qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

fmopl.c (31271B)


      1 /*
      2 **
      3 ** File: fmopl.c -- software implementation of FM sound generator
      4 **
      5 ** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
      6 **
      7 ** Version 0.37a
      8 **
      9 */
     10 
     11 /*
     12 	preliminary :
     13 	Problem :
     14 	note:
     15 */
     16 
     17 /* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL.
     18  *
     19  * This library is free software; you can redistribute it and/or
     20  * modify it under the terms of the GNU Lesser General Public
     21  * License as published by the Free Software Foundation; either
     22  * version 2.1 of the License, or (at your option) any later version.
     23  *
     24  * This library is distributed in the hope that it will be useful,
     25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     27  * Lesser General Public License for more details.
     28  *
     29  * You should have received a copy of the GNU Lesser General Public
     30  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
     31  */
     32 
     33 #include "qemu/osdep.h"
     34 #include <math.h>
     35 //#include "driver.h"		/* use M.A.M.E. */
     36 #include "fmopl.h"
     37 #ifndef PI
     38 #define PI 3.14159265358979323846
     39 #endif
     40 
     41 /* -------------------- for debug --------------------- */
     42 /* #define OPL_OUTPUT_LOG */
     43 #ifdef OPL_OUTPUT_LOG
     44 static FILE *opl_dbg_fp = NULL;
     45 static FM_OPL *opl_dbg_opl[16];
     46 static int opl_dbg_maxchip,opl_dbg_chip;
     47 #endif
     48 
     49 /* -------------------- preliminary define section --------------------- */
     50 /* attack/decay rate time rate */
     51 #define OPL_ARRATE     141280  /* RATE 4 =  2826.24ms @ 3.6MHz */
     52 #define OPL_DRRATE    1956000  /* RATE 4 = 39280.64ms @ 3.6MHz */
     53 
     54 #define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
     55 
     56 #define FREQ_BITS 24			/* frequency turn          */
     57 
     58 /* counter bits = 20 , octerve 7 */
     59 #define FREQ_RATE   (1<<(FREQ_BITS-20))
     60 #define TL_BITS    (FREQ_BITS+2)
     61 
     62 /* final output shift , limit minimum and maximum */
     63 #define OPL_OUTSB   (TL_BITS+3-16)		/* OPL output final shift 16bit */
     64 #define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
     65 #define OPL_MINOUT (-0x8000<<OPL_OUTSB)
     66 
     67 /* -------------------- quality selection --------------------- */
     68 
     69 /* sinwave entries */
     70 /* used static memory = SIN_ENT * 4 (byte) */
     71 #define SIN_ENT 2048
     72 
     73 /* output level entries (envelope,sinwave) */
     74 /* envelope counter lower bits */
     75 #define ENV_BITS 16
     76 /* envelope output entries */
     77 #define EG_ENT   4096
     78 /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
     79 /* used static  memory = EG_ENT*4 (byte)                     */
     80 
     81 #define EG_OFF   ((2*EG_ENT)<<ENV_BITS)  /* OFF          */
     82 #define EG_DED   EG_OFF
     83 #define EG_DST   (EG_ENT<<ENV_BITS)      /* DECAY  START */
     84 #define EG_AED   EG_DST
     85 #define EG_AST   0                       /* ATTACK START */
     86 
     87 #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step  */
     88 
     89 /* LFO table entries */
     90 #define VIB_ENT 512
     91 #define VIB_SHIFT (32-9)
     92 #define AMS_ENT 512
     93 #define AMS_SHIFT (32-9)
     94 
     95 #define VIB_RATE 256
     96 
     97 /* -------------------- local defines , macros --------------------- */
     98 
     99 /* register number to channel number , slot offset */
    100 #define SLOT1 0
    101 #define SLOT2 1
    102 
    103 /* envelope phase */
    104 #define ENV_MOD_RR  0x00
    105 #define ENV_MOD_DR  0x01
    106 #define ENV_MOD_AR  0x02
    107 
    108 /* -------------------- tables --------------------- */
    109 static const int slot_array[32]=
    110 {
    111 	 0, 2, 4, 1, 3, 5,-1,-1,
    112 	 6, 8,10, 7, 9,11,-1,-1,
    113 	12,14,16,13,15,17,-1,-1,
    114 	-1,-1,-1,-1,-1,-1,-1,-1
    115 };
    116 
    117 /* key scale level */
    118 /* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */
    119 #define DV (EG_STEP/2)
    120 static const uint32_t KSL_TABLE[8*16]=
    121 {
    122 	/* OCT 0 */
    123 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
    124 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
    125 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
    126 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
    127 	/* OCT 1 */
    128 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
    129 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
    130 	 0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
    131 	 1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
    132 	/* OCT 2 */
    133 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
    134 	 0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
    135 	 3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
    136 	 4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
    137 	/* OCT 3 */
    138 	 0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
    139 	 3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
    140 	 6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
    141 	 7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
    142 	/* OCT 4 */
    143 	 0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
    144 	 6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
    145 	 9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
    146 	10.875/DV,11.250/DV,11.625/DV,12.000/DV,
    147 	/* OCT 5 */
    148 	 0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
    149 	 9.000/DV,10.125/DV,10.875/DV,11.625/DV,
    150 	12.000/DV,12.750/DV,13.125/DV,13.500/DV,
    151 	13.875/DV,14.250/DV,14.625/DV,15.000/DV,
    152 	/* OCT 6 */
    153 	 0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
    154 	12.000/DV,13.125/DV,13.875/DV,14.625/DV,
    155 	15.000/DV,15.750/DV,16.125/DV,16.500/DV,
    156 	16.875/DV,17.250/DV,17.625/DV,18.000/DV,
    157 	/* OCT 7 */
    158 	 0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
    159 	15.000/DV,16.125/DV,16.875/DV,17.625/DV,
    160 	18.000/DV,18.750/DV,19.125/DV,19.500/DV,
    161 	19.875/DV,20.250/DV,20.625/DV,21.000/DV
    162 };
    163 #undef DV
    164 
    165 /* sustain lebel table (3db per step) */
    166 /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
    167 #define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST
    168 static const int32_t SL_TABLE[16]={
    169  SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
    170  SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
    171 };
    172 #undef SC
    173 
    174 #define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
    175 /* TotalLevel : 48 24 12  6  3 1.5 0.75 (dB) */
    176 /* TL_TABLE[ 0      to TL_MAX          ] : plus  section */
    177 /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
    178 static int32_t *TL_TABLE;
    179 
    180 /* pointers to TL_TABLE with sinwave output offset */
    181 static int32_t **SIN_TABLE;
    182 
    183 /* LFO table */
    184 static int32_t *AMS_TABLE;
    185 static int32_t *VIB_TABLE;
    186 
    187 /* envelope output curve table */
    188 /* attack + decay + OFF */
    189 static int32_t *ENV_CURVE;
    190 
    191 /* multiple table */
    192 #define ML 2
    193 static const uint32_t MUL_TABLE[16]= {
    194 /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
    195    0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML,
    196    8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML
    197 };
    198 #undef ML
    199 
    200 /* dummy attack / decay rate ( when rate == 0 ) */
    201 static int32_t RATE_0[16]=
    202 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
    203 
    204 /* -------------------- static state --------------------- */
    205 
    206 /* lock level of common table */
    207 static int num_lock = 0;
    208 
    209 /* work table */
    210 static void *cur_chip = NULL;	/* current chip point */
    211 /* currenct chip state */
    212 /* static OPLSAMPLE  *bufL,*bufR; */
    213 static OPL_CH *S_CH;
    214 static OPL_CH *E_CH;
    215 static OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2;
    216 
    217 static int32_t outd[1];
    218 static int32_t ams;
    219 static int32_t vib;
    220 static int32_t *ams_table;
    221 static int32_t *vib_table;
    222 static int32_t amsIncr;
    223 static int32_t vibIncr;
    224 static int32_t feedback2;		/* connect for SLOT 2 */
    225 
    226 /* log output level */
    227 #define LOG_ERR  3      /* ERROR       */
    228 #define LOG_WAR  2      /* WARNING     */
    229 #define LOG_INF  1      /* INFORMATION */
    230 
    231 //#define LOG_LEVEL LOG_INF
    232 #define LOG_LEVEL	LOG_ERR
    233 
    234 //#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
    235 #define LOG(n,x)
    236 
    237 /* --------------------- subroutines  --------------------- */
    238 
    239 static inline int Limit( int val, int max, int min ) {
    240 	if ( val > max )
    241 		val = max;
    242 	else if ( val < min )
    243 		val = min;
    244 
    245 	return val;
    246 }
    247 
    248 /* status set and IRQ handling */
    249 static inline void OPL_STATUS_SET(FM_OPL *OPL,int flag)
    250 {
    251 	/* set status flag */
    252 	OPL->status |= flag;
    253 	if(!(OPL->status & 0x80))
    254 	{
    255 		if(OPL->status & OPL->statusmask)
    256 		{	/* IRQ on */
    257 			OPL->status |= 0x80;
    258 		}
    259 	}
    260 }
    261 
    262 /* status reset and IRQ handling */
    263 static inline void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
    264 {
    265 	/* reset status flag */
    266 	OPL->status &=~flag;
    267 	if((OPL->status & 0x80))
    268 	{
    269 		if (!(OPL->status & OPL->statusmask) )
    270 		{
    271 			OPL->status &= 0x7f;
    272 		}
    273 	}
    274 }
    275 
    276 /* IRQ mask set */
    277 static inline void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
    278 {
    279 	OPL->statusmask = flag;
    280 	/* IRQ handling check */
    281 	OPL_STATUS_SET(OPL,0);
    282 	OPL_STATUS_RESET(OPL,0);
    283 }
    284 
    285 /* ----- key on  ----- */
    286 static inline void OPL_KEYON(OPL_SLOT *SLOT)
    287 {
    288 	/* sin wave restart */
    289 	SLOT->Cnt = 0;
    290 	/* set attack */
    291 	SLOT->evm = ENV_MOD_AR;
    292 	SLOT->evs = SLOT->evsa;
    293 	SLOT->evc = EG_AST;
    294 	SLOT->eve = EG_AED;
    295 }
    296 /* ----- key off ----- */
    297 static inline void OPL_KEYOFF(OPL_SLOT *SLOT)
    298 {
    299 	if( SLOT->evm > ENV_MOD_RR)
    300 	{
    301 		/* set envelope counter from envleope output */
    302 		SLOT->evm = ENV_MOD_RR;
    303 		if( !(SLOT->evc&EG_DST) )
    304 			//SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
    305 			SLOT->evc = EG_DST;
    306 		SLOT->eve = EG_DED;
    307 		SLOT->evs = SLOT->evsr;
    308 	}
    309 }
    310 
    311 /* ---------- calcrate Envelope Generator & Phase Generator ---------- */
    312 /* return : envelope output */
    313 static inline uint32_t OPL_CALC_SLOT( OPL_SLOT *SLOT )
    314 {
    315 	/* calcrate envelope generator */
    316 	if( (SLOT->evc+=SLOT->evs) >= SLOT->eve )
    317 	{
    318 		switch( SLOT->evm ){
    319 		case ENV_MOD_AR: /* ATTACK -> DECAY1 */
    320 			/* next DR */
    321 			SLOT->evm = ENV_MOD_DR;
    322 			SLOT->evc = EG_DST;
    323 			SLOT->eve = SLOT->SL;
    324 			SLOT->evs = SLOT->evsd;
    325 			break;
    326 		case ENV_MOD_DR: /* DECAY -> SL or RR */
    327 			SLOT->evc = SLOT->SL;
    328 			SLOT->eve = EG_DED;
    329 			if(SLOT->eg_typ)
    330 			{
    331 				SLOT->evs = 0;
    332 			}
    333 			else
    334 			{
    335 				SLOT->evm = ENV_MOD_RR;
    336 				SLOT->evs = SLOT->evsr;
    337 			}
    338 			break;
    339 		case ENV_MOD_RR: /* RR -> OFF */
    340 			SLOT->evc = EG_OFF;
    341 			SLOT->eve = EG_OFF+1;
    342 			SLOT->evs = 0;
    343 			break;
    344 		}
    345 	}
    346 	/* calcrate envelope */
    347 	return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0);
    348 }
    349 
    350 /* set algorithm connection */
    351 static void set_algorithm( OPL_CH *CH)
    352 {
    353 	int32_t *carrier = &outd[0];
    354 	CH->connect1 = CH->CON ? carrier : &feedback2;
    355 	CH->connect2 = carrier;
    356 }
    357 
    358 /* ---------- frequency counter for operater update ---------- */
    359 static inline void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
    360 {
    361 	int ksr;
    362 
    363 	/* frequency step counter */
    364 	SLOT->Incr = CH->fc * SLOT->mul;
    365 	ksr = CH->kcode >> SLOT->KSR;
    366 
    367 	if( SLOT->ksr != ksr )
    368 	{
    369 		SLOT->ksr = ksr;
    370 		/* attack , decay rate recalcration */
    371 		SLOT->evsa = SLOT->AR[ksr];
    372 		SLOT->evsd = SLOT->DR[ksr];
    373 		SLOT->evsr = SLOT->RR[ksr];
    374 	}
    375 	SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
    376 }
    377 
    378 /* set multi,am,vib,EG-TYP,KSR,mul */
    379 static inline void set_mul(FM_OPL *OPL,int slot,int v)
    380 {
    381 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
    382 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
    383 
    384 	SLOT->mul    = MUL_TABLE[v&0x0f];
    385 	SLOT->KSR    = (v&0x10) ? 0 : 2;
    386 	SLOT->eg_typ = (v&0x20)>>5;
    387 	SLOT->vib    = (v&0x40);
    388 	SLOT->ams    = (v&0x80);
    389 	CALC_FCSLOT(CH,SLOT);
    390 }
    391 
    392 /* set ksl & tl */
    393 static inline void set_ksl_tl(FM_OPL *OPL,int slot,int v)
    394 {
    395 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
    396 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
    397 	int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
    398 
    399 	SLOT->ksl = ksl ? 3-ksl : 31;
    400 	SLOT->TL  = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */
    401 
    402 	if( !(OPL->mode&0x80) )
    403 	{	/* not CSM latch total level */
    404 		SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
    405 	}
    406 }
    407 
    408 /* set attack rate & decay rate  */
    409 static inline void set_ar_dr(FM_OPL *OPL,int slot,int v)
    410 {
    411 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
    412 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
    413 	int ar = v>>4;
    414 	int dr = v&0x0f;
    415 
    416 	SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0;
    417 	SLOT->evsa = SLOT->AR[SLOT->ksr];
    418 	if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa;
    419 
    420 	SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
    421 	SLOT->evsd = SLOT->DR[SLOT->ksr];
    422 	if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd;
    423 }
    424 
    425 /* set sustain level & release rate */
    426 static inline void set_sl_rr(FM_OPL *OPL,int slot,int v)
    427 {
    428 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
    429 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
    430 	int sl = v>>4;
    431 	int rr = v & 0x0f;
    432 
    433 	SLOT->SL = SL_TABLE[sl];
    434 	if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL;
    435 	SLOT->RR = &OPL->DR_TABLE[rr<<2];
    436 	SLOT->evsr = SLOT->RR[SLOT->ksr];
    437 	if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr;
    438 }
    439 
    440 /* operator output calcrator */
    441 #define OP_OUT(slot,env,con)   slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
    442 /* ---------- calcrate one of channel ---------- */
    443 static inline void OPL_CALC_CH( OPL_CH *CH )
    444 {
    445 	uint32_t env_out;
    446 	OPL_SLOT *SLOT;
    447 
    448 	feedback2 = 0;
    449 	/* SLOT 1 */
    450 	SLOT = &CH->SLOT[SLOT1];
    451 	env_out=OPL_CALC_SLOT(SLOT);
    452 	if( env_out < EG_ENT-1 )
    453 	{
    454 		/* PG */
    455 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
    456 		else          SLOT->Cnt += SLOT->Incr;
    457 		/* connectoion */
    458 		if(CH->FB)
    459 		{
    460 			int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB;
    461 			CH->op1_out[1] = CH->op1_out[0];
    462 			*CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
    463 		}
    464 		else
    465 		{
    466 			*CH->connect1 += OP_OUT(SLOT,env_out,0);
    467 		}
    468 	}else
    469 	{
    470 		CH->op1_out[1] = CH->op1_out[0];
    471 		CH->op1_out[0] = 0;
    472 	}
    473 	/* SLOT 2 */
    474 	SLOT = &CH->SLOT[SLOT2];
    475 	env_out=OPL_CALC_SLOT(SLOT);
    476 	if( env_out < EG_ENT-1 )
    477 	{
    478 		/* PG */
    479 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
    480 		else          SLOT->Cnt += SLOT->Incr;
    481 		/* connectoion */
    482 		outd[0] += OP_OUT(SLOT,env_out, feedback2);
    483 	}
    484 }
    485 
    486 /* ---------- calcrate rhythm block ---------- */
    487 #define WHITE_NOISE_db 6.0
    488 static inline void OPL_CALC_RH( OPL_CH *CH )
    489 {
    490 	uint32_t env_tam,env_sd,env_top,env_hh;
    491 	int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP);
    492 	int32_t tone8;
    493 
    494 	OPL_SLOT *SLOT;
    495 	int env_out;
    496 
    497 	/* BD : same as FM serial mode and output level is large */
    498 	feedback2 = 0;
    499 	/* SLOT 1 */
    500 	SLOT = &CH[6].SLOT[SLOT1];
    501 	env_out=OPL_CALC_SLOT(SLOT);
    502 	if( env_out < EG_ENT-1 )
    503 	{
    504 		/* PG */
    505 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
    506 		else          SLOT->Cnt += SLOT->Incr;
    507 		/* connectoion */
    508 		if(CH[6].FB)
    509 		{
    510 			int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB;
    511 			CH[6].op1_out[1] = CH[6].op1_out[0];
    512 			feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
    513 		}
    514 		else
    515 		{
    516 			feedback2 = OP_OUT(SLOT,env_out,0);
    517 		}
    518 	}else
    519 	{
    520 		feedback2 = 0;
    521 		CH[6].op1_out[1] = CH[6].op1_out[0];
    522 		CH[6].op1_out[0] = 0;
    523 	}
    524 	/* SLOT 2 */
    525 	SLOT = &CH[6].SLOT[SLOT2];
    526 	env_out=OPL_CALC_SLOT(SLOT);
    527 	if( env_out < EG_ENT-1 )
    528 	{
    529 		/* PG */
    530 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
    531 		else          SLOT->Cnt += SLOT->Incr;
    532 		/* connectoion */
    533 		outd[0] += OP_OUT(SLOT,env_out, feedback2)*2;
    534 	}
    535 
    536 	// SD  (17) = mul14[fnum7] + white noise
    537 	// TAM (15) = mul15[fnum8]
    538 	// TOP (18) = fnum6(mul18[fnum8]+whitenoise)
    539 	// HH  (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
    540 	env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise;
    541 	env_tam=OPL_CALC_SLOT(SLOT8_1);
    542 	env_top=OPL_CALC_SLOT(SLOT8_2);
    543 	env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise;
    544 
    545 	/* PG */
    546 	if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE);
    547 	else             SLOT7_1->Cnt += 2*SLOT7_1->Incr;
    548 	if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE);
    549 	else             SLOT7_2->Cnt += (CH[7].fc*8);
    550 	if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE);
    551 	else             SLOT8_1->Cnt += SLOT8_1->Incr;
    552 	if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE);
    553 	else             SLOT8_2->Cnt += (CH[8].fc*48);
    554 
    555 	tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
    556 
    557 	/* SD */
    558 	if( env_sd < EG_ENT-1 )
    559 		outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8;
    560 	/* TAM */
    561 	if( env_tam < EG_ENT-1 )
    562 		outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2;
    563 	/* TOP-CY */
    564 	if( env_top < EG_ENT-1 )
    565 		outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2;
    566 	/* HH */
    567 	if( env_hh  < EG_ENT-1 )
    568 		outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2;
    569 }
    570 
    571 /* ----------- initialize time tabls ----------- */
    572 static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE )
    573 {
    574 	int i;
    575 	double rate;
    576 
    577 	/* make attack rate & decay rate tables */
    578 	for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
    579 	for (i = 4;i <= 60;i++){
    580 		rate  = OPL->freqbase;						/* frequency rate */
    581 		if( i < 60 ) rate *= 1.0+(i&3)*0.25;		/* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
    582 		rate *= 1<<((i>>2)-1);						/* b2-5 : shift bit */
    583 		rate *= (double)(EG_ENT<<ENV_BITS);
    584 		OPL->AR_TABLE[i] = rate / ARRATE;
    585 		OPL->DR_TABLE[i] = rate / DRRATE;
    586 	}
    587 	for (i = 60; i < ARRAY_SIZE(OPL->AR_TABLE); i++)
    588 	{
    589 		OPL->AR_TABLE[i] = EG_AED-1;
    590 		OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
    591 	}
    592 #if 0
    593 	for (i = 0;i < 64 ;i++){	/* make for overflow area */
    594 		LOG(LOG_WAR, ("rate %2d , ar %f ms , dr %f ms\n", i,
    595 			((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate),
    596 			((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) ));
    597 	}
    598 #endif
    599 }
    600 
    601 /* ---------- generic table initialize ---------- */
    602 static int OPLOpenTable( void )
    603 {
    604 	int s,t;
    605 	double rate;
    606 	int i,j;
    607 	double pom;
    608 
    609 	/* allocate dynamic tables */
    610 	if( (TL_TABLE = malloc(TL_MAX*2*sizeof(int32_t))) == NULL)
    611 		return 0;
    612 	if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(int32_t *))) == NULL)
    613 	{
    614 		free(TL_TABLE);
    615 		return 0;
    616 	}
    617 	if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(int32_t))) == NULL)
    618 	{
    619 		free(TL_TABLE);
    620 		free(SIN_TABLE);
    621 		return 0;
    622 	}
    623 	if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(int32_t))) == NULL)
    624 	{
    625 		free(TL_TABLE);
    626 		free(SIN_TABLE);
    627 		free(AMS_TABLE);
    628 		return 0;
    629 	}
    630     ENV_CURVE = g_new(int32_t, 2 * EG_ENT + 1);
    631 	/* make total level table */
    632 	for (t = 0;t < EG_ENT-1 ;t++){
    633 		rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20);	/* dB -> voltage */
    634 		TL_TABLE[       t] =  (int)rate;
    635 		TL_TABLE[TL_MAX+t] = -TL_TABLE[t];
    636 /*		LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
    637 	}
    638 	/* fill volume off area */
    639 	for ( t = EG_ENT-1; t < TL_MAX ;t++){
    640 		TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0;
    641 	}
    642 
    643 	/* make sinwave table (total level offet) */
    644 	/* degree 0 = degree 180                   = off */
    645 	SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2]         = &TL_TABLE[EG_ENT-1];
    646 	for (s = 1;s <= SIN_ENT/4;s++){
    647 		pom = sin(2*PI*s/SIN_ENT); /* sin     */
    648 		pom = 20*log10(1/pom);	   /* decibel */
    649 		j = pom / EG_STEP;         /* TL_TABLE steps */
    650 
    651         /* degree 0   -  90    , degree 180 -  90 : plus section */
    652 		SIN_TABLE[          s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j];
    653         /* degree 180 - 270    , degree 360 - 270 : minus section */
    654 		SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT  -s] = &TL_TABLE[TL_MAX+j];
    655 /*		LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
    656 	}
    657 	for (s = 0;s < SIN_ENT;s++)
    658 	{
    659 		SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
    660 		SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)];
    661 		SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s];
    662 	}
    663 
    664 	/* envelope counter -> envelope output table */
    665 	for (i=0; i<EG_ENT; i++)
    666 	{
    667 		/* ATTACK curve */
    668 		pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT;
    669 		/* if( pom >= EG_ENT ) pom = EG_ENT-1; */
    670 		ENV_CURVE[i] = (int)pom;
    671 		/* DECAY ,RELEASE curve */
    672 		ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i;
    673 	}
    674 	/* off */
    675 	ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1;
    676 	/* make LFO ams table */
    677 	for (i=0; i<AMS_ENT; i++)
    678 	{
    679 		pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */
    680 		AMS_TABLE[i]         = (1.0/EG_STEP)*pom; /* 1dB   */
    681 		AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */
    682 	}
    683 	/* make LFO vibrate table */
    684 	for (i=0; i<VIB_ENT; i++)
    685 	{
    686 		/* 100cent = 1seminote = 6% ?? */
    687 		pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */
    688 		VIB_TABLE[i]         = VIB_RATE + (pom*0.07); /* +- 7cent */
    689 		VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */
    690 		/* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
    691 	}
    692 	return 1;
    693 }
    694 
    695 
    696 static void OPLCloseTable( void )
    697 {
    698     g_free(ENV_CURVE);
    699 	free(TL_TABLE);
    700 	free(SIN_TABLE);
    701 	free(AMS_TABLE);
    702 	free(VIB_TABLE);
    703 }
    704 
    705 /* CSM Key Control */
    706 static inline void CSMKeyControll(OPL_CH *CH)
    707 {
    708 	OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
    709 	OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
    710 	/* all key off */
    711 	OPL_KEYOFF(slot1);
    712 	OPL_KEYOFF(slot2);
    713 	/* total level latch */
    714 	slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
    715 	slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
    716 	/* key on */
    717 	CH->op1_out[0] = CH->op1_out[1] = 0;
    718 	OPL_KEYON(slot1);
    719 	OPL_KEYON(slot2);
    720 }
    721 
    722 /* ---------- opl initialize ---------- */
    723 static void OPL_initialize(FM_OPL *OPL)
    724 {
    725 	int fn;
    726 
    727 	/* frequency base */
    728 	OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72  : 0;
    729 	/* Timer base time */
    730 	OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
    731 	/* make time tables */
    732 	init_timetables( OPL , OPL_ARRATE , OPL_DRRATE );
    733 	/* make fnumber -> increment counter table */
    734 	for( fn=0 ; fn < 1024 ; fn++ )
    735 	{
    736 		OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2;
    737 	}
    738 	/* LFO freq.table */
    739 	OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0;
    740 	OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0;
    741 }
    742 
    743 /* ---------- write a OPL registers ---------- */
    744 static void OPLWriteReg(FM_OPL *OPL, int r, int v)
    745 {
    746 	OPL_CH *CH;
    747 	int slot;
    748 	int block_fnum;
    749 
    750 	switch(r&0xe0)
    751 	{
    752 	case 0x00: /* 00-1f:control */
    753 		switch(r&0x1f)
    754 		{
    755 		case 0x01:
    756 			/* wave selector enable */
    757 			OPL->wavesel = v&0x20;
    758                         if(!OPL->wavesel)
    759 			{
    760 				/* preset compatible mode */
    761 				int c;
    762 				for(c=0;c<OPL->max_ch;c++)
    763 				{
    764 					OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
    765 					OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
    766 				}
    767 			}
    768 			return;
    769 		case 0x02:	/* Timer 1 */
    770 			OPL->T[0] = (256-v)*4;
    771 			break;
    772 		case 0x03:	/* Timer 2 */
    773 			OPL->T[1] = (256-v)*16;
    774 			return;
    775 		case 0x04:	/* IRQ clear / mask and Timer enable */
    776 			if(v&0x80)
    777 			{	/* IRQ flag clear */
    778 				OPL_STATUS_RESET(OPL,0x7f);
    779 			}
    780 			else
    781 			{	/* set IRQ mask ,timer enable*/
    782 				uint8_t st1 = v&1;
    783 				uint8_t st2 = (v>>1)&1;
    784 				/* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
    785 				OPL_STATUS_RESET(OPL,v&0x78);
    786 				OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01);
    787 				/* timer 2 */
    788 				if(OPL->st[1] != st2)
    789 				{
    790 					double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0;
    791 					OPL->st[1] = st2;
    792                     if (OPL->TimerHandler) {
    793                         (OPL->TimerHandler)(OPL->TimerParam, 1, interval);
    794                     }
    795 				}
    796 				/* timer 1 */
    797 				if(OPL->st[0] != st1)
    798 				{
    799 					double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0;
    800 					OPL->st[0] = st1;
    801                     if (OPL->TimerHandler) {
    802                         (OPL->TimerHandler)(OPL->TimerParam, 0, interval);
    803                     }
    804 				}
    805 			}
    806 			return;
    807 		}
    808 		break;
    809 	case 0x20:	/* am,vib,ksr,eg type,mul */
    810 		slot = slot_array[r&0x1f];
    811 		if(slot == -1) return;
    812 		set_mul(OPL,slot,v);
    813 		return;
    814 	case 0x40:
    815 		slot = slot_array[r&0x1f];
    816 		if(slot == -1) return;
    817 		set_ksl_tl(OPL,slot,v);
    818 		return;
    819 	case 0x60:
    820 		slot = slot_array[r&0x1f];
    821 		if(slot == -1) return;
    822 		set_ar_dr(OPL,slot,v);
    823 		return;
    824 	case 0x80:
    825 		slot = slot_array[r&0x1f];
    826 		if(slot == -1) return;
    827 		set_sl_rr(OPL,slot,v);
    828 		return;
    829 	case 0xa0:
    830 		switch(r)
    831 		{
    832 		case 0xbd:
    833 			/* amsep,vibdep,r,bd,sd,tom,tc,hh */
    834 			{
    835 			uint8_t rkey = OPL->rhythm^v;
    836 			OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0];
    837 			OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0];
    838 			OPL->rhythm  = v&0x3f;
    839 			if(OPL->rhythm&0x20)
    840 			{
    841 #if 0
    842 				usrintf_showmessage("OPL Rhythm mode select");
    843 #endif
    844 				/* BD key on/off */
    845 				if(rkey&0x10)
    846 				{
    847 					if(v&0x10)
    848 					{
    849 						OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
    850 						OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
    851 						OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
    852 					}
    853 					else
    854 					{
    855 						OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
    856 						OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
    857 					}
    858 				}
    859 				/* SD key on/off */
    860 				if(rkey&0x08)
    861 				{
    862 					if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
    863 					else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
    864 				}/* TAM key on/off */
    865 				if(rkey&0x04)
    866 				{
    867 					if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
    868 					else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
    869 				}
    870 				/* TOP-CY key on/off */
    871 				if(rkey&0x02)
    872 				{
    873 					if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
    874 					else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
    875 				}
    876 				/* HH key on/off */
    877 				if(rkey&0x01)
    878 				{
    879 					if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
    880 					else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
    881 				}
    882 			}
    883 			}
    884 			return;
    885 		}
    886 		/* keyon,block,fnum */
    887 		if( (r&0x0f) > 8) return;
    888 		CH = &OPL->P_CH[r&0x0f];
    889 		if(!(r&0x10))
    890 		{	/* a0-a8 */
    891 			block_fnum  = (CH->block_fnum&0x1f00) | v;
    892 		}
    893 		else
    894 		{	/* b0-b8 */
    895 			int keyon = (v>>5)&1;
    896 			block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
    897 			if(CH->keyon != keyon)
    898 			{
    899 				if( (CH->keyon=keyon) )
    900 				{
    901 					CH->op1_out[0] = CH->op1_out[1] = 0;
    902 					OPL_KEYON(&CH->SLOT[SLOT1]);
    903 					OPL_KEYON(&CH->SLOT[SLOT2]);
    904 				}
    905 				else
    906 				{
    907 					OPL_KEYOFF(&CH->SLOT[SLOT1]);
    908 					OPL_KEYOFF(&CH->SLOT[SLOT2]);
    909 				}
    910 			}
    911 		}
    912 		/* update */
    913 		if(CH->block_fnum != block_fnum)
    914 		{
    915 			int blockRv = 7-(block_fnum>>10);
    916 			int fnum   = block_fnum&0x3ff;
    917 			CH->block_fnum = block_fnum;
    918 
    919 			CH->ksl_base = KSL_TABLE[block_fnum>>6];
    920 			CH->fc = OPL->FN_TABLE[fnum]>>blockRv;
    921 			CH->kcode = CH->block_fnum>>9;
    922 			if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1;
    923 			CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
    924 			CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
    925 		}
    926 		return;
    927 	case 0xc0:
    928 		/* FB,C */
    929 		if( (r&0x0f) > 8) return;
    930 		CH = &OPL->P_CH[r&0x0f];
    931 		{
    932 		int feedback = (v>>1)&7;
    933 		CH->FB   = feedback ? (8+1) - feedback : 0;
    934 		CH->CON = v&1;
    935 		set_algorithm(CH);
    936 		}
    937 		return;
    938 	case 0xe0: /* wave type */
    939 		slot = slot_array[r&0x1f];
    940 		if(slot == -1) return;
    941 		CH = &OPL->P_CH[slot/2];
    942 		if(OPL->wavesel)
    943 		{
    944 			/* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
    945 			CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT];
    946 		}
    947 		return;
    948 	}
    949 }
    950 
    951 /* lock/unlock for common table */
    952 static int OPL_LockTable(void)
    953 {
    954 	num_lock++;
    955 	if(num_lock>1) return 0;
    956 	/* first time */
    957 	cur_chip = NULL;
    958 	/* allocate total level table (128kb space) */
    959 	if( !OPLOpenTable() )
    960 	{
    961 		num_lock--;
    962 		return -1;
    963 	}
    964 	return 0;
    965 }
    966 
    967 static void OPL_UnLockTable(void)
    968 {
    969 	if(num_lock) num_lock--;
    970 	if(num_lock) return;
    971 	/* last time */
    972 	cur_chip = NULL;
    973 	OPLCloseTable();
    974 }
    975 
    976 /*******************************************************************************/
    977 /*		YM3812 local section                                                   */
    978 /*******************************************************************************/
    979 
    980 /* ---------- update one of chip ----------- */
    981 void YM3812UpdateOne(FM_OPL *OPL, int16_t *buffer, int length)
    982 {
    983     int i;
    984 	int data;
    985 	int16_t *buf = buffer;
    986 	uint32_t amsCnt  = OPL->amsCnt;
    987 	uint32_t  vibCnt  = OPL->vibCnt;
    988 	uint8_t rhythm = OPL->rhythm&0x20;
    989 	OPL_CH *CH,*R_CH;
    990 
    991 	if( (void *)OPL != cur_chip ){
    992 		cur_chip = (void *)OPL;
    993 		/* channel pointers */
    994 		S_CH = OPL->P_CH;
    995 		E_CH = &S_CH[9];
    996 		/* rhythm slot */
    997 		SLOT7_1 = &S_CH[7].SLOT[SLOT1];
    998 		SLOT7_2 = &S_CH[7].SLOT[SLOT2];
    999 		SLOT8_1 = &S_CH[8].SLOT[SLOT1];
   1000 		SLOT8_2 = &S_CH[8].SLOT[SLOT2];
   1001 		/* LFO state */
   1002 		amsIncr = OPL->amsIncr;
   1003 		vibIncr = OPL->vibIncr;
   1004 		ams_table = OPL->ams_table;
   1005 		vib_table = OPL->vib_table;
   1006 	}
   1007 	R_CH = rhythm ? &S_CH[6] : E_CH;
   1008     for( i=0; i < length ; i++ )
   1009 	{
   1010 		/*            channel A         channel B         channel C      */
   1011 		/* LFO */
   1012 		ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
   1013 		vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
   1014 		outd[0] = 0;
   1015 		/* FM part */
   1016 		for(CH=S_CH ; CH < R_CH ; CH++)
   1017 			OPL_CALC_CH(CH);
   1018 		/* Rythn part */
   1019 		if(rhythm)
   1020 			OPL_CALC_RH(S_CH);
   1021 		/* limit check */
   1022 		data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
   1023 		/* store to sound buffer */
   1024 		buf[i] = data >> OPL_OUTSB;
   1025 	}
   1026 
   1027 	OPL->amsCnt = amsCnt;
   1028 	OPL->vibCnt = vibCnt;
   1029 #ifdef OPL_OUTPUT_LOG
   1030 	if(opl_dbg_fp)
   1031 	{
   1032 		for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
   1033 			if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
   1034 		fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256);
   1035 	}
   1036 #endif
   1037 }
   1038 
   1039 /* ---------- reset one of chip ---------- */
   1040 static void OPLResetChip(FM_OPL *OPL)
   1041 {
   1042 	int c,s;
   1043 	int i;
   1044 
   1045 	/* reset chip */
   1046 	OPL->mode   = 0;	/* normal mode */
   1047 	OPL_STATUS_RESET(OPL,0x7f);
   1048 	/* reset with register write */
   1049 	OPLWriteReg(OPL,0x01,0); /* wabesel disable */
   1050 	OPLWriteReg(OPL,0x02,0); /* Timer1 */
   1051 	OPLWriteReg(OPL,0x03,0); /* Timer2 */
   1052 	OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */
   1053 	for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
   1054 	/* reset operator parameter */
   1055 	for( c = 0 ; c < OPL->max_ch ; c++ )
   1056 	{
   1057 		OPL_CH *CH = &OPL->P_CH[c];
   1058 		/* OPL->P_CH[c].PAN = OPN_CENTER; */
   1059 		for(s = 0 ; s < 2 ; s++ )
   1060 		{
   1061 			/* wave table */
   1062 			CH->SLOT[s].wavetable = &SIN_TABLE[0];
   1063 			/* CH->SLOT[s].evm = ENV_MOD_RR; */
   1064 			CH->SLOT[s].evc = EG_OFF;
   1065 			CH->SLOT[s].eve = EG_OFF+1;
   1066 			CH->SLOT[s].evs = 0;
   1067 		}
   1068 	}
   1069 }
   1070 
   1071 /* ----------  Create one of virtual YM3812 ----------       */
   1072 /* 'rate'  is sampling rate and 'bufsiz' is the size of the  */
   1073 FM_OPL *OPLCreate(int clock, int rate)
   1074 {
   1075 	char *ptr;
   1076 	FM_OPL *OPL;
   1077 	int state_size;
   1078 	int max_ch = 9; /* normaly 9 channels */
   1079 
   1080 	if( OPL_LockTable() ==-1) return NULL;
   1081 	/* allocate OPL state space */
   1082 	state_size  = sizeof(FM_OPL);
   1083 	state_size += sizeof(OPL_CH)*max_ch;
   1084 	/* allocate memory block */
   1085 	ptr = malloc(state_size);
   1086 	if(ptr==NULL) return NULL;
   1087 	/* clear */
   1088 	memset(ptr,0,state_size);
   1089 	OPL        = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL);
   1090 	OPL->P_CH  = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch;
   1091 	/* set channel state pointer */
   1092 	OPL->clock = clock;
   1093 	OPL->rate  = rate;
   1094 	OPL->max_ch = max_ch;
   1095 	/* init grobal tables */
   1096 	OPL_initialize(OPL);
   1097 	/* reset chip */
   1098 	OPLResetChip(OPL);
   1099 #ifdef OPL_OUTPUT_LOG
   1100 	if(!opl_dbg_fp)
   1101 	{
   1102 		opl_dbg_fp = fopen("opllog.opl","wb");
   1103 		opl_dbg_maxchip = 0;
   1104 	}
   1105 	if(opl_dbg_fp)
   1106 	{
   1107 		opl_dbg_opl[opl_dbg_maxchip] = OPL;
   1108 		fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip,
   1109 			type,
   1110 			clock&0xff,
   1111 			(clock/0x100)&0xff,
   1112 			(clock/0x10000)&0xff,
   1113 			(clock/0x1000000)&0xff);
   1114 		opl_dbg_maxchip++;
   1115 	}
   1116 #endif
   1117 	return OPL;
   1118 }
   1119 
   1120 /* ----------  Destroy one of virtual YM3812 ----------       */
   1121 void OPLDestroy(FM_OPL *OPL)
   1122 {
   1123 #ifdef OPL_OUTPUT_LOG
   1124 	if(opl_dbg_fp)
   1125 	{
   1126 		fclose(opl_dbg_fp);
   1127 		opl_dbg_fp = NULL;
   1128 	}
   1129 #endif
   1130 	OPL_UnLockTable();
   1131 	free(OPL);
   1132 }
   1133 
   1134 /* ----------  Option handlers ----------       */
   1135 
   1136 void OPLSetTimerHandler(FM_OPL *OPL, OPL_TIMERHANDLER TimerHandler,
   1137                         void *param)
   1138 {
   1139 	OPL->TimerHandler   = TimerHandler;
   1140     OPL->TimerParam = param;
   1141 }
   1142 
   1143 /* ---------- YM3812 I/O interface ---------- */
   1144 int OPLWrite(FM_OPL *OPL,int a,int v)
   1145 {
   1146 	if( !(a&1) )
   1147 	{	/* address port */
   1148 		OPL->address = v & 0xff;
   1149 	}
   1150 	else
   1151 	{	/* data port */
   1152 #ifdef OPL_OUTPUT_LOG
   1153 	if(opl_dbg_fp)
   1154 	{
   1155 		for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
   1156 			if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
   1157 		fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v);
   1158 	}
   1159 #endif
   1160 		OPLWriteReg(OPL,OPL->address,v);
   1161 	}
   1162 	return OPL->status>>7;
   1163 }
   1164 
   1165 unsigned char OPLRead(FM_OPL *OPL,int a)
   1166 {
   1167 	if( !(a&1) )
   1168 	{	/* status port */
   1169 		return OPL->status & (OPL->statusmask|0x80);
   1170 	}
   1171 	/* data port */
   1172 	switch(OPL->address)
   1173 	{
   1174 	case 0x05: /* KeyBoard IN */
   1175 		return 0;
   1176 #if 0
   1177 	case 0x0f: /* ADPCM-DATA  */
   1178 		return 0;
   1179 #endif
   1180 	case 0x19: /* I/O DATA    */
   1181 		return 0;
   1182 	case 0x1a: /* PCM-DATA    */
   1183 		return 0;
   1184 	}
   1185 	return 0;
   1186 }
   1187 
   1188 int OPLTimerOver(FM_OPL *OPL,int c)
   1189 {
   1190 	if( c )
   1191 	{	/* Timer B */
   1192 		OPL_STATUS_SET(OPL,0x20);
   1193 	}
   1194 	else
   1195 	{	/* Timer A */
   1196 		OPL_STATUS_SET(OPL,0x40);
   1197 		/* CSM mode key,TL control */
   1198 		if( OPL->mode & 0x80 )
   1199 		{	/* CSM mode total level latch and auto key on */
   1200 			int ch;
   1201 			for(ch=0;ch<9;ch++)
   1202 				CSMKeyControll( &OPL->P_CH[ch] );
   1203 		}
   1204 	}
   1205 	/* reload timer */
   1206     if (OPL->TimerHandler) {
   1207         (OPL->TimerHandler)(OPL->TimerParam, c,
   1208                             (double)OPL->T[c] * OPL->TimerBase);
   1209     }
   1210 	return OPL->status>>7;
   1211 }