_drv = get_cur_drv(fdctrl);
   2306 
   2307     /* Pretend we are spinning.
   2308      * This is needed for Coherent, which uses READ ID to check for
   2309      * sector interleaving.
   2310      */
   2311     if (cur_drv->last_sect != 0) {
   2312         cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
   2313     }
   2314     /* READ_ID can't automatically succeed! */
   2315     if ((fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
   2316         FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
   2317                        fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
   2318         fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
   2319     } else {
   2320         fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
   2321     }
   2322 }
   2323 
   2324 /* Init functions */
   2325 
   2326 void fdctrl_init_drives(FloppyBus *bus, DriveInfo **fds)
   2327 {
   2328     DeviceState *dev;
   2329     int i;
   2330 
   2331     for (i = 0; i < MAX_FD; i++) {
   2332         if (fds[i]) {
   2333             dev = qdev_new("floppy");
   2334             qdev_prop_set_uint32(dev, "unit", i);
   2335             qdev_prop_set_enum(dev, "drive-type", FLOPPY_DRIVE_TYPE_AUTO);
   2336             qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(fds[i]),
   2337                                     &error_fatal);
   2338             qdev_realize_and_unref(dev, &bus->bus, &error_fatal);
   2339         }
   2340     }
   2341 }
   2342 
   2343 void fdctrl_realize_common(DeviceState *dev, FDCtrl *fdctrl, Error **errp)
   2344 {
   2345     int i, j;
   2346     FDrive *drive;
   2347     static int command_tables_inited = 0;
   2348 
   2349     if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) {
   2350         error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'");
   2351         return;
   2352     }
   2353 
   2354     /* Fill 'command_to_handler' lookup table */
   2355     if (!command_tables_inited) {
   2356         command_tables_inited = 1;
   2357         for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
   2358             for (j = 0; j < sizeof(command_to_handler); j++) {
   2359                 if ((j & handlers[i].mask) == handlers[i].value) {
   2360                     command_to_handler[j] = i;
   2361                 }
   2362             }
   2363         }
   2364     }
   2365 
   2366     FLOPPY_DPRINTF("init controller\n");
   2367     fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
   2368     memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
   2369     fdctrl->fifo_size = 512;
   2370     fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
   2371                                              fdctrl_result_timer, fdctrl);
   2372 
   2373     fdctrl->version = 0x90; /* Intel 82078 controller */
   2374     fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
   2375     fdctrl->num_floppies = MAX_FD;
   2376 
   2377     floppy_bus_create(fdctrl, &fdctrl->bus, dev);
   2378 
   2379     for (i = 0; i < MAX_FD; i++) {
   2380         drive = &fdctrl->drives[i];
   2381         drive->fdctrl = fdctrl;
   2382         fd_init(drive);
   2383         fd_revalidate(drive);
   2384     }
   2385 }
   2386 
   2387 static void fdc_register_types(void)
   2388 {
   2389     type_register_static(&floppy_bus_info);
   2390     type_register_static(&floppy_drive_info);
   2391 }
   2392 
   2393 type_init(fdc_register_types)