qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

virt.c (121302B)


      1 /*
      2  * ARM mach-virt emulation
      3  *
      4  * Copyright (c) 2013 Linaro Limited
      5  *
      6  * This program is free software; you can redistribute it and/or modify it
      7  * under the terms and conditions of the GNU General Public License,
      8  * version 2 or later, as published by the Free Software Foundation.
      9  *
     10  * This program is distributed in the hope it will be useful, but WITHOUT
     11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
     12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
     13  * more details.
     14  *
     15  * You should have received a copy of the GNU General Public License along with
     16  * this program.  If not, see <http://www.gnu.org/licenses/>.
     17  *
     18  * Emulate a virtual board which works by passing Linux all the information
     19  * it needs about what devices are present via the device tree.
     20  * There are some restrictions about what we can do here:
     21  *  + we can only present devices whose Linux drivers will work based
     22  *    purely on the device tree with no platform data at all
     23  *  + we want to present a very stripped-down minimalist platform,
     24  *    both because this reduces the security attack surface from the guest
     25  *    and also because it reduces our exposure to being broken when
     26  *    the kernel updates its device tree bindings and requires further
     27  *    information in a device binding that we aren't providing.
     28  * This is essentially the same approach kvmtool uses.
     29  */
     30 
     31 #include "qemu/osdep.h"
     32 #include "qemu/datadir.h"
     33 #include "qemu/units.h"
     34 #include "qemu/option.h"
     35 #include "monitor/qdev.h"
     36 #include "qapi/error.h"
     37 #include "hw/sysbus.h"
     38 #include "hw/arm/boot.h"
     39 #include "hw/arm/primecell.h"
     40 #include "hw/arm/virt.h"
     41 #include "hw/block/flash.h"
     42 #include "hw/vfio/vfio-calxeda-xgmac.h"
     43 #include "hw/vfio/vfio-amd-xgbe.h"
     44 #include "hw/display/ramfb.h"
     45 #include "net/net.h"
     46 #include "sysemu/device_tree.h"
     47 #include "sysemu/numa.h"
     48 #include "sysemu/runstate.h"
     49 #include "sysemu/tpm.h"
     50 #include "sysemu/kvm.h"
     51 #include "sysemu/hvf.h"
     52 #include "hw/loader.h"
     53 #include "qapi/error.h"
     54 #include "qemu/bitops.h"
     55 #include "qemu/error-report.h"
     56 #include "qemu/module.h"
     57 #include "hw/pci-host/gpex.h"
     58 #include "hw/virtio/virtio-pci.h"
     59 #include "hw/core/sysbus-fdt.h"
     60 #include "hw/platform-bus.h"
     61 #include "hw/qdev-properties.h"
     62 #include "hw/arm/fdt.h"
     63 #include "hw/intc/arm_gic.h"
     64 #include "hw/intc/arm_gicv3_common.h"
     65 #include "hw/irq.h"
     66 #include "kvm_arm.h"
     67 #include "hw/firmware/smbios.h"
     68 #include "qapi/visitor.h"
     69 #include "qapi/qapi-visit-common.h"
     70 #include "standard-headers/linux/input.h"
     71 #include "hw/arm/smmuv3.h"
     72 #include "hw/acpi/acpi.h"
     73 #include "target/arm/internals.h"
     74 #include "hw/mem/memory-device.h"
     75 #include "hw/mem/pc-dimm.h"
     76 #include "hw/mem/nvdimm.h"
     77 #include "hw/acpi/generic_event_device.h"
     78 #include "hw/virtio/virtio-mem-pci.h"
     79 #include "hw/virtio/virtio-iommu.h"
     80 #include "hw/char/pl011.h"
     81 #include "qemu/guest-random.h"
     82 
     83 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
     84     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
     85                                                     void *data) \
     86     { \
     87         MachineClass *mc = MACHINE_CLASS(oc); \
     88         virt_machine_##major##_##minor##_options(mc); \
     89         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
     90         if (latest) { \
     91             mc->alias = "virt"; \
     92         } \
     93     } \
     94     static const TypeInfo machvirt_##major##_##minor##_info = { \
     95         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
     96         .parent = TYPE_VIRT_MACHINE, \
     97         .class_init = virt_##major##_##minor##_class_init, \
     98     }; \
     99     static void machvirt_machine_##major##_##minor##_init(void) \
    100     { \
    101         type_register_static(&machvirt_##major##_##minor##_info); \
    102     } \
    103     type_init(machvirt_machine_##major##_##minor##_init);
    104 
    105 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
    106     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
    107 #define DEFINE_VIRT_MACHINE(major, minor) \
    108     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
    109 
    110 
    111 /* Number of external interrupt lines to configure the GIC with */
    112 #define NUM_IRQS 256
    113 
    114 #define PLATFORM_BUS_NUM_IRQS 64
    115 
    116 /* Legacy RAM limit in GB (< version 4.0) */
    117 #define LEGACY_RAMLIMIT_GB 255
    118 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
    119 
    120 /* Addresses and sizes of our components.
    121  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
    122  * 128MB..256MB is used for miscellaneous device I/O.
    123  * 256MB..1GB is reserved for possible future PCI support (ie where the
    124  * PCI memory window will go if we add a PCI host controller).
    125  * 1GB and up is RAM (which may happily spill over into the
    126  * high memory region beyond 4GB).
    127  * This represents a compromise between how much RAM can be given to
    128  * a 32 bit VM and leaving space for expansion and in particular for PCI.
    129  * Note that devices should generally be placed at multiples of 0x10000,
    130  * to accommodate guests using 64K pages.
    131  */
    132 static const MemMapEntry base_memmap[] = {
    133     /* Space up to 0x8000000 is reserved for a boot ROM */
    134     [VIRT_FLASH] =              {          0, 0x08000000 },
    135     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
    136     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
    137     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
    138     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
    139     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
    140     [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
    141     [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
    142     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
    143     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
    144     /* This redistributor space allows up to 2*64kB*123 CPUs */
    145     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
    146     [VIRT_UART] =               { 0x09000000, 0x00001000 },
    147     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
    148     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
    149     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
    150     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
    151     [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
    152     [VIRT_PCDIMM_ACPI] =        { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
    153     [VIRT_ACPI_GED] =           { 0x09080000, ACPI_GED_EVT_SEL_LEN },
    154     [VIRT_NVDIMM_ACPI] =        { 0x09090000, NVDIMM_ACPI_IO_LEN},
    155     [VIRT_PVTIME] =             { 0x090a0000, 0x00010000 },
    156     [VIRT_SECURE_GPIO] =        { 0x090b0000, 0x00001000 },
    157     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
    158     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
    159     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
    160     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
    161     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
    162     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
    163     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
    164     /* Actual RAM size depends on initial RAM and device memory settings */
    165     [VIRT_MEM] =                { GiB, LEGACY_RAMLIMIT_BYTES },
    166 };
    167 
    168 /*
    169  * Highmem IO Regions: This memory map is floating, located after the RAM.
    170  * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
    171  * top of the RAM, so that its base get the same alignment as the size,
    172  * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
    173  * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
    174  * Note the extended_memmap is sized so that it eventually also includes the
    175  * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
    176  * index of base_memmap).
    177  */
    178 static MemMapEntry extended_memmap[] = {
    179     /* Additional 64 MB redist region (can contain up to 512 redistributors) */
    180     [VIRT_HIGH_GIC_REDIST2] =   { 0x0, 64 * MiB },
    181     [VIRT_HIGH_PCIE_ECAM] =     { 0x0, 256 * MiB },
    182     /* Second PCIe window */
    183     [VIRT_HIGH_PCIE_MMIO] =     { 0x0, 512 * GiB },
    184 };
    185 
    186 static const int a15irqmap[] = {
    187     [VIRT_UART] = 1,
    188     [VIRT_RTC] = 2,
    189     [VIRT_PCIE] = 3, /* ... to 6 */
    190     [VIRT_GPIO] = 7,
    191     [VIRT_SECURE_UART] = 8,
    192     [VIRT_ACPI_GED] = 9,
    193     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
    194     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
    195     [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
    196     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
    197 };
    198 
    199 static const char *valid_cpus[] = {
    200     ARM_CPU_TYPE_NAME("cortex-a7"),
    201     ARM_CPU_TYPE_NAME("cortex-a15"),
    202     ARM_CPU_TYPE_NAME("cortex-a35"),
    203     ARM_CPU_TYPE_NAME("cortex-a53"),
    204     ARM_CPU_TYPE_NAME("cortex-a57"),
    205     ARM_CPU_TYPE_NAME("cortex-a72"),
    206     ARM_CPU_TYPE_NAME("cortex-a76"),
    207     ARM_CPU_TYPE_NAME("a64fx"),
    208     ARM_CPU_TYPE_NAME("neoverse-n1"),
    209     ARM_CPU_TYPE_NAME("host"),
    210     ARM_CPU_TYPE_NAME("max"),
    211 };
    212 
    213 static bool cpu_type_valid(const char *cpu)
    214 {
    215     int i;
    216 
    217     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
    218         if (strcmp(cpu, valid_cpus[i]) == 0) {
    219             return true;
    220         }
    221     }
    222     return false;
    223 }
    224 
    225 static void create_randomness(MachineState *ms, const char *node)
    226 {
    227     struct {
    228         uint64_t kaslr;
    229         uint8_t rng[32];
    230     } seed;
    231 
    232     if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
    233         return;
    234     }
    235     qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr);
    236     qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng));
    237 }
    238 
    239 static void create_fdt(VirtMachineState *vms)
    240 {
    241     MachineState *ms = MACHINE(vms);
    242     int nb_numa_nodes = ms->numa_state->num_nodes;
    243     void *fdt = create_device_tree(&vms->fdt_size);
    244 
    245     if (!fdt) {
    246         error_report("create_device_tree() failed");
    247         exit(1);
    248     }
    249 
    250     ms->fdt = fdt;
    251 
    252     /* Header */
    253     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
    254     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
    255     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
    256     qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt");
    257 
    258     /* /chosen must exist for load_dtb to fill in necessary properties later */
    259     qemu_fdt_add_subnode(fdt, "/chosen");
    260     if (vms->dtb_randomness) {
    261         create_randomness(ms, "/chosen");
    262     }
    263 
    264     if (vms->secure) {
    265         qemu_fdt_add_subnode(fdt, "/secure-chosen");
    266         if (vms->dtb_randomness) {
    267             create_randomness(ms, "/secure-chosen");
    268         }
    269     }
    270 
    271     /* Clock node, for the benefit of the UART. The kernel device tree
    272      * binding documentation claims the PL011 node clock properties are
    273      * optional but in practice if you omit them the kernel refuses to
    274      * probe for the device.
    275      */
    276     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
    277     qemu_fdt_add_subnode(fdt, "/apb-pclk");
    278     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
    279     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
    280     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
    281     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
    282                                 "clk24mhz");
    283     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
    284 
    285     if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
    286         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
    287         uint32_t *matrix = g_malloc0(size);
    288         int idx, i, j;
    289 
    290         for (i = 0; i < nb_numa_nodes; i++) {
    291             for (j = 0; j < nb_numa_nodes; j++) {
    292                 idx = (i * nb_numa_nodes + j) * 3;
    293                 matrix[idx + 0] = cpu_to_be32(i);
    294                 matrix[idx + 1] = cpu_to_be32(j);
    295                 matrix[idx + 2] =
    296                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
    297             }
    298         }
    299 
    300         qemu_fdt_add_subnode(fdt, "/distance-map");
    301         qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
    302                                 "numa-distance-map-v1");
    303         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
    304                          matrix, size);
    305         g_free(matrix);
    306     }
    307 }
    308 
    309 static void fdt_add_timer_nodes(const VirtMachineState *vms)
    310 {
    311     /* On real hardware these interrupts are level-triggered.
    312      * On KVM they were edge-triggered before host kernel version 4.4,
    313      * and level-triggered afterwards.
    314      * On emulated QEMU they are level-triggered.
    315      *
    316      * Getting the DTB info about them wrong is awkward for some
    317      * guest kernels:
    318      *  pre-4.8 ignore the DT and leave the interrupt configured
    319      *   with whatever the GIC reset value (or the bootloader) left it at
    320      *  4.8 before rc6 honour the incorrect data by programming it back
    321      *   into the GIC, causing problems
    322      *  4.8rc6 and later ignore the DT and always write "level triggered"
    323      *   into the GIC
    324      *
    325      * For backwards-compatibility, virt-2.8 and earlier will continue
    326      * to say these are edge-triggered, but later machines will report
    327      * the correct information.
    328      */
    329     ARMCPU *armcpu;
    330     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
    331     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
    332     MachineState *ms = MACHINE(vms);
    333 
    334     if (vmc->claim_edge_triggered_timers) {
    335         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
    336     }
    337 
    338     if (vms->gic_version == VIRT_GIC_VERSION_2) {
    339         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
    340                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
    341                              (1 << MACHINE(vms)->smp.cpus) - 1);
    342     }
    343 
    344     qemu_fdt_add_subnode(ms->fdt, "/timer");
    345 
    346     armcpu = ARM_CPU(qemu_get_cpu(0));
    347     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
    348         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
    349         qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
    350                          compat, sizeof(compat));
    351     } else {
    352         qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
    353                                 "arm,armv7-timer");
    354     }
    355     qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
    356     qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
    357                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
    358                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
    359                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
    360                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
    361 }
    362 
    363 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
    364 {
    365     int cpu;
    366     int addr_cells = 1;
    367     const MachineState *ms = MACHINE(vms);
    368     const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
    369     int smp_cpus = ms->smp.cpus;
    370 
    371     /*
    372      * See Linux Documentation/devicetree/bindings/arm/cpus.yaml
    373      * On ARM v8 64-bit systems value should be set to 2,
    374      * that corresponds to the MPIDR_EL1 register size.
    375      * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
    376      * in the system, #address-cells can be set to 1, since
    377      * MPIDR_EL1[63:32] bits are not used for CPUs
    378      * identification.
    379      *
    380      * Here we actually don't know whether our system is 32- or 64-bit one.
    381      * The simplest way to go is to examine affinity IDs of all our CPUs. If
    382      * at least one of them has Aff3 populated, we set #address-cells to 2.
    383      */
    384     for (cpu = 0; cpu < smp_cpus; cpu++) {
    385         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
    386 
    387         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
    388             addr_cells = 2;
    389             break;
    390         }
    391     }
    392 
    393     qemu_fdt_add_subnode(ms->fdt, "/cpus");
    394     qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
    395     qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
    396 
    397     for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
    398         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
    399         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
    400         CPUState *cs = CPU(armcpu);
    401 
    402         qemu_fdt_add_subnode(ms->fdt, nodename);
    403         qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
    404         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
    405                                     armcpu->dtb_compatible);
    406 
    407         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
    408             qemu_fdt_setprop_string(ms->fdt, nodename,
    409                                         "enable-method", "psci");
    410         }
    411 
    412         if (addr_cells == 2) {
    413             qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
    414                                  armcpu->mp_affinity);
    415         } else {
    416             qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
    417                                   armcpu->mp_affinity);
    418         }
    419 
    420         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
    421             qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
    422                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
    423         }
    424 
    425         if (!vmc->no_cpu_topology) {
    426             qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle",
    427                                   qemu_fdt_alloc_phandle(ms->fdt));
    428         }
    429 
    430         g_free(nodename);
    431     }
    432 
    433     if (!vmc->no_cpu_topology) {
    434         /*
    435          * Add vCPU topology description through fdt node cpu-map.
    436          *
    437          * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt
    438          * In a SMP system, the hierarchy of CPUs can be defined through
    439          * four entities that are used to describe the layout of CPUs in
    440          * the system: socket/cluster/core/thread.
    441          *
    442          * A socket node represents the boundary of system physical package
    443          * and its child nodes must be one or more cluster nodes. A system
    444          * can contain several layers of clustering within a single physical
    445          * package and cluster nodes can be contained in parent cluster nodes.
    446          *
    447          * Note: currently we only support one layer of clustering within
    448          * each physical package.
    449          */
    450         qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
    451 
    452         for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
    453             char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu);
    454             char *map_path;
    455 
    456             if (ms->smp.threads > 1) {
    457                 map_path = g_strdup_printf(
    458                     "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d",
    459                     cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads),
    460                     (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters,
    461                     (cpu / ms->smp.threads) % ms->smp.cores,
    462                     cpu % ms->smp.threads);
    463             } else {
    464                 map_path = g_strdup_printf(
    465                     "/cpus/cpu-map/socket%d/cluster%d/core%d",
    466                     cpu / (ms->smp.clusters * ms->smp.cores),
    467                     (cpu / ms->smp.cores) % ms->smp.clusters,
    468                     cpu % ms->smp.cores);
    469             }
    470             qemu_fdt_add_path(ms->fdt, map_path);
    471             qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path);
    472 
    473             g_free(map_path);
    474             g_free(cpu_path);
    475         }
    476     }
    477 }
    478 
    479 static void fdt_add_its_gic_node(VirtMachineState *vms)
    480 {
    481     char *nodename;
    482     MachineState *ms = MACHINE(vms);
    483 
    484     vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
    485     nodename = g_strdup_printf("/intc/its@%" PRIx64,
    486                                vms->memmap[VIRT_GIC_ITS].base);
    487     qemu_fdt_add_subnode(ms->fdt, nodename);
    488     qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
    489                             "arm,gic-v3-its");
    490     qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
    491     qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1);
    492     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
    493                                  2, vms->memmap[VIRT_GIC_ITS].base,
    494                                  2, vms->memmap[VIRT_GIC_ITS].size);
    495     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
    496     g_free(nodename);
    497 }
    498 
    499 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
    500 {
    501     MachineState *ms = MACHINE(vms);
    502     char *nodename;
    503 
    504     nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
    505                                vms->memmap[VIRT_GIC_V2M].base);
    506     vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
    507     qemu_fdt_add_subnode(ms->fdt, nodename);
    508     qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
    509                             "arm,gic-v2m-frame");
    510     qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
    511     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
    512                                  2, vms->memmap[VIRT_GIC_V2M].base,
    513                                  2, vms->memmap[VIRT_GIC_V2M].size);
    514     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
    515     g_free(nodename);
    516 }
    517 
    518 static void fdt_add_gic_node(VirtMachineState *vms)
    519 {
    520     MachineState *ms = MACHINE(vms);
    521     char *nodename;
    522 
    523     vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
    524     qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
    525 
    526     nodename = g_strdup_printf("/intc@%" PRIx64,
    527                                vms->memmap[VIRT_GIC_DIST].base);
    528     qemu_fdt_add_subnode(ms->fdt, nodename);
    529     qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
    530     qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
    531     qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
    532     qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
    533     qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
    534     if (vms->gic_version != VIRT_GIC_VERSION_2) {
    535         int nb_redist_regions = virt_gicv3_redist_region_count(vms);
    536 
    537         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
    538                                 "arm,gic-v3");
    539 
    540         qemu_fdt_setprop_cell(ms->fdt, nodename,
    541                               "#redistributor-regions", nb_redist_regions);
    542 
    543         if (nb_redist_regions == 1) {
    544             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
    545                                          2, vms->memmap[VIRT_GIC_DIST].base,
    546                                          2, vms->memmap[VIRT_GIC_DIST].size,
    547                                          2, vms->memmap[VIRT_GIC_REDIST].base,
    548                                          2, vms->memmap[VIRT_GIC_REDIST].size);
    549         } else {
    550             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
    551                                  2, vms->memmap[VIRT_GIC_DIST].base,
    552                                  2, vms->memmap[VIRT_GIC_DIST].size,
    553                                  2, vms->memmap[VIRT_GIC_REDIST].base,
    554                                  2, vms->memmap[VIRT_GIC_REDIST].size,
    555                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
    556                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
    557         }
    558 
    559         if (vms->virt) {
    560             qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
    561                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
    562                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
    563         }
    564     } else {
    565         /* 'cortex-a15-gic' means 'GIC v2' */
    566         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
    567                                 "arm,cortex-a15-gic");
    568         if (!vms->virt) {
    569             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
    570                                          2, vms->memmap[VIRT_GIC_DIST].base,
    571                                          2, vms->memmap[VIRT_GIC_DIST].size,
    572                                          2, vms->memmap[VIRT_GIC_CPU].base,
    573                                          2, vms->memmap[VIRT_GIC_CPU].size);
    574         } else {
    575             qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
    576                                          2, vms->memmap[VIRT_GIC_DIST].base,
    577                                          2, vms->memmap[VIRT_GIC_DIST].size,
    578                                          2, vms->memmap[VIRT_GIC_CPU].base,
    579                                          2, vms->memmap[VIRT_GIC_CPU].size,
    580                                          2, vms->memmap[VIRT_GIC_HYP].base,
    581                                          2, vms->memmap[VIRT_GIC_HYP].size,
    582                                          2, vms->memmap[VIRT_GIC_VCPU].base,
    583                                          2, vms->memmap[VIRT_GIC_VCPU].size);
    584             qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
    585                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
    586                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
    587         }
    588     }
    589 
    590     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
    591     g_free(nodename);
    592 }
    593 
    594 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
    595 {
    596     ARMCPU *armcpu = ARM_CPU(first_cpu);
    597     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
    598     MachineState *ms = MACHINE(vms);
    599 
    600     if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
    601         assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
    602         return;
    603     }
    604 
    605     if (vms->gic_version == VIRT_GIC_VERSION_2) {
    606         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
    607                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
    608                              (1 << MACHINE(vms)->smp.cpus) - 1);
    609     }
    610 
    611     qemu_fdt_add_subnode(ms->fdt, "/pmu");
    612     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
    613         const char compat[] = "arm,armv8-pmuv3";
    614         qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
    615                          compat, sizeof(compat));
    616         qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
    617                                GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
    618     }
    619 }
    620 
    621 static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
    622 {
    623     DeviceState *dev;
    624     MachineState *ms = MACHINE(vms);
    625     int irq = vms->irqmap[VIRT_ACPI_GED];
    626     uint32_t event = ACPI_GED_PWR_DOWN_EVT;
    627 
    628     if (ms->ram_slots) {
    629         event |= ACPI_GED_MEM_HOTPLUG_EVT;
    630     }
    631 
    632     if (ms->nvdimms_state->is_enabled) {
    633         event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
    634     }
    635 
    636     dev = qdev_new(TYPE_ACPI_GED);
    637     qdev_prop_set_uint32(dev, "ged-event", event);
    638 
    639     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
    640     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
    641     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
    642 
    643     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
    644 
    645     return dev;
    646 }
    647 
    648 static void create_its(VirtMachineState *vms)
    649 {
    650     const char *itsclass = its_class_name();
    651     DeviceState *dev;
    652 
    653     if (!strcmp(itsclass, "arm-gicv3-its")) {
    654         if (!vms->tcg_its) {
    655             itsclass = NULL;
    656         }
    657     }
    658 
    659     if (!itsclass) {
    660         /* Do nothing if not supported */
    661         return;
    662     }
    663 
    664     dev = qdev_new(itsclass);
    665 
    666     object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
    667                              &error_abort);
    668     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
    669     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
    670 
    671     fdt_add_its_gic_node(vms);
    672     vms->msi_controller = VIRT_MSI_CTRL_ITS;
    673 }
    674 
    675 static void create_v2m(VirtMachineState *vms)
    676 {
    677     int i;
    678     int irq = vms->irqmap[VIRT_GIC_V2M];
    679     DeviceState *dev;
    680 
    681     dev = qdev_new("arm-gicv2m");
    682     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
    683     qdev_prop_set_uint32(dev, "base-spi", irq);
    684     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
    685     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
    686 
    687     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
    688         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
    689                            qdev_get_gpio_in(vms->gic, irq + i));
    690     }
    691 
    692     fdt_add_v2m_gic_node(vms);
    693     vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
    694 }
    695 
    696 static void create_gic(VirtMachineState *vms, MemoryRegion *mem)
    697 {
    698     MachineState *ms = MACHINE(vms);
    699     /* We create a standalone GIC */
    700     SysBusDevice *gicbusdev;
    701     const char *gictype;
    702     int i;
    703     unsigned int smp_cpus = ms->smp.cpus;
    704     uint32_t nb_redist_regions = 0;
    705     int revision;
    706 
    707     if (vms->gic_version == VIRT_GIC_VERSION_2) {
    708         gictype = gic_class_name();
    709     } else {
    710         gictype = gicv3_class_name();
    711     }
    712 
    713     switch (vms->gic_version) {
    714     case VIRT_GIC_VERSION_2:
    715         revision = 2;
    716         break;
    717     case VIRT_GIC_VERSION_3:
    718         revision = 3;
    719         break;
    720     case VIRT_GIC_VERSION_4:
    721         revision = 4;
    722         break;
    723     default:
    724         g_assert_not_reached();
    725     }
    726     vms->gic = qdev_new(gictype);
    727     qdev_prop_set_uint32(vms->gic, "revision", revision);
    728     qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
    729     /* Note that the num-irq property counts both internal and external
    730      * interrupts; there are always 32 of the former (mandated by GIC spec).
    731      */
    732     qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
    733     if (!kvm_irqchip_in_kernel()) {
    734         qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
    735     }
    736 
    737     if (vms->gic_version != VIRT_GIC_VERSION_2) {
    738         uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST);
    739         uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
    740 
    741         nb_redist_regions = virt_gicv3_redist_region_count(vms);
    742 
    743         qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
    744                              nb_redist_regions);
    745         qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
    746 
    747         if (!kvm_irqchip_in_kernel()) {
    748             if (vms->tcg_its) {
    749                 object_property_set_link(OBJECT(vms->gic), "sysmem",
    750                                          OBJECT(mem), &error_fatal);
    751                 qdev_prop_set_bit(vms->gic, "has-lpi", true);
    752             }
    753         }
    754 
    755         if (nb_redist_regions == 2) {
    756             uint32_t redist1_capacity =
    757                 virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
    758 
    759             qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
    760                 MIN(smp_cpus - redist0_count, redist1_capacity));
    761         }
    762     } else {
    763         if (!kvm_irqchip_in_kernel()) {
    764             qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
    765                               vms->virt);
    766         }
    767     }
    768     gicbusdev = SYS_BUS_DEVICE(vms->gic);
    769     sysbus_realize_and_unref(gicbusdev, &error_fatal);
    770     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
    771     if (vms->gic_version != VIRT_GIC_VERSION_2) {
    772         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
    773         if (nb_redist_regions == 2) {
    774             sysbus_mmio_map(gicbusdev, 2,
    775                             vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
    776         }
    777     } else {
    778         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
    779         if (vms->virt) {
    780             sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
    781             sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
    782         }
    783     }
    784 
    785     /* Wire the outputs from each CPU's generic timer and the GICv3
    786      * maintenance interrupt signal to the appropriate GIC PPI inputs,
    787      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
    788      */
    789     for (i = 0; i < smp_cpus; i++) {
    790         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
    791         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
    792         int irq;
    793         /* Mapping from the output timer irq lines from the CPU to the
    794          * GIC PPI inputs we use for the virt board.
    795          */
    796         const int timer_irq[] = {
    797             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
    798             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
    799             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
    800             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
    801         };
    802 
    803         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
    804             qdev_connect_gpio_out(cpudev, irq,
    805                                   qdev_get_gpio_in(vms->gic,
    806                                                    ppibase + timer_irq[irq]));
    807         }
    808 
    809         if (vms->gic_version != VIRT_GIC_VERSION_2) {
    810             qemu_irq irq = qdev_get_gpio_in(vms->gic,
    811                                             ppibase + ARCH_GIC_MAINT_IRQ);
    812             qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
    813                                         0, irq);
    814         } else if (vms->virt) {
    815             qemu_irq irq = qdev_get_gpio_in(vms->gic,
    816                                             ppibase + ARCH_GIC_MAINT_IRQ);
    817             sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
    818         }
    819 
    820         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
    821                                     qdev_get_gpio_in(vms->gic, ppibase
    822                                                      + VIRTUAL_PMU_IRQ));
    823 
    824         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
    825         sysbus_connect_irq(gicbusdev, i + smp_cpus,
    826                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
    827         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
    828                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
    829         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
    830                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
    831     }
    832 
    833     fdt_add_gic_node(vms);
    834 
    835     if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) {
    836         create_its(vms);
    837     } else if (vms->gic_version == VIRT_GIC_VERSION_2) {
    838         create_v2m(vms);
    839     }
    840 }
    841 
    842 static void create_uart(const VirtMachineState *vms, int uart,
    843                         MemoryRegion *mem, Chardev *chr)
    844 {
    845     char *nodename;
    846     hwaddr base = vms->memmap[uart].base;
    847     hwaddr size = vms->memmap[uart].size;
    848     int irq = vms->irqmap[uart];
    849     const char compat[] = "arm,pl011\0arm,primecell";
    850     const char clocknames[] = "uartclk\0apb_pclk";
    851     DeviceState *dev = qdev_new(TYPE_PL011);
    852     SysBusDevice *s = SYS_BUS_DEVICE(dev);
    853     MachineState *ms = MACHINE(vms);
    854 
    855     qdev_prop_set_chr(dev, "chardev", chr);
    856     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
    857     memory_region_add_subregion(mem, base,
    858                                 sysbus_mmio_get_region(s, 0));
    859     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
    860 
    861     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
    862     qemu_fdt_add_subnode(ms->fdt, nodename);
    863     /* Note that we can't use setprop_string because of the embedded NUL */
    864     qemu_fdt_setprop(ms->fdt, nodename, "compatible",
    865                          compat, sizeof(compat));
    866     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
    867                                      2, base, 2, size);
    868     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
    869                                GIC_FDT_IRQ_TYPE_SPI, irq,
    870                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
    871     qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
    872                                vms->clock_phandle, vms->clock_phandle);
    873     qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
    874                          clocknames, sizeof(clocknames));
    875 
    876     if (uart == VIRT_UART) {
    877         qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
    878     } else {
    879         /* Mark as not usable by the normal world */
    880         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
    881         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
    882 
    883         qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
    884                                 nodename);
    885     }
    886 
    887     g_free(nodename);
    888 }
    889 
    890 static void create_rtc(const VirtMachineState *vms)
    891 {
    892     char *nodename;
    893     hwaddr base = vms->memmap[VIRT_RTC].base;
    894     hwaddr size = vms->memmap[VIRT_RTC].size;
    895     int irq = vms->irqmap[VIRT_RTC];
    896     const char compat[] = "arm,pl031\0arm,primecell";
    897     MachineState *ms = MACHINE(vms);
    898 
    899     sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
    900 
    901     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
    902     qemu_fdt_add_subnode(ms->fdt, nodename);
    903     qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
    904     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
    905                                  2, base, 2, size);
    906     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
    907                            GIC_FDT_IRQ_TYPE_SPI, irq,
    908                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
    909     qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
    910     qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
    911     g_free(nodename);
    912 }
    913 
    914 static DeviceState *gpio_key_dev;
    915 static void virt_powerdown_req(Notifier *n, void *opaque)
    916 {
    917     VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
    918 
    919     if (s->acpi_dev) {
    920         acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
    921     } else {
    922         /* use gpio Pin 3 for power button event */
    923         qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
    924     }
    925 }
    926 
    927 static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
    928                              uint32_t phandle)
    929 {
    930     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
    931                                         qdev_get_gpio_in(pl061_dev, 3));
    932 
    933     qemu_fdt_add_subnode(fdt, "/gpio-keys");
    934     qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
    935 
    936     qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
    937     qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
    938                             "label", "GPIO Key Poweroff");
    939     qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
    940                           KEY_POWER);
    941     qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
    942                            "gpios", phandle, 3, 0);
    943 }
    944 
    945 #define SECURE_GPIO_POWEROFF 0
    946 #define SECURE_GPIO_RESET    1
    947 
    948 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
    949                                    uint32_t phandle)
    950 {
    951     DeviceState *gpio_pwr_dev;
    952 
    953     /* gpio-pwr */
    954     gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
    955 
    956     /* connect secure pl061 to gpio-pwr */
    957     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
    958                           qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
    959     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
    960                           qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
    961 
    962     qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
    963     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
    964                             "gpio-poweroff");
    965     qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
    966                            "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
    967     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
    968     qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
    969                             "okay");
    970 
    971     qemu_fdt_add_subnode(fdt, "/gpio-restart");
    972     qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
    973                             "gpio-restart");
    974     qemu_fdt_setprop_cells(fdt, "/gpio-restart",
    975                            "gpios", phandle, SECURE_GPIO_RESET, 0);
    976     qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
    977     qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
    978                             "okay");
    979 }
    980 
    981 static void create_gpio_devices(const VirtMachineState *vms, int gpio,
    982                                 MemoryRegion *mem)
    983 {
    984     char *nodename;
    985     DeviceState *pl061_dev;
    986     hwaddr base = vms->memmap[gpio].base;
    987     hwaddr size = vms->memmap[gpio].size;
    988     int irq = vms->irqmap[gpio];
    989     const char compat[] = "arm,pl061\0arm,primecell";
    990     SysBusDevice *s;
    991     MachineState *ms = MACHINE(vms);
    992 
    993     pl061_dev = qdev_new("pl061");
    994     /* Pull lines down to 0 if not driven by the PL061 */
    995     qdev_prop_set_uint32(pl061_dev, "pullups", 0);
    996     qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
    997     s = SYS_BUS_DEVICE(pl061_dev);
    998     sysbus_realize_and_unref(s, &error_fatal);
    999     memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
   1000     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
   1001 
   1002     uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
   1003     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
   1004     qemu_fdt_add_subnode(ms->fdt, nodename);
   1005     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
   1006                                  2, base, 2, size);
   1007     qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
   1008     qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
   1009     qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
   1010     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
   1011                            GIC_FDT_IRQ_TYPE_SPI, irq,
   1012                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
   1013     qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
   1014     qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
   1015     qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
   1016 
   1017     if (gpio != VIRT_GPIO) {
   1018         /* Mark as not usable by the normal world */
   1019         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
   1020         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
   1021     }
   1022     g_free(nodename);
   1023 
   1024     /* Child gpio devices */
   1025     if (gpio == VIRT_GPIO) {
   1026         create_gpio_keys(ms->fdt, pl061_dev, phandle);
   1027     } else {
   1028         create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
   1029     }
   1030 }
   1031 
   1032 static void create_virtio_devices(const VirtMachineState *vms)
   1033 {
   1034     int i;
   1035     hwaddr size = vms->memmap[VIRT_MMIO].size;
   1036     MachineState *ms = MACHINE(vms);
   1037 
   1038     /* We create the transports in forwards order. Since qbus_realize()
   1039      * prepends (not appends) new child buses, the incrementing loop below will
   1040      * create a list of virtio-mmio buses with decreasing base addresses.
   1041      *
   1042      * When a -device option is processed from the command line,
   1043      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
   1044      * order. The upshot is that -device options in increasing command line
   1045      * order are mapped to virtio-mmio buses with decreasing base addresses.
   1046      *
   1047      * When this code was originally written, that arrangement ensured that the
   1048      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
   1049      * the first -device on the command line. (The end-to-end order is a
   1050      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
   1051      * guest kernel's name-to-address assignment strategy.)
   1052      *
   1053      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
   1054      * the message, if not necessarily the code, of commit 70161ff336.
   1055      * Therefore the loop now establishes the inverse of the original intent.
   1056      *
   1057      * Unfortunately, we can't counteract the kernel change by reversing the
   1058      * loop; it would break existing command lines.
   1059      *
   1060      * In any case, the kernel makes no guarantee about the stability of
   1061      * enumeration order of virtio devices (as demonstrated by it changing
   1062      * between kernel versions). For reliable and stable identification
   1063      * of disks users must use UUIDs or similar mechanisms.
   1064      */
   1065     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
   1066         int irq = vms->irqmap[VIRT_MMIO] + i;
   1067         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
   1068 
   1069         sysbus_create_simple("virtio-mmio", base,
   1070                              qdev_get_gpio_in(vms->gic, irq));
   1071     }
   1072 
   1073     /* We add dtb nodes in reverse order so that they appear in the finished
   1074      * device tree lowest address first.
   1075      *
   1076      * Note that this mapping is independent of the loop above. The previous
   1077      * loop influences virtio device to virtio transport assignment, whereas
   1078      * this loop controls how virtio transports are laid out in the dtb.
   1079      */
   1080     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
   1081         char *nodename;
   1082         int irq = vms->irqmap[VIRT_MMIO] + i;
   1083         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
   1084 
   1085         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
   1086         qemu_fdt_add_subnode(ms->fdt, nodename);
   1087         qemu_fdt_setprop_string(ms->fdt, nodename,
   1088                                 "compatible", "virtio,mmio");
   1089         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
   1090                                      2, base, 2, size);
   1091         qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
   1092                                GIC_FDT_IRQ_TYPE_SPI, irq,
   1093                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
   1094         qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
   1095         g_free(nodename);
   1096     }
   1097 }
   1098 
   1099 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
   1100 
   1101 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
   1102                                         const char *name,
   1103                                         const char *alias_prop_name)
   1104 {
   1105     /*
   1106      * Create a single flash device.  We use the same parameters as
   1107      * the flash devices on the Versatile Express board.
   1108      */
   1109     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
   1110 
   1111     qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
   1112     qdev_prop_set_uint8(dev, "width", 4);
   1113     qdev_prop_set_uint8(dev, "device-width", 2);
   1114     qdev_prop_set_bit(dev, "big-endian", false);
   1115     qdev_prop_set_uint16(dev, "id0", 0x89);
   1116     qdev_prop_set_uint16(dev, "id1", 0x18);
   1117     qdev_prop_set_uint16(dev, "id2", 0x00);
   1118     qdev_prop_set_uint16(dev, "id3", 0x00);
   1119     qdev_prop_set_string(dev, "name", name);
   1120     object_property_add_child(OBJECT(vms), name, OBJECT(dev));
   1121     object_property_add_alias(OBJECT(vms), alias_prop_name,
   1122                               OBJECT(dev), "drive");
   1123     return PFLASH_CFI01(dev);
   1124 }
   1125 
   1126 static void virt_flash_create(VirtMachineState *vms)
   1127 {
   1128     vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
   1129     vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
   1130 }
   1131 
   1132 static void virt_flash_map1(PFlashCFI01 *flash,
   1133                             hwaddr base, hwaddr size,
   1134                             MemoryRegion *sysmem)
   1135 {
   1136     DeviceState *dev = DEVICE(flash);
   1137 
   1138     assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
   1139     assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
   1140     qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
   1141     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
   1142 
   1143     memory_region_add_subregion(sysmem, base,
   1144                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
   1145                                                        0));
   1146 }
   1147 
   1148 static void virt_flash_map(VirtMachineState *vms,
   1149                            MemoryRegion *sysmem,
   1150                            MemoryRegion *secure_sysmem)
   1151 {
   1152     /*
   1153      * Map two flash devices to fill the VIRT_FLASH space in the memmap.
   1154      * sysmem is the system memory space. secure_sysmem is the secure view
   1155      * of the system, and the first flash device should be made visible only
   1156      * there. The second flash device is visible to both secure and nonsecure.
   1157      * If sysmem == secure_sysmem this means there is no separate Secure
   1158      * address space and both flash devices are generally visible.
   1159      */
   1160     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
   1161     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
   1162 
   1163     virt_flash_map1(vms->flash[0], flashbase, flashsize,
   1164                     secure_sysmem);
   1165     virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
   1166                     sysmem);
   1167 }
   1168 
   1169 static void virt_flash_fdt(VirtMachineState *vms,
   1170                            MemoryRegion *sysmem,
   1171                            MemoryRegion *secure_sysmem)
   1172 {
   1173     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
   1174     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
   1175     MachineState *ms = MACHINE(vms);
   1176     char *nodename;
   1177 
   1178     if (sysmem == secure_sysmem) {
   1179         /* Report both flash devices as a single node in the DT */
   1180         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
   1181         qemu_fdt_add_subnode(ms->fdt, nodename);
   1182         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
   1183         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
   1184                                      2, flashbase, 2, flashsize,
   1185                                      2, flashbase + flashsize, 2, flashsize);
   1186         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
   1187         g_free(nodename);
   1188     } else {
   1189         /*
   1190          * Report the devices as separate nodes so we can mark one as
   1191          * only visible to the secure world.
   1192          */
   1193         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
   1194         qemu_fdt_add_subnode(ms->fdt, nodename);
   1195         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
   1196         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
   1197                                      2, flashbase, 2, flashsize);
   1198         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
   1199         qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
   1200         qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
   1201         g_free(nodename);
   1202 
   1203         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize);
   1204         qemu_fdt_add_subnode(ms->fdt, nodename);
   1205         qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
   1206         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
   1207                                      2, flashbase + flashsize, 2, flashsize);
   1208         qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
   1209         g_free(nodename);
   1210     }
   1211 }
   1212 
   1213 static bool virt_firmware_init(VirtMachineState *vms,
   1214                                MemoryRegion *sysmem,
   1215                                MemoryRegion *secure_sysmem)
   1216 {
   1217     int i;
   1218     const char *bios_name;
   1219     BlockBackend *pflash_blk0;
   1220 
   1221     /* Map legacy -drive if=pflash to machine properties */
   1222     for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
   1223         pflash_cfi01_legacy_drive(vms->flash[i],
   1224                                   drive_get(IF_PFLASH, 0, i));
   1225     }
   1226 
   1227     virt_flash_map(vms, sysmem, secure_sysmem);
   1228 
   1229     pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
   1230 
   1231     bios_name = MACHINE(vms)->firmware;
   1232     if (bios_name) {
   1233         char *fname;
   1234         MemoryRegion *mr;
   1235         int image_size;
   1236 
   1237         if (pflash_blk0) {
   1238             error_report("The contents of the first flash device may be "
   1239                          "specified with -bios or with -drive if=pflash... "
   1240                          "but you cannot use both options at once");
   1241             exit(1);
   1242         }
   1243 
   1244         /* Fall back to -bios */
   1245 
   1246         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
   1247         if (!fname) {
   1248             error_report("Could not find ROM image '%s'", bios_name);
   1249             exit(1);
   1250         }
   1251         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
   1252         image_size = load_image_mr(fname, mr);
   1253         g_free(fname);
   1254         if (image_size < 0) {
   1255             error_report("Could not load ROM image '%s'", bios_name);
   1256             exit(1);
   1257         }
   1258     }
   1259 
   1260     return pflash_blk0 || bios_name;
   1261 }
   1262 
   1263 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
   1264 {
   1265     MachineState *ms = MACHINE(vms);
   1266     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
   1267     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
   1268     FWCfgState *fw_cfg;
   1269     char *nodename;
   1270 
   1271     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
   1272     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
   1273 
   1274     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
   1275     qemu_fdt_add_subnode(ms->fdt, nodename);
   1276     qemu_fdt_setprop_string(ms->fdt, nodename,
   1277                             "compatible", "qemu,fw-cfg-mmio");
   1278     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
   1279                                  2, base, 2, size);
   1280     qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
   1281     g_free(nodename);
   1282     return fw_cfg;
   1283 }
   1284 
   1285 static void create_pcie_irq_map(const MachineState *ms,
   1286                                 uint32_t gic_phandle,
   1287                                 int first_irq, const char *nodename)
   1288 {
   1289     int devfn, pin;
   1290     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
   1291     uint32_t *irq_map = full_irq_map;
   1292 
   1293     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
   1294         for (pin = 0; pin < 4; pin++) {
   1295             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
   1296             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
   1297             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
   1298             int i;
   1299 
   1300             uint32_t map[] = {
   1301                 devfn << 8, 0, 0,                           /* devfn */
   1302                 pin + 1,                                    /* PCI pin */
   1303                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
   1304 
   1305             /* Convert map to big endian */
   1306             for (i = 0; i < 10; i++) {
   1307                 irq_map[i] = cpu_to_be32(map[i]);
   1308             }
   1309             irq_map += 10;
   1310         }
   1311     }
   1312 
   1313     qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
   1314                      full_irq_map, sizeof(full_irq_map));
   1315 
   1316     qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
   1317                            cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
   1318                            0, 0,
   1319                            0x7           /* PCI irq */);
   1320 }
   1321 
   1322 static void create_smmu(const VirtMachineState *vms,
   1323                         PCIBus *bus)
   1324 {
   1325     char *node;
   1326     const char compat[] = "arm,smmu-v3";
   1327     int irq =  vms->irqmap[VIRT_SMMU];
   1328     int i;
   1329     hwaddr base = vms->memmap[VIRT_SMMU].base;
   1330     hwaddr size = vms->memmap[VIRT_SMMU].size;
   1331     const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
   1332     DeviceState *dev;
   1333     MachineState *ms = MACHINE(vms);
   1334 
   1335     if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
   1336         return;
   1337     }
   1338 
   1339     dev = qdev_new("arm-smmuv3");
   1340 
   1341     object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
   1342                              &error_abort);
   1343     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
   1344     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
   1345     for (i = 0; i < NUM_SMMU_IRQS; i++) {
   1346         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
   1347                            qdev_get_gpio_in(vms->gic, irq + i));
   1348     }
   1349 
   1350     node = g_strdup_printf("/smmuv3@%" PRIx64, base);
   1351     qemu_fdt_add_subnode(ms->fdt, node);
   1352     qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
   1353     qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
   1354 
   1355     qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
   1356             GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
   1357             GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
   1358             GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
   1359             GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
   1360 
   1361     qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
   1362                      sizeof(irq_names));
   1363 
   1364     qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
   1365 
   1366     qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
   1367 
   1368     qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
   1369     g_free(node);
   1370 }
   1371 
   1372 static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
   1373 {
   1374     const char compat[] = "virtio,pci-iommu\0pci1af4,1057";
   1375     uint16_t bdf = vms->virtio_iommu_bdf;
   1376     MachineState *ms = MACHINE(vms);
   1377     char *node;
   1378 
   1379     vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
   1380 
   1381     node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename,
   1382                            PCI_SLOT(bdf), PCI_FUNC(bdf));
   1383     qemu_fdt_add_subnode(ms->fdt, node);
   1384     qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
   1385     qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
   1386                                  1, bdf << 8, 1, 0, 1, 0,
   1387                                  1, 0, 1, 0);
   1388 
   1389     qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
   1390     qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
   1391     g_free(node);
   1392 
   1393     qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
   1394                            0x0, vms->iommu_phandle, 0x0, bdf,
   1395                            bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
   1396 }
   1397 
   1398 static void create_pcie(VirtMachineState *vms)
   1399 {
   1400     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
   1401     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
   1402     hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
   1403     hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
   1404     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
   1405     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
   1406     hwaddr base_ecam, size_ecam;
   1407     hwaddr base = base_mmio;
   1408     int nr_pcie_buses;
   1409     int irq = vms->irqmap[VIRT_PCIE];
   1410     MemoryRegion *mmio_alias;
   1411     MemoryRegion *mmio_reg;
   1412     MemoryRegion *ecam_alias;
   1413     MemoryRegion *ecam_reg;
   1414     DeviceState *dev;
   1415     char *nodename;
   1416     int i, ecam_id;
   1417     PCIHostState *pci;
   1418     MachineState *ms = MACHINE(vms);
   1419 
   1420     dev = qdev_new(TYPE_GPEX_HOST);
   1421     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
   1422 
   1423     ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
   1424     base_ecam = vms->memmap[ecam_id].base;
   1425     size_ecam = vms->memmap[ecam_id].size;
   1426     nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
   1427     /* Map only the first size_ecam bytes of ECAM space */
   1428     ecam_alias = g_new0(MemoryRegion, 1);
   1429     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
   1430     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
   1431                              ecam_reg, 0, size_ecam);
   1432     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
   1433 
   1434     /* Map the MMIO window into system address space so as to expose
   1435      * the section of PCI MMIO space which starts at the same base address
   1436      * (ie 1:1 mapping for that part of PCI MMIO space visible through
   1437      * the window).
   1438      */
   1439     mmio_alias = g_new0(MemoryRegion, 1);
   1440     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
   1441     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
   1442                              mmio_reg, base_mmio, size_mmio);
   1443     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
   1444 
   1445     if (vms->highmem_mmio) {
   1446         /* Map high MMIO space */
   1447         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
   1448 
   1449         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
   1450                                  mmio_reg, base_mmio_high, size_mmio_high);
   1451         memory_region_add_subregion(get_system_memory(), base_mmio_high,
   1452                                     high_mmio_alias);
   1453     }
   1454 
   1455     /* Map IO port space */
   1456     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
   1457 
   1458     for (i = 0; i < GPEX_NUM_IRQS; i++) {
   1459         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
   1460                            qdev_get_gpio_in(vms->gic, irq + i));
   1461         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
   1462     }
   1463 
   1464     pci = PCI_HOST_BRIDGE(dev);
   1465     pci->bypass_iommu = vms->default_bus_bypass_iommu;
   1466     vms->bus = pci->bus;
   1467     if (vms->bus) {
   1468         for (i = 0; i < nb_nics; i++) {
   1469             NICInfo *nd = &nd_table[i];
   1470 
   1471             if (!nd->model) {
   1472                 nd->model = g_strdup("virtio");
   1473             }
   1474 
   1475             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
   1476         }
   1477     }
   1478 
   1479     nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
   1480     qemu_fdt_add_subnode(ms->fdt, nodename);
   1481     qemu_fdt_setprop_string(ms->fdt, nodename,
   1482                             "compatible", "pci-host-ecam-generic");
   1483     qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
   1484     qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
   1485     qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
   1486     qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
   1487     qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
   1488                            nr_pcie_buses - 1);
   1489     qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
   1490 
   1491     if (vms->msi_phandle) {
   1492         qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map",
   1493                                0, vms->msi_phandle, 0, 0x10000);
   1494     }
   1495 
   1496     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
   1497                                  2, base_ecam, 2, size_ecam);
   1498 
   1499     if (vms->highmem_mmio) {
   1500         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
   1501                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
   1502                                      2, base_pio, 2, size_pio,
   1503                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
   1504                                      2, base_mmio, 2, size_mmio,
   1505                                      1, FDT_PCI_RANGE_MMIO_64BIT,
   1506                                      2, base_mmio_high,
   1507                                      2, base_mmio_high, 2, size_mmio_high);
   1508     } else {
   1509         qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
   1510                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
   1511                                      2, base_pio, 2, size_pio,
   1512                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
   1513                                      2, base_mmio, 2, size_mmio);
   1514     }
   1515 
   1516     qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
   1517     create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
   1518 
   1519     if (vms->iommu) {
   1520         vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
   1521 
   1522         switch (vms->iommu) {
   1523         case VIRT_IOMMU_SMMUV3:
   1524             create_smmu(vms, vms->bus);
   1525             qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
   1526                                    0x0, vms->iommu_phandle, 0x0, 0x10000);
   1527             break;
   1528         default:
   1529             g_assert_not_reached();
   1530         }
   1531     }
   1532 }
   1533 
   1534 static void create_platform_bus(VirtMachineState *vms)
   1535 {
   1536     DeviceState *dev;
   1537     SysBusDevice *s;
   1538     int i;
   1539     MemoryRegion *sysmem = get_system_memory();
   1540 
   1541     dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
   1542     dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
   1543     qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
   1544     qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
   1545     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
   1546     vms->platform_bus_dev = dev;
   1547 
   1548     s = SYS_BUS_DEVICE(dev);
   1549     for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
   1550         int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
   1551         sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
   1552     }
   1553 
   1554     memory_region_add_subregion(sysmem,
   1555                                 vms->memmap[VIRT_PLATFORM_BUS].base,
   1556                                 sysbus_mmio_get_region(s, 0));
   1557 }
   1558 
   1559 static void create_tag_ram(MemoryRegion *tag_sysmem,
   1560                            hwaddr base, hwaddr size,
   1561                            const char *name)
   1562 {
   1563     MemoryRegion *tagram = g_new(MemoryRegion, 1);
   1564 
   1565     memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
   1566     memory_region_add_subregion(tag_sysmem, base / 32, tagram);
   1567 }
   1568 
   1569 static void create_secure_ram(VirtMachineState *vms,
   1570                               MemoryRegion *secure_sysmem,
   1571                               MemoryRegion *secure_tag_sysmem)
   1572 {
   1573     MemoryRegion *secram = g_new(MemoryRegion, 1);
   1574     char *nodename;
   1575     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
   1576     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
   1577     MachineState *ms = MACHINE(vms);
   1578 
   1579     memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
   1580                            &error_fatal);
   1581     memory_region_add_subregion(secure_sysmem, base, secram);
   1582 
   1583     nodename = g_strdup_printf("/secram@%" PRIx64, base);
   1584     qemu_fdt_add_subnode(ms->fdt, nodename);
   1585     qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
   1586     qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
   1587     qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
   1588     qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
   1589 
   1590     if (secure_tag_sysmem) {
   1591         create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
   1592     }
   1593 
   1594     g_free(nodename);
   1595 }
   1596 
   1597 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
   1598 {
   1599     const VirtMachineState *board = container_of(binfo, VirtMachineState,
   1600                                                  bootinfo);
   1601     MachineState *ms = MACHINE(board);
   1602 
   1603 
   1604     *fdt_size = board->fdt_size;
   1605     return ms->fdt;
   1606 }
   1607 
   1608 static void virt_build_smbios(VirtMachineState *vms)
   1609 {
   1610     MachineClass *mc = MACHINE_GET_CLASS(vms);
   1611     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
   1612     uint8_t *smbios_tables, *smbios_anchor;
   1613     size_t smbios_tables_len, smbios_anchor_len;
   1614     const char *product = "QEMU Virtual Machine";
   1615 
   1616     if (kvm_enabled()) {
   1617         product = "KVM Virtual Machine";
   1618     }
   1619 
   1620     smbios_set_defaults("QEMU", product,
   1621                         vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
   1622                         true, SMBIOS_ENTRY_POINT_TYPE_64);
   1623 
   1624     smbios_get_tables(MACHINE(vms), NULL, 0,
   1625                       &smbios_tables, &smbios_tables_len,
   1626                       &smbios_anchor, &smbios_anchor_len,
   1627                       &error_fatal);
   1628 
   1629     if (smbios_anchor) {
   1630         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
   1631                         smbios_tables, smbios_tables_len);
   1632         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
   1633                         smbios_anchor, smbios_anchor_len);
   1634     }
   1635 }
   1636 
   1637 static
   1638 void virt_machine_done(Notifier *notifier, void *data)
   1639 {
   1640     VirtMachineState *vms = container_of(notifier, VirtMachineState,
   1641                                          machine_done);
   1642     MachineState *ms = MACHINE(vms);
   1643     ARMCPU *cpu = ARM_CPU(first_cpu);
   1644     struct arm_boot_info *info = &vms->bootinfo;
   1645     AddressSpace *as = arm_boot_address_space(cpu, info);
   1646 
   1647     /*
   1648      * If the user provided a dtb, we assume the dynamic sysbus nodes
   1649      * already are integrated there. This corresponds to a use case where
   1650      * the dynamic sysbus nodes are complex and their generation is not yet
   1651      * supported. In that case the user can take charge of the guest dt
   1652      * while qemu takes charge of the qom stuff.
   1653      */
   1654     if (info->dtb_filename == NULL) {
   1655         platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
   1656                                        vms->memmap[VIRT_PLATFORM_BUS].base,
   1657                                        vms->memmap[VIRT_PLATFORM_BUS].size,
   1658                                        vms->irqmap[VIRT_PLATFORM_BUS]);
   1659     }
   1660     if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
   1661         exit(1);
   1662     }
   1663 
   1664     fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
   1665 
   1666     virt_acpi_setup(vms);
   1667     virt_build_smbios(vms);
   1668 }
   1669 
   1670 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
   1671 {
   1672     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
   1673     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
   1674 
   1675     if (!vmc->disallow_affinity_adjustment) {
   1676         /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
   1677          * GIC's target-list limitations. 32-bit KVM hosts currently
   1678          * always create clusters of 4 CPUs, but that is expected to
   1679          * change when they gain support for gicv3. When KVM is enabled
   1680          * it will override the changes we make here, therefore our
   1681          * purposes are to make TCG consistent (with 64-bit KVM hosts)
   1682          * and to improve SGI efficiency.
   1683          */
   1684         if (vms->gic_version == VIRT_GIC_VERSION_2) {
   1685             clustersz = GIC_TARGETLIST_BITS;
   1686         } else {
   1687             clustersz = GICV3_TARGETLIST_BITS;
   1688         }
   1689     }
   1690     return arm_cpu_mp_affinity(idx, clustersz);
   1691 }
   1692 
   1693 static void virt_set_memmap(VirtMachineState *vms, int pa_bits)
   1694 {
   1695     MachineState *ms = MACHINE(vms);
   1696     hwaddr base, device_memory_base, device_memory_size, memtop;
   1697     int i;
   1698 
   1699     vms->memmap = extended_memmap;
   1700 
   1701     for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
   1702         vms->memmap[i] = base_memmap[i];
   1703     }
   1704 
   1705     if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
   1706         error_report("unsupported number of memory slots: %"PRIu64,
   1707                      ms->ram_slots);
   1708         exit(EXIT_FAILURE);
   1709     }
   1710 
   1711     /*
   1712      * !highmem is exactly the same as limiting the PA space to 32bit,
   1713      * irrespective of the underlying capabilities of the HW.
   1714      */
   1715     if (!vms->highmem) {
   1716         pa_bits = 32;
   1717     }
   1718 
   1719     /*
   1720      * We compute the base of the high IO region depending on the
   1721      * amount of initial and device memory. The device memory start/size
   1722      * is aligned on 1GiB. We never put the high IO region below 256GiB
   1723      * so that if maxram_size is < 255GiB we keep the legacy memory map.
   1724      * The device region size assumes 1GiB page max alignment per slot.
   1725      */
   1726     device_memory_base =
   1727         ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
   1728     device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
   1729 
   1730     /* Base address of the high IO region */
   1731     memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB);
   1732     if (memtop > BIT_ULL(pa_bits)) {
   1733 	    error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes\n",
   1734 			 pa_bits, memtop - BIT_ULL(pa_bits));
   1735         exit(EXIT_FAILURE);
   1736     }
   1737     if (base < device_memory_base) {
   1738         error_report("maxmem/slots too huge");
   1739         exit(EXIT_FAILURE);
   1740     }
   1741     if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
   1742         base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
   1743     }
   1744 
   1745     /* We know for sure that at least the memory fits in the PA space */
   1746     vms->highest_gpa = memtop - 1;
   1747 
   1748     for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
   1749         hwaddr size = extended_memmap[i].size;
   1750         bool fits;
   1751 
   1752         base = ROUND_UP(base, size);
   1753         vms->memmap[i].base = base;
   1754         vms->memmap[i].size = size;
   1755 
   1756         /*
   1757          * Check each device to see if they fit in the PA space,
   1758          * moving highest_gpa as we go.
   1759          *
   1760          * For each device that doesn't fit, disable it.
   1761          */
   1762         fits = (base + size) <= BIT_ULL(pa_bits);
   1763         if (fits) {
   1764             vms->highest_gpa = base + size - 1;
   1765         }
   1766 
   1767         switch (i) {
   1768         case VIRT_HIGH_GIC_REDIST2:
   1769             vms->highmem_redists &= fits;
   1770             break;
   1771         case VIRT_HIGH_PCIE_ECAM:
   1772             vms->highmem_ecam &= fits;
   1773             break;
   1774         case VIRT_HIGH_PCIE_MMIO:
   1775             vms->highmem_mmio &= fits;
   1776             break;
   1777         }
   1778 
   1779         base += size;
   1780     }
   1781 
   1782     if (device_memory_size > 0) {
   1783         ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
   1784         ms->device_memory->base = device_memory_base;
   1785         memory_region_init(&ms->device_memory->mr, OBJECT(vms),
   1786                            "device-memory", device_memory_size);
   1787     }
   1788 }
   1789 
   1790 /*
   1791  * finalize_gic_version - Determines the final gic_version
   1792  * according to the gic-version property
   1793  *
   1794  * Default GIC type is v2
   1795  */
   1796 static void finalize_gic_version(VirtMachineState *vms)
   1797 {
   1798     unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
   1799 
   1800     if (kvm_enabled()) {
   1801         int probe_bitmap;
   1802 
   1803         if (!kvm_irqchip_in_kernel()) {
   1804             switch (vms->gic_version) {
   1805             case VIRT_GIC_VERSION_HOST:
   1806                 warn_report(
   1807                     "gic-version=host not relevant with kernel-irqchip=off "
   1808                      "as only userspace GICv2 is supported. Using v2 ...");
   1809                 return;
   1810             case VIRT_GIC_VERSION_MAX:
   1811             case VIRT_GIC_VERSION_NOSEL:
   1812                 vms->gic_version = VIRT_GIC_VERSION_2;
   1813                 return;
   1814             case VIRT_GIC_VERSION_2:
   1815                 return;
   1816             case VIRT_GIC_VERSION_3:
   1817                 error_report(
   1818                     "gic-version=3 is not supported with kernel-irqchip=off");
   1819                 exit(1);
   1820             case VIRT_GIC_VERSION_4:
   1821                 error_report(
   1822                     "gic-version=4 is not supported with kernel-irqchip=off");
   1823                 exit(1);
   1824             }
   1825         }
   1826 
   1827         probe_bitmap = kvm_arm_vgic_probe();
   1828         if (!probe_bitmap) {
   1829             error_report("Unable to determine GIC version supported by host");
   1830             exit(1);
   1831         }
   1832 
   1833         switch (vms->gic_version) {
   1834         case VIRT_GIC_VERSION_HOST:
   1835         case VIRT_GIC_VERSION_MAX:
   1836             if (probe_bitmap & KVM_ARM_VGIC_V3) {
   1837                 vms->gic_version = VIRT_GIC_VERSION_3;
   1838             } else {
   1839                 vms->gic_version = VIRT_GIC_VERSION_2;
   1840             }
   1841             return;
   1842         case VIRT_GIC_VERSION_NOSEL:
   1843             if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) {
   1844                 vms->gic_version = VIRT_GIC_VERSION_2;
   1845             } else if (probe_bitmap & KVM_ARM_VGIC_V3) {
   1846                 /*
   1847                  * in case the host does not support v2 in-kernel emulation or
   1848                  * the end-user requested more than 8 VCPUs we now default
   1849                  * to v3. In any case defaulting to v2 would be broken.
   1850                  */
   1851                 vms->gic_version = VIRT_GIC_VERSION_3;
   1852             } else if (max_cpus > GIC_NCPU) {
   1853                 error_report("host only supports in-kernel GICv2 emulation "
   1854                              "but more than 8 vcpus are requested");
   1855                 exit(1);
   1856             }
   1857             break;
   1858         case VIRT_GIC_VERSION_2:
   1859         case VIRT_GIC_VERSION_3:
   1860             break;
   1861         case VIRT_GIC_VERSION_4:
   1862             error_report("gic-version=4 is not supported with KVM");
   1863             exit(1);
   1864         }
   1865 
   1866         /* Check chosen version is effectively supported by the host */
   1867         if (vms->gic_version == VIRT_GIC_VERSION_2 &&
   1868             !(probe_bitmap & KVM_ARM_VGIC_V2)) {
   1869             error_report("host does not support in-kernel GICv2 emulation");
   1870             exit(1);
   1871         } else if (vms->gic_version == VIRT_GIC_VERSION_3 &&
   1872                    !(probe_bitmap & KVM_ARM_VGIC_V3)) {
   1873             error_report("host does not support in-kernel GICv3 emulation");
   1874             exit(1);
   1875         }
   1876         return;
   1877     }
   1878 
   1879     /* TCG mode */
   1880     switch (vms->gic_version) {
   1881     case VIRT_GIC_VERSION_NOSEL:
   1882         vms->gic_version = VIRT_GIC_VERSION_2;
   1883         break;
   1884     case VIRT_GIC_VERSION_MAX:
   1885         if (module_object_class_by_name("arm-gicv3")) {
   1886             /* CONFIG_ARM_GICV3_TCG was set */
   1887             if (vms->virt) {
   1888                 /* GICv4 only makes sense if CPU has EL2 */
   1889                 vms->gic_version = VIRT_GIC_VERSION_4;
   1890             } else {
   1891                 vms->gic_version = VIRT_GIC_VERSION_3;
   1892             }
   1893         } else {
   1894             vms->gic_version = VIRT_GIC_VERSION_2;
   1895         }
   1896         break;
   1897     case VIRT_GIC_VERSION_HOST:
   1898         error_report("gic-version=host requires KVM");
   1899         exit(1);
   1900     case VIRT_GIC_VERSION_4:
   1901         if (!vms->virt) {
   1902             error_report("gic-version=4 requires virtualization enabled");
   1903             exit(1);
   1904         }
   1905         break;
   1906     case VIRT_GIC_VERSION_2:
   1907     case VIRT_GIC_VERSION_3:
   1908         break;
   1909     }
   1910 }
   1911 
   1912 /*
   1913  * virt_cpu_post_init() must be called after the CPUs have
   1914  * been realized and the GIC has been created.
   1915  */
   1916 static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
   1917 {
   1918     int max_cpus = MACHINE(vms)->smp.max_cpus;
   1919     bool aarch64, pmu, steal_time;
   1920     CPUState *cpu;
   1921 
   1922     aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
   1923     pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
   1924     steal_time = object_property_get_bool(OBJECT(first_cpu),
   1925                                           "kvm-steal-time", NULL);
   1926 
   1927     if (kvm_enabled()) {
   1928         hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
   1929         hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
   1930 
   1931         if (steal_time) {
   1932             MemoryRegion *pvtime = g_new(MemoryRegion, 1);
   1933             hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
   1934 
   1935             /* The memory region size must be a multiple of host page size. */
   1936             pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
   1937 
   1938             if (pvtime_size > pvtime_reg_size) {
   1939                 error_report("pvtime requires a %" HWADDR_PRId
   1940                              " byte memory region for %d CPUs,"
   1941                              " but only %" HWADDR_PRId " has been reserved",
   1942                              pvtime_size, max_cpus, pvtime_reg_size);
   1943                 exit(1);
   1944             }
   1945 
   1946             memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
   1947             memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
   1948         }
   1949 
   1950         CPU_FOREACH(cpu) {
   1951             if (pmu) {
   1952                 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
   1953                 if (kvm_irqchip_in_kernel()) {
   1954                     kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
   1955                 }
   1956                 kvm_arm_pmu_init(cpu);
   1957             }
   1958             if (steal_time) {
   1959                 kvm_arm_pvtime_init(cpu, pvtime_reg_base +
   1960                                          cpu->cpu_index * PVTIME_SIZE_PER_CPU);
   1961             }
   1962         }
   1963     } else {
   1964         if (aarch64 && vms->highmem) {
   1965             int requested_pa_size = 64 - clz64(vms->highest_gpa);
   1966             int pamax = arm_pamax(ARM_CPU(first_cpu));
   1967 
   1968             if (pamax < requested_pa_size) {
   1969                 error_report("VCPU supports less PA bits (%d) than "
   1970                              "requested by the memory map (%d)",
   1971                              pamax, requested_pa_size);
   1972                 exit(1);
   1973             }
   1974         }
   1975     }
   1976 }
   1977 
   1978 static void machvirt_init(MachineState *machine)
   1979 {
   1980     VirtMachineState *vms = VIRT_MACHINE(machine);
   1981     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
   1982     MachineClass *mc = MACHINE_GET_CLASS(machine);
   1983     const CPUArchIdList *possible_cpus;
   1984     MemoryRegion *sysmem = get_system_memory();
   1985     MemoryRegion *secure_sysmem = NULL;
   1986     MemoryRegion *tag_sysmem = NULL;
   1987     MemoryRegion *secure_tag_sysmem = NULL;
   1988     int n, virt_max_cpus;
   1989     bool firmware_loaded;
   1990     bool aarch64 = true;
   1991     bool has_ged = !vmc->no_ged;
   1992     unsigned int smp_cpus = machine->smp.cpus;
   1993     unsigned int max_cpus = machine->smp.max_cpus;
   1994 
   1995     if (!cpu_type_valid(machine->cpu_type)) {
   1996         error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
   1997         exit(1);
   1998     }
   1999 
   2000     possible_cpus = mc->possible_cpu_arch_ids(machine);
   2001 
   2002     /*
   2003      * In accelerated mode, the memory map is computed earlier in kvm_type()
   2004      * to create a VM with the right number of IPA bits.
   2005      */
   2006     if (!vms->memmap) {
   2007         Object *cpuobj;
   2008         ARMCPU *armcpu;
   2009         int pa_bits;
   2010 
   2011         /*
   2012          * Instanciate a temporary CPU object to find out about what
   2013          * we are about to deal with. Once this is done, get rid of
   2014          * the object.
   2015          */
   2016         cpuobj = object_new(possible_cpus->cpus[0].type);
   2017         armcpu = ARM_CPU(cpuobj);
   2018 
   2019         pa_bits = arm_pamax(armcpu);
   2020 
   2021         object_unref(cpuobj);
   2022 
   2023         virt_set_memmap(vms, pa_bits);
   2024     }
   2025 
   2026     /* We can probe only here because during property set
   2027      * KVM is not available yet
   2028      */
   2029     finalize_gic_version(vms);
   2030 
   2031     if (vms->secure) {
   2032         /*
   2033          * The Secure view of the world is the same as the NonSecure,
   2034          * but with a few extra devices. Create it as a container region
   2035          * containing the system memory at low priority; any secure-only
   2036          * devices go in at higher priority and take precedence.
   2037          */
   2038         secure_sysmem = g_new(MemoryRegion, 1);
   2039         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
   2040                            UINT64_MAX);
   2041         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
   2042     }
   2043 
   2044     firmware_loaded = virt_firmware_init(vms, sysmem,
   2045                                          secure_sysmem ?: sysmem);
   2046 
   2047     /* If we have an EL3 boot ROM then the assumption is that it will
   2048      * implement PSCI itself, so disable QEMU's internal implementation
   2049      * so it doesn't get in the way. Instead of starting secondary
   2050      * CPUs in PSCI powerdown state we will start them all running and
   2051      * let the boot ROM sort them out.
   2052      * The usual case is that we do use QEMU's PSCI implementation;
   2053      * if the guest has EL2 then we will use SMC as the conduit,
   2054      * and otherwise we will use HVC (for backwards compatibility and
   2055      * because if we're using KVM then we must use HVC).
   2056      */
   2057     if (vms->secure && firmware_loaded) {
   2058         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
   2059     } else if (vms->virt) {
   2060         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
   2061     } else {
   2062         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
   2063     }
   2064 
   2065     /*
   2066      * The maximum number of CPUs depends on the GIC version, or on how
   2067      * many redistributors we can fit into the memory map (which in turn
   2068      * depends on whether this is a GICv3 or v4).
   2069      */
   2070     if (vms->gic_version == VIRT_GIC_VERSION_2) {
   2071         virt_max_cpus = GIC_NCPU;
   2072     } else {
   2073         virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST) +
   2074             virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
   2075     }
   2076 
   2077     if (max_cpus > virt_max_cpus) {
   2078         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
   2079                      "supported by machine 'mach-virt' (%d)",
   2080                      max_cpus, virt_max_cpus);
   2081         exit(1);
   2082     }
   2083 
   2084     if (vms->secure && (kvm_enabled() || hvf_enabled())) {
   2085         error_report("mach-virt: %s does not support providing "
   2086                      "Security extensions (TrustZone) to the guest CPU",
   2087                      kvm_enabled() ? "KVM" : "HVF");
   2088         exit(1);
   2089     }
   2090 
   2091     if (vms->virt && (kvm_enabled() || hvf_enabled())) {
   2092         error_report("mach-virt: %s does not support providing "
   2093                      "Virtualization extensions to the guest CPU",
   2094                      kvm_enabled() ? "KVM" : "HVF");
   2095         exit(1);
   2096     }
   2097 
   2098     if (vms->mte && (kvm_enabled() || hvf_enabled())) {
   2099         error_report("mach-virt: %s does not support providing "
   2100                      "MTE to the guest CPU",
   2101                      kvm_enabled() ? "KVM" : "HVF");
   2102         exit(1);
   2103     }
   2104 
   2105     create_fdt(vms);
   2106 
   2107     assert(possible_cpus->len == max_cpus);
   2108     for (n = 0; n < possible_cpus->len; n++) {
   2109         Object *cpuobj;
   2110         CPUState *cs;
   2111 
   2112         if (n >= smp_cpus) {
   2113             break;
   2114         }
   2115 
   2116         cpuobj = object_new(possible_cpus->cpus[n].type);
   2117         object_property_set_int(cpuobj, "mp-affinity",
   2118                                 possible_cpus->cpus[n].arch_id, NULL);
   2119 
   2120         cs = CPU(cpuobj);
   2121         cs->cpu_index = n;
   2122 
   2123         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
   2124                           &error_fatal);
   2125 
   2126         aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
   2127 
   2128         if (!vms->secure) {
   2129             object_property_set_bool(cpuobj, "has_el3", false, NULL);
   2130         }
   2131 
   2132         if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
   2133             object_property_set_bool(cpuobj, "has_el2", false, NULL);
   2134         }
   2135 
   2136         if (vmc->kvm_no_adjvtime &&
   2137             object_property_find(cpuobj, "kvm-no-adjvtime")) {
   2138             object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
   2139         }
   2140 
   2141         if (vmc->no_kvm_steal_time &&
   2142             object_property_find(cpuobj, "kvm-steal-time")) {
   2143             object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
   2144         }
   2145 
   2146         if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
   2147             object_property_set_bool(cpuobj, "pmu", false, NULL);
   2148         }
   2149 
   2150         if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) {
   2151             object_property_set_bool(cpuobj, "lpa2", false, NULL);
   2152         }
   2153 
   2154         if (object_property_find(cpuobj, "reset-cbar")) {
   2155             object_property_set_int(cpuobj, "reset-cbar",
   2156                                     vms->memmap[VIRT_CPUPERIPHS].base,
   2157                                     &error_abort);
   2158         }
   2159 
   2160         object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
   2161                                  &error_abort);
   2162         if (vms->secure) {
   2163             object_property_set_link(cpuobj, "secure-memory",
   2164                                      OBJECT(secure_sysmem), &error_abort);
   2165         }
   2166 
   2167         if (vms->mte) {
   2168             /* Create the memory region only once, but link to all cpus. */
   2169             if (!tag_sysmem) {
   2170                 /*
   2171                  * The property exists only if MemTag is supported.
   2172                  * If it is, we must allocate the ram to back that up.
   2173                  */
   2174                 if (!object_property_find(cpuobj, "tag-memory")) {
   2175                     error_report("MTE requested, but not supported "
   2176                                  "by the guest CPU");
   2177                     exit(1);
   2178                 }
   2179 
   2180                 tag_sysmem = g_new(MemoryRegion, 1);
   2181                 memory_region_init(tag_sysmem, OBJECT(machine),
   2182                                    "tag-memory", UINT64_MAX / 32);
   2183 
   2184                 if (vms->secure) {
   2185                     secure_tag_sysmem = g_new(MemoryRegion, 1);
   2186                     memory_region_init(secure_tag_sysmem, OBJECT(machine),
   2187                                        "secure-tag-memory", UINT64_MAX / 32);
   2188 
   2189                     /* As with ram, secure-tag takes precedence over tag.  */
   2190                     memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
   2191                                                         tag_sysmem, -1);
   2192                 }
   2193             }
   2194 
   2195             object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
   2196                                      &error_abort);
   2197             if (vms->secure) {
   2198                 object_property_set_link(cpuobj, "secure-tag-memory",
   2199                                          OBJECT(secure_tag_sysmem),
   2200                                          &error_abort);
   2201             }
   2202         }
   2203 
   2204         qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
   2205         object_unref(cpuobj);
   2206     }
   2207     fdt_add_timer_nodes(vms);
   2208     fdt_add_cpu_nodes(vms);
   2209 
   2210     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
   2211                                 machine->ram);
   2212     if (machine->device_memory) {
   2213         memory_region_add_subregion(sysmem, machine->device_memory->base,
   2214                                     &machine->device_memory->mr);
   2215     }
   2216 
   2217     virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
   2218 
   2219     create_gic(vms, sysmem);
   2220 
   2221     virt_cpu_post_init(vms, sysmem);
   2222 
   2223     fdt_add_pmu_nodes(vms);
   2224 
   2225     create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
   2226 
   2227     if (vms->secure) {
   2228         create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
   2229         create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
   2230     }
   2231 
   2232     if (tag_sysmem) {
   2233         create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
   2234                        machine->ram_size, "mach-virt.tag");
   2235     }
   2236 
   2237     vms->highmem_ecam &= (!firmware_loaded || aarch64);
   2238 
   2239     create_rtc(vms);
   2240 
   2241     create_pcie(vms);
   2242 
   2243     if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
   2244         vms->acpi_dev = create_acpi_ged(vms);
   2245     } else {
   2246         create_gpio_devices(vms, VIRT_GPIO, sysmem);
   2247     }
   2248 
   2249     if (vms->secure && !vmc->no_secure_gpio) {
   2250         create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
   2251     }
   2252 
   2253      /* connect powerdown request */
   2254      vms->powerdown_notifier.notify = virt_powerdown_req;
   2255      qemu_register_powerdown_notifier(&vms->powerdown_notifier);
   2256 
   2257     /* Create mmio transports, so the user can create virtio backends
   2258      * (which will be automatically plugged in to the transports). If
   2259      * no backend is created the transport will just sit harmlessly idle.
   2260      */
   2261     create_virtio_devices(vms);
   2262 
   2263     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
   2264     rom_set_fw(vms->fw_cfg);
   2265 
   2266     create_platform_bus(vms);
   2267 
   2268     if (machine->nvdimms_state->is_enabled) {
   2269         const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
   2270             .space_id = AML_AS_SYSTEM_MEMORY,
   2271             .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
   2272             .bit_width = NVDIMM_ACPI_IO_LEN << 3
   2273         };
   2274 
   2275         nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
   2276                                arm_virt_nvdimm_acpi_dsmio,
   2277                                vms->fw_cfg, OBJECT(vms));
   2278     }
   2279 
   2280     vms->bootinfo.ram_size = machine->ram_size;
   2281     vms->bootinfo.board_id = -1;
   2282     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
   2283     vms->bootinfo.get_dtb = machvirt_dtb;
   2284     vms->bootinfo.skip_dtb_autoload = true;
   2285     vms->bootinfo.firmware_loaded = firmware_loaded;
   2286     vms->bootinfo.psci_conduit = vms->psci_conduit;
   2287     arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
   2288 
   2289     vms->machine_done.notify = virt_machine_done;
   2290     qemu_add_machine_init_done_notifier(&vms->machine_done);
   2291 }
   2292 
   2293 static bool virt_get_secure(Object *obj, Error **errp)
   2294 {
   2295     VirtMachineState *vms = VIRT_MACHINE(obj);
   2296 
   2297     return vms->secure;
   2298 }
   2299 
   2300 static void virt_set_secure(Object *obj, bool value, Error **errp)
   2301 {
   2302     VirtMachineState *vms = VIRT_MACHINE(obj);
   2303 
   2304     vms->secure = value;
   2305 }
   2306 
   2307 static bool virt_get_virt(Object *obj, Error **errp)
   2308 {
   2309     VirtMachineState *vms = VIRT_MACHINE(obj);
   2310 
   2311     return vms->virt;
   2312 }
   2313 
   2314 static void virt_set_virt(Object *obj, bool value, Error **errp)
   2315 {
   2316     VirtMachineState *vms = VIRT_MACHINE(obj);
   2317 
   2318     vms->virt = value;
   2319 }
   2320 
   2321 static bool virt_get_highmem(Object *obj, Error **errp)
   2322 {
   2323     VirtMachineState *vms = VIRT_MACHINE(obj);
   2324 
   2325     return vms->highmem;
   2326 }
   2327 
   2328 static void virt_set_highmem(Object *obj, bool value, Error **errp)
   2329 {
   2330     VirtMachineState *vms = VIRT_MACHINE(obj);
   2331 
   2332     vms->highmem = value;
   2333 }
   2334 
   2335 static bool virt_get_its(Object *obj, Error **errp)
   2336 {
   2337     VirtMachineState *vms = VIRT_MACHINE(obj);
   2338 
   2339     return vms->its;
   2340 }
   2341 
   2342 static void virt_set_its(Object *obj, bool value, Error **errp)
   2343 {
   2344     VirtMachineState *vms = VIRT_MACHINE(obj);
   2345 
   2346     vms->its = value;
   2347 }
   2348 
   2349 static bool virt_get_dtb_randomness(Object *obj, Error **errp)
   2350 {
   2351     VirtMachineState *vms = VIRT_MACHINE(obj);
   2352 
   2353     return vms->dtb_randomness;
   2354 }
   2355 
   2356 static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp)
   2357 {
   2358     VirtMachineState *vms = VIRT_MACHINE(obj);
   2359 
   2360     vms->dtb_randomness = value;
   2361 }
   2362 
   2363 static char *virt_get_oem_id(Object *obj, Error **errp)
   2364 {
   2365     VirtMachineState *vms = VIRT_MACHINE(obj);
   2366 
   2367     return g_strdup(vms->oem_id);
   2368 }
   2369 
   2370 static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
   2371 {
   2372     VirtMachineState *vms = VIRT_MACHINE(obj);
   2373     size_t len = strlen(value);
   2374 
   2375     if (len > 6) {
   2376         error_setg(errp,
   2377                    "User specified oem-id value is bigger than 6 bytes in size");
   2378         return;
   2379     }
   2380 
   2381     strncpy(vms->oem_id, value, 6);
   2382 }
   2383 
   2384 static char *virt_get_oem_table_id(Object *obj, Error **errp)
   2385 {
   2386     VirtMachineState *vms = VIRT_MACHINE(obj);
   2387 
   2388     return g_strdup(vms->oem_table_id);
   2389 }
   2390 
   2391 static void virt_set_oem_table_id(Object *obj, const char *value,
   2392                                   Error **errp)
   2393 {
   2394     VirtMachineState *vms = VIRT_MACHINE(obj);
   2395     size_t len = strlen(value);
   2396 
   2397     if (len > 8) {
   2398         error_setg(errp,
   2399                    "User specified oem-table-id value is bigger than 8 bytes in size");
   2400         return;
   2401     }
   2402     strncpy(vms->oem_table_id, value, 8);
   2403 }
   2404 
   2405 
   2406 bool virt_is_acpi_enabled(VirtMachineState *vms)
   2407 {
   2408     if (vms->acpi == ON_OFF_AUTO_OFF) {
   2409         return false;
   2410     }
   2411     return true;
   2412 }
   2413 
   2414 static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
   2415                           void *opaque, Error **errp)
   2416 {
   2417     VirtMachineState *vms = VIRT_MACHINE(obj);
   2418     OnOffAuto acpi = vms->acpi;
   2419 
   2420     visit_type_OnOffAuto(v, name, &acpi, errp);
   2421 }
   2422 
   2423 static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
   2424                           void *opaque, Error **errp)
   2425 {
   2426     VirtMachineState *vms = VIRT_MACHINE(obj);
   2427 
   2428     visit_type_OnOffAuto(v, name, &vms->acpi, errp);
   2429 }
   2430 
   2431 static bool virt_get_ras(Object *obj, Error **errp)
   2432 {
   2433     VirtMachineState *vms = VIRT_MACHINE(obj);
   2434 
   2435     return vms->ras;
   2436 }
   2437 
   2438 static void virt_set_ras(Object *obj, bool value, Error **errp)
   2439 {
   2440     VirtMachineState *vms = VIRT_MACHINE(obj);
   2441 
   2442     vms->ras = value;
   2443 }
   2444 
   2445 static bool virt_get_mte(Object *obj, Error **errp)
   2446 {
   2447     VirtMachineState *vms = VIRT_MACHINE(obj);
   2448 
   2449     return vms->mte;
   2450 }
   2451 
   2452 static void virt_set_mte(Object *obj, bool value, Error **errp)
   2453 {
   2454     VirtMachineState *vms = VIRT_MACHINE(obj);
   2455 
   2456     vms->mte = value;
   2457 }
   2458 
   2459 static char *virt_get_gic_version(Object *obj, Error **errp)
   2460 {
   2461     VirtMachineState *vms = VIRT_MACHINE(obj);
   2462     const char *val;
   2463 
   2464     switch (vms->gic_version) {
   2465     case VIRT_GIC_VERSION_4:
   2466         val = "4";
   2467         break;
   2468     case VIRT_GIC_VERSION_3:
   2469         val = "3";
   2470         break;
   2471     default:
   2472         val = "2";
   2473         break;
   2474     }
   2475     return g_strdup(val);
   2476 }
   2477 
   2478 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
   2479 {
   2480     VirtMachineState *vms = VIRT_MACHINE(obj);
   2481 
   2482     if (!strcmp(value, "4")) {
   2483         vms->gic_version = VIRT_GIC_VERSION_4;
   2484     } else if (!strcmp(value, "3")) {
   2485         vms->gic_version = VIRT_GIC_VERSION_3;
   2486     } else if (!strcmp(value, "2")) {
   2487         vms->gic_version = VIRT_GIC_VERSION_2;
   2488     } else if (!strcmp(value, "host")) {
   2489         vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
   2490     } else if (!strcmp(value, "max")) {
   2491         vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
   2492     } else {
   2493         error_setg(errp, "Invalid gic-version value");
   2494         error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
   2495     }
   2496 }
   2497 
   2498 static char *virt_get_iommu(Object *obj, Error **errp)
   2499 {
   2500     VirtMachineState *vms = VIRT_MACHINE(obj);
   2501 
   2502     switch (vms->iommu) {
   2503     case VIRT_IOMMU_NONE:
   2504         return g_strdup("none");
   2505     case VIRT_IOMMU_SMMUV3:
   2506         return g_strdup("smmuv3");
   2507     default:
   2508         g_assert_not_reached();
   2509     }
   2510 }
   2511 
   2512 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
   2513 {
   2514     VirtMachineState *vms = VIRT_MACHINE(obj);
   2515 
   2516     if (!strcmp(value, "smmuv3")) {
   2517         vms->iommu = VIRT_IOMMU_SMMUV3;
   2518     } else if (!strcmp(value, "none")) {
   2519         vms->iommu = VIRT_IOMMU_NONE;
   2520     } else {
   2521         error_setg(errp, "Invalid iommu value");
   2522         error_append_hint(errp, "Valid values are none, smmuv3.\n");
   2523     }
   2524 }
   2525 
   2526 static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
   2527 {
   2528     VirtMachineState *vms = VIRT_MACHINE(obj);
   2529 
   2530     return vms->default_bus_bypass_iommu;
   2531 }
   2532 
   2533 static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
   2534                                               Error **errp)
   2535 {
   2536     VirtMachineState *vms = VIRT_MACHINE(obj);
   2537 
   2538     vms->default_bus_bypass_iommu = value;
   2539 }
   2540 
   2541 static CpuInstanceProperties
   2542 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
   2543 {
   2544     MachineClass *mc = MACHINE_GET_CLASS(ms);
   2545     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
   2546 
   2547     assert(cpu_index < possible_cpus->len);
   2548     return possible_cpus->cpus[cpu_index].props;
   2549 }
   2550 
   2551 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
   2552 {
   2553     int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id;
   2554 
   2555     return socket_id % ms->numa_state->num_nodes;
   2556 }
   2557 
   2558 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
   2559 {
   2560     int n;
   2561     unsigned int max_cpus = ms->smp.max_cpus;
   2562     VirtMachineState *vms = VIRT_MACHINE(ms);
   2563     MachineClass *mc = MACHINE_GET_CLASS(vms);
   2564 
   2565     if (ms->possible_cpus) {
   2566         assert(ms->possible_cpus->len == max_cpus);
   2567         return ms->possible_cpus;
   2568     }
   2569 
   2570     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
   2571                                   sizeof(CPUArchId) * max_cpus);
   2572     ms->possible_cpus->len = max_cpus;
   2573     for (n = 0; n < ms->possible_cpus->len; n++) {
   2574         ms->possible_cpus->cpus[n].type = ms->cpu_type;
   2575         ms->possible_cpus->cpus[n].arch_id =
   2576             virt_cpu_mp_affinity(vms, n);
   2577 
   2578         assert(!mc->smp_props.dies_supported);
   2579         ms->possible_cpus->cpus[n].props.has_socket_id = true;
   2580         ms->possible_cpus->cpus[n].props.socket_id =
   2581             n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads);
   2582         ms->possible_cpus->cpus[n].props.has_cluster_id = true;
   2583         ms->possible_cpus->cpus[n].props.cluster_id =
   2584             (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters;
   2585         ms->possible_cpus->cpus[n].props.has_core_id = true;
   2586         ms->possible_cpus->cpus[n].props.core_id =
   2587             (n / ms->smp.threads) % ms->smp.cores;
   2588         ms->possible_cpus->cpus[n].props.has_thread_id = true;
   2589         ms->possible_cpus->cpus[n].props.thread_id =
   2590             n % ms->smp.threads;
   2591     }
   2592     return ms->possible_cpus;
   2593 }
   2594 
   2595 static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
   2596                                  Error **errp)
   2597 {
   2598     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
   2599     const MachineState *ms = MACHINE(hotplug_dev);
   2600     const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
   2601 
   2602     if (!vms->acpi_dev) {
   2603         error_setg(errp,
   2604                    "memory hotplug is not enabled: missing acpi-ged device");
   2605         return;
   2606     }
   2607 
   2608     if (vms->mte) {
   2609         error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
   2610         return;
   2611     }
   2612 
   2613     if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
   2614         error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
   2615         return;
   2616     }
   2617 
   2618     pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
   2619 }
   2620 
   2621 static void virt_memory_plug(HotplugHandler *hotplug_dev,
   2622                              DeviceState *dev, Error **errp)
   2623 {
   2624     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
   2625     MachineState *ms = MACHINE(hotplug_dev);
   2626     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
   2627 
   2628     pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
   2629 
   2630     if (is_nvdimm) {
   2631         nvdimm_plug(ms->nvdimms_state);
   2632     }
   2633 
   2634     hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
   2635                          dev, &error_abort);
   2636 }
   2637 
   2638 static void virt_virtio_md_pci_pre_plug(HotplugHandler *hotplug_dev,
   2639                                         DeviceState *dev, Error **errp)
   2640 {
   2641     HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
   2642     Error *local_err = NULL;
   2643 
   2644     if (!hotplug_dev2 && dev->hotplugged) {
   2645         /*
   2646          * Without a bus hotplug handler, we cannot control the plug/unplug
   2647          * order. We should never reach this point when hotplugging on ARM.
   2648          * However, it's nice to add a safety net, similar to what we have
   2649          * on x86.
   2650          */
   2651         error_setg(errp, "hotplug of virtio based memory devices not supported"
   2652                    " on this bus.");
   2653         return;
   2654     }
   2655     /*
   2656      * First, see if we can plug this memory device at all. If that
   2657      * succeeds, branch of to the actual hotplug handler.
   2658      */
   2659     memory_device_pre_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev), NULL,
   2660                            &local_err);
   2661     if (!local_err && hotplug_dev2) {
   2662         hotplug_handler_pre_plug(hotplug_dev2, dev, &local_err);
   2663     }
   2664     error_propagate(errp, local_err);
   2665 }
   2666 
   2667 static void virt_virtio_md_pci_plug(HotplugHandler *hotplug_dev,
   2668                                     DeviceState *dev, Error **errp)
   2669 {
   2670     HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
   2671     Error *local_err = NULL;
   2672 
   2673     /*
   2674      * Plug the memory device first and then branch off to the actual
   2675      * hotplug handler. If that one fails, we can easily undo the memory
   2676      * device bits.
   2677      */
   2678     memory_device_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
   2679     if (hotplug_dev2) {
   2680         hotplug_handler_plug(hotplug_dev2, dev, &local_err);
   2681         if (local_err) {
   2682             memory_device_unplug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
   2683         }
   2684     }
   2685     error_propagate(errp, local_err);
   2686 }
   2687 
   2688 static void virt_virtio_md_pci_unplug_request(HotplugHandler *hotplug_dev,
   2689                                               DeviceState *dev, Error **errp)
   2690 {
   2691     /* We don't support hot unplug of virtio based memory devices */
   2692     error_setg(errp, "virtio based memory devices cannot be unplugged.");
   2693 }
   2694 
   2695 
   2696 static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
   2697                                             DeviceState *dev, Error **errp)
   2698 {
   2699     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
   2700 
   2701     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
   2702         virt_memory_pre_plug(hotplug_dev, dev, errp);
   2703     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI)) {
   2704         virt_virtio_md_pci_pre_plug(hotplug_dev, dev, errp);
   2705     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
   2706         hwaddr db_start = 0, db_end = 0;
   2707         char *resv_prop_str;
   2708 
   2709         if (vms->iommu != VIRT_IOMMU_NONE) {
   2710             error_setg(errp, "virt machine does not support multiple IOMMUs");
   2711             return;
   2712         }
   2713 
   2714         switch (vms->msi_controller) {
   2715         case VIRT_MSI_CTRL_NONE:
   2716             return;
   2717         case VIRT_MSI_CTRL_ITS:
   2718             /* GITS_TRANSLATER page */
   2719             db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
   2720             db_end = base_memmap[VIRT_GIC_ITS].base +
   2721                      base_memmap[VIRT_GIC_ITS].size - 1;
   2722             break;
   2723         case VIRT_MSI_CTRL_GICV2M:
   2724             /* MSI_SETSPI_NS page */
   2725             db_start = base_memmap[VIRT_GIC_V2M].base;
   2726             db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
   2727             break;
   2728         }
   2729         resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
   2730                                         db_start, db_end,
   2731                                         VIRTIO_IOMMU_RESV_MEM_T_MSI);
   2732 
   2733         object_property_set_uint(OBJECT(dev), "len-reserved-regions", 1, errp);
   2734         object_property_set_str(OBJECT(dev), "reserved-regions[0]",
   2735                                 resv_prop_str, errp);
   2736         g_free(resv_prop_str);
   2737     }
   2738 }
   2739 
   2740 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
   2741                                         DeviceState *dev, Error **errp)
   2742 {
   2743     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
   2744 
   2745     if (vms->platform_bus_dev) {
   2746         MachineClass *mc = MACHINE_GET_CLASS(vms);
   2747 
   2748         if (device_is_dynamic_sysbus(mc, dev)) {
   2749             platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
   2750                                      SYS_BUS_DEVICE(dev));
   2751         }
   2752     }
   2753     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
   2754         virt_memory_plug(hotplug_dev, dev, errp);
   2755     }
   2756 
   2757     if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI)) {
   2758         virt_virtio_md_pci_plug(hotplug_dev, dev, errp);
   2759     }
   2760 
   2761     if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
   2762         PCIDevice *pdev = PCI_DEVICE(dev);
   2763 
   2764         vms->iommu = VIRT_IOMMU_VIRTIO;
   2765         vms->virtio_iommu_bdf = pci_get_bdf(pdev);
   2766         create_virtio_iommu_dt_bindings(vms);
   2767     }
   2768 }
   2769 
   2770 static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
   2771                                      DeviceState *dev, Error **errp)
   2772 {
   2773     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
   2774     Error *local_err = NULL;
   2775 
   2776     if (!vms->acpi_dev) {
   2777         error_setg(&local_err,
   2778                    "memory hotplug is not enabled: missing acpi-ged device");
   2779         goto out;
   2780     }
   2781 
   2782     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
   2783         error_setg(&local_err,
   2784                    "nvdimm device hot unplug is not supported yet.");
   2785         goto out;
   2786     }
   2787 
   2788     hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
   2789                                    &local_err);
   2790 out:
   2791     error_propagate(errp, local_err);
   2792 }
   2793 
   2794 static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
   2795                              DeviceState *dev, Error **errp)
   2796 {
   2797     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
   2798     Error *local_err = NULL;
   2799 
   2800     hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
   2801     if (local_err) {
   2802         goto out;
   2803     }
   2804 
   2805     pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
   2806     qdev_unrealize(dev);
   2807 
   2808 out:
   2809     error_propagate(errp, local_err);
   2810 }
   2811 
   2812 static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
   2813                                           DeviceState *dev, Error **errp)
   2814 {
   2815     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
   2816         virt_dimm_unplug_request(hotplug_dev, dev, errp);
   2817     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI)) {
   2818         virt_virtio_md_pci_unplug_request(hotplug_dev, dev, errp);
   2819     } else {
   2820         error_setg(errp, "device unplug request for unsupported device"
   2821                    " type: %s", object_get_typename(OBJECT(dev)));
   2822     }
   2823 }
   2824 
   2825 static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
   2826                                           DeviceState *dev, Error **errp)
   2827 {
   2828     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
   2829         virt_dimm_unplug(hotplug_dev, dev, errp);
   2830     } else {
   2831         error_setg(errp, "virt: device unplug for unsupported device"
   2832                    " type: %s", object_get_typename(OBJECT(dev)));
   2833     }
   2834 }
   2835 
   2836 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
   2837                                                         DeviceState *dev)
   2838 {
   2839     MachineClass *mc = MACHINE_GET_CLASS(machine);
   2840 
   2841     if (device_is_dynamic_sysbus(mc, dev) ||
   2842         object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
   2843         object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MEM_PCI) ||
   2844         object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
   2845         return HOTPLUG_HANDLER(machine);
   2846     }
   2847     return NULL;
   2848 }
   2849 
   2850 /*
   2851  * for arm64 kvm_type [7-0] encodes the requested number of bits
   2852  * in the IPA address space
   2853  */
   2854 static int virt_kvm_type(MachineState *ms, const char *type_str)
   2855 {
   2856     VirtMachineState *vms = VIRT_MACHINE(ms);
   2857     int max_vm_pa_size, requested_pa_size;
   2858     bool fixed_ipa;
   2859 
   2860     max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
   2861 
   2862     /* we freeze the memory map to compute the highest gpa */
   2863     virt_set_memmap(vms, max_vm_pa_size);
   2864 
   2865     requested_pa_size = 64 - clz64(vms->highest_gpa);
   2866 
   2867     /*
   2868      * KVM requires the IPA size to be at least 32 bits.
   2869      */
   2870     if (requested_pa_size < 32) {
   2871         requested_pa_size = 32;
   2872     }
   2873 
   2874     if (requested_pa_size > max_vm_pa_size) {
   2875         error_report("-m and ,maxmem option values "
   2876                      "require an IPA range (%d bits) larger than "
   2877                      "the one supported by the host (%d bits)",
   2878                      requested_pa_size, max_vm_pa_size);
   2879         exit(1);
   2880     }
   2881     /*
   2882      * We return the requested PA log size, unless KVM only supports
   2883      * the implicit legacy 40b IPA setting, in which case the kvm_type
   2884      * must be 0.
   2885      */
   2886     return fixed_ipa ? 0 : requested_pa_size;
   2887 }
   2888 
   2889 static void virt_machine_class_init(ObjectClass *oc, void *data)
   2890 {
   2891     MachineClass *mc = MACHINE_CLASS(oc);
   2892     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
   2893 
   2894     mc->init = machvirt_init;
   2895     /* Start with max_cpus set to 512, which is the maximum supported by KVM.
   2896      * The value may be reduced later when we have more information about the
   2897      * configuration of the particular instance.
   2898      */
   2899     mc->max_cpus = 512;
   2900     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
   2901     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
   2902     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
   2903     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
   2904 #ifdef CONFIG_TPM
   2905     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
   2906 #endif
   2907     mc->block_default_type = IF_VIRTIO;
   2908     mc->no_cdrom = 1;
   2909     mc->pci_allow_0_address = true;
   2910     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
   2911     mc->minimum_page_bits = 12;
   2912     mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
   2913     mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
   2914     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
   2915     mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
   2916     mc->kvm_type = virt_kvm_type;
   2917     assert(!mc->get_hotplug_handler);
   2918     mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
   2919     hc->pre_plug = virt_machine_device_pre_plug_cb;
   2920     hc->plug = virt_machine_device_plug_cb;
   2921     hc->unplug_request = virt_machine_device_unplug_request_cb;
   2922     hc->unplug = virt_machine_device_unplug_cb;
   2923     mc->nvdimm_supported = true;
   2924     mc->smp_props.clusters_supported = true;
   2925     mc->auto_enable_numa_with_memhp = true;
   2926     mc->auto_enable_numa_with_memdev = true;
   2927     mc->default_ram_id = "mach-virt.ram";
   2928 
   2929     object_class_property_add(oc, "acpi", "OnOffAuto",
   2930         virt_get_acpi, virt_set_acpi,
   2931         NULL, NULL);
   2932     object_class_property_set_description(oc, "acpi",
   2933         "Enable ACPI");
   2934     object_class_property_add_bool(oc, "secure", virt_get_secure,
   2935                                    virt_set_secure);
   2936     object_class_property_set_description(oc, "secure",
   2937                                                 "Set on/off to enable/disable the ARM "
   2938                                                 "Security Extensions (TrustZone)");
   2939 
   2940     object_class_property_add_bool(oc, "virtualization", virt_get_virt,
   2941                                    virt_set_virt);
   2942     object_class_property_set_description(oc, "virtualization",
   2943                                           "Set on/off to enable/disable emulating a "
   2944                                           "guest CPU which implements the ARM "
   2945                                           "Virtualization Extensions");
   2946 
   2947     object_class_property_add_bool(oc, "highmem", virt_get_highmem,
   2948                                    virt_set_highmem);
   2949     object_class_property_set_description(oc, "highmem",
   2950                                           "Set on/off to enable/disable using "
   2951                                           "physical address space above 32 bits");
   2952 
   2953     object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
   2954                                   virt_set_gic_version);
   2955     object_class_property_set_description(oc, "gic-version",
   2956                                           "Set GIC version. "
   2957                                           "Valid values are 2, 3, 4, host and max");
   2958 
   2959     object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
   2960     object_class_property_set_description(oc, "iommu",
   2961                                           "Set the IOMMU type. "
   2962                                           "Valid values are none and smmuv3");
   2963 
   2964     object_class_property_add_bool(oc, "default-bus-bypass-iommu",
   2965                                    virt_get_default_bus_bypass_iommu,
   2966                                    virt_set_default_bus_bypass_iommu);
   2967     object_class_property_set_description(oc, "default-bus-bypass-iommu",
   2968                                           "Set on/off to enable/disable "
   2969                                           "bypass_iommu for default root bus");
   2970 
   2971     object_class_property_add_bool(oc, "ras", virt_get_ras,
   2972                                    virt_set_ras);
   2973     object_class_property_set_description(oc, "ras",
   2974                                           "Set on/off to enable/disable reporting host memory errors "
   2975                                           "to a KVM guest using ACPI and guest external abort exceptions");
   2976 
   2977     object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
   2978     object_class_property_set_description(oc, "mte",
   2979                                           "Set on/off to enable/disable emulating a "
   2980                                           "guest CPU which implements the ARM "
   2981                                           "Memory Tagging Extension");
   2982 
   2983     object_class_property_add_bool(oc, "its", virt_get_its,
   2984                                    virt_set_its);
   2985     object_class_property_set_description(oc, "its",
   2986                                           "Set on/off to enable/disable "
   2987                                           "ITS instantiation");
   2988 
   2989     object_class_property_add_bool(oc, "dtb-randomness",
   2990                                    virt_get_dtb_randomness,
   2991                                    virt_set_dtb_randomness);
   2992     object_class_property_set_description(oc, "dtb-randomness",
   2993                                           "Set off to disable passing random or "
   2994                                           "non-deterministic dtb nodes to guest");
   2995 
   2996     object_class_property_add_bool(oc, "dtb-kaslr-seed",
   2997                                    virt_get_dtb_randomness,
   2998                                    virt_set_dtb_randomness);
   2999     object_class_property_set_description(oc, "dtb-kaslr-seed",
   3000                                           "Deprecated synonym of dtb-randomness");
   3001 
   3002     object_class_property_add_str(oc, "x-oem-id",
   3003                                   virt_get_oem_id,
   3004                                   virt_set_oem_id);
   3005     object_class_property_set_description(oc, "x-oem-id",
   3006                                           "Override the default value of field OEMID "
   3007                                           "in ACPI table header."
   3008                                           "The string may be up to 6 bytes in size");
   3009 
   3010 
   3011     object_class_property_add_str(oc, "x-oem-table-id",
   3012                                   virt_get_oem_table_id,
   3013                                   virt_set_oem_table_id);
   3014     object_class_property_set_description(oc, "x-oem-table-id",
   3015                                           "Override the default value of field OEM Table ID "
   3016                                           "in ACPI table header."
   3017                                           "The string may be up to 8 bytes in size");
   3018 
   3019 }
   3020 
   3021 static void virt_instance_init(Object *obj)
   3022 {
   3023     VirtMachineState *vms = VIRT_MACHINE(obj);
   3024     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
   3025 
   3026     /* EL3 is disabled by default on virt: this makes us consistent
   3027      * between KVM and TCG for this board, and it also allows us to
   3028      * boot UEFI blobs which assume no TrustZone support.
   3029      */
   3030     vms->secure = false;
   3031 
   3032     /* EL2 is also disabled by default, for similar reasons */
   3033     vms->virt = false;
   3034 
   3035     /* High memory is enabled by default */
   3036     vms->highmem = true;
   3037     vms->gic_version = VIRT_GIC_VERSION_NOSEL;
   3038 
   3039     vms->highmem_ecam = !vmc->no_highmem_ecam;
   3040     vms->highmem_mmio = true;
   3041     vms->highmem_redists = true;
   3042 
   3043     if (vmc->no_its) {
   3044         vms->its = false;
   3045     } else {
   3046         /* Default allows ITS instantiation */
   3047         vms->its = true;
   3048 
   3049         if (vmc->no_tcg_its) {
   3050             vms->tcg_its = false;
   3051         } else {
   3052             vms->tcg_its = true;
   3053         }
   3054     }
   3055 
   3056     /* Default disallows iommu instantiation */
   3057     vms->iommu = VIRT_IOMMU_NONE;
   3058 
   3059     /* The default root bus is attached to iommu by default */
   3060     vms->default_bus_bypass_iommu = false;
   3061 
   3062     /* Default disallows RAS instantiation */
   3063     vms->ras = false;
   3064 
   3065     /* MTE is disabled by default.  */
   3066     vms->mte = false;
   3067 
   3068     /* Supply kaslr-seed and rng-seed by default */
   3069     vms->dtb_randomness = true;
   3070 
   3071     vms->irqmap = a15irqmap;
   3072 
   3073     virt_flash_create(vms);
   3074 
   3075     vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
   3076     vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
   3077 }
   3078 
   3079 static const TypeInfo virt_machine_info = {
   3080     .name          = TYPE_VIRT_MACHINE,
   3081     .parent        = TYPE_MACHINE,
   3082     .abstract      = true,
   3083     .instance_size = sizeof(VirtMachineState),
   3084     .class_size    = sizeof(VirtMachineClass),
   3085     .class_init    = virt_machine_class_init,
   3086     .instance_init = virt_instance_init,
   3087     .interfaces = (InterfaceInfo[]) {
   3088          { TYPE_HOTPLUG_HANDLER },
   3089          { }
   3090     },
   3091 };
   3092 
   3093 static void machvirt_machine_init(void)
   3094 {
   3095     type_register_static(&virt_machine_info);
   3096 }
   3097 type_init(machvirt_machine_init);
   3098 
   3099 static void virt_machine_7_2_options(MachineClass *mc)
   3100 {
   3101 }
   3102 DEFINE_VIRT_MACHINE_AS_LATEST(7, 2)
   3103 
   3104 static void virt_machine_7_1_options(MachineClass *mc)
   3105 {
   3106     virt_machine_7_2_options(mc);
   3107     compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
   3108 }
   3109 DEFINE_VIRT_MACHINE(7, 1)
   3110 
   3111 static void virt_machine_7_0_options(MachineClass *mc)
   3112 {
   3113     virt_machine_7_1_options(mc);
   3114     compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
   3115 }
   3116 DEFINE_VIRT_MACHINE(7, 0)
   3117 
   3118 static void virt_machine_6_2_options(MachineClass *mc)
   3119 {
   3120     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
   3121 
   3122     virt_machine_7_0_options(mc);
   3123     compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
   3124     vmc->no_tcg_lpa2 = true;
   3125 }
   3126 DEFINE_VIRT_MACHINE(6, 2)
   3127 
   3128 static void virt_machine_6_1_options(MachineClass *mc)
   3129 {
   3130     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
   3131 
   3132     virt_machine_6_2_options(mc);
   3133     compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
   3134     mc->smp_props.prefer_sockets = true;
   3135     vmc->no_cpu_topology = true;
   3136 
   3137     /* qemu ITS was introduced with 6.2 */
   3138     vmc->no_tcg_its = true;
   3139 }
   3140 DEFINE_VIRT_MACHINE(6, 1)
   3141 
   3142 static void virt_machine_6_0_options(MachineClass *mc)
   3143 {
   3144     virt_machine_6_1_options(mc);
   3145     compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
   3146 }
   3147 DEFINE_VIRT_MACHINE(6, 0)
   3148 
   3149 static void virt_machine_5_2_options(MachineClass *mc)
   3150 {
   3151     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
   3152 
   3153     virt_machine_6_0_options(mc);
   3154     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
   3155     vmc->no_secure_gpio = true;
   3156 }
   3157 DEFINE_VIRT_MACHINE(5, 2)
   3158 
   3159 static void virt_machine_5_1_options(MachineClass *mc)
   3160 {
   3161     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
   3162 
   3163     virt_machine_5_2_options(mc);
   3164     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
   3165     vmc->no_kvm_steal_time = true;
   3166 }
   3167 DEFINE_VIRT_MACHINE(5, 1)
   3168 
   3169 static void virt_machine_5_0_options(MachineClass *mc)
   3170 {
   3171     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
   3172 
   3173     virt_machine_5_1_options(mc);
   3174     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
   3175     mc->numa_mem_supported = true;
   3176     vmc->acpi_expose_flash = true;
   3177     mc->auto_enable_numa_with_memdev = false;
   3178 }
   3179 DEFINE_VIRT_MACHINE(5, 0)
   3180 
   3181 static void virt_machine_4_2_options(MachineClass *mc)
   3182 {
   3183     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
   3184 
   3185     virt_machine_5_0_options(mc);
   3186     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
   3187     vmc->kvm_no_adjvtime = true;
   3188 }
   3189 DEFINE_VIRT_MACHINE(4, 2)
   3190 
   3191 static void virt_machine_4_1_options(MachineClass *mc)
   3192 {
   3193     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
   3194 
   3195     virt_machine_4_2_options(mc);
   3196     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
   3197     vmc->no_ged = true;
   3198     mc->auto_enable_numa_with_memhp = false;
   3199 }
   3200 DEFINE_VIRT_MACHINE(4, 1)
   3201 
   3202 static void virt_machine_4_0_options(MachineClass *mc)
   3203 {
   3204     virt_machine_4_1_options(mc);
   3205     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
   3206 }
   3207 DEFINE_VIRT_MACHINE(4, 0)
   3208 
   3209 static void virt_machine_3_1_options(MachineClass *mc)
   3210 {
   3211     virt_machine_4_0_options(mc);
   3212     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
   3213 }
   3214 DEFINE_VIRT_MACHINE(3, 1)
   3215 
   3216 static void virt_machine_3_0_options(MachineClass *mc)
   3217 {
   3218     virt_machine_3_1_options(mc);
   3219     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
   3220 }
   3221 DEFINE_VIRT_MACHINE(3, 0)
   3222 
   3223 static void virt_machine_2_12_options(MachineClass *mc)
   3224 {
   3225     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
   3226 
   3227     virt_machine_3_0_options(mc);
   3228     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
   3229     vmc->no_highmem_ecam = true;
   3230     mc->max_cpus = 255;
   3231 }
   3232 DEFINE_VIRT_MACHINE(2, 12)
   3233 
   3234 static void virt_machine_2_11_options(MachineClass *mc)
   3235 {
   3236     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
   3237 
   3238     virt_machine_2_12_options(mc);
   3239     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
   3240     vmc->smbios_old_sys_ver = true;
   3241 }
   3242 DEFINE_VIRT_MACHINE(2, 11)
   3243 
   3244 static void virt_machine_2_10_options(MachineClass *mc)
   3245 {
   3246     virt_machine_2_11_options(mc);
   3247     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
   3248     /* before 2.11 we never faulted accesses to bad addresses */
   3249     mc->ignore_memory_transaction_failures = true;
   3250 }
   3251 DEFINE_VIRT_MACHINE(2, 10)
   3252 
   3253 static void virt_machine_2_9_options(MachineClass *mc)
   3254 {
   3255     virt_machine_2_10_options(mc);
   3256     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
   3257 }
   3258 DEFINE_VIRT_MACHINE(2, 9)
   3259 
   3260 static void virt_machine_2_8_options(MachineClass *mc)
   3261 {
   3262     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
   3263 
   3264     virt_machine_2_9_options(mc);
   3265     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
   3266     /* For 2.8 and earlier we falsely claimed in the DT that
   3267      * our timers were edge-triggered, not level-triggered.
   3268      */
   3269     vmc->claim_edge_triggered_timers = true;
   3270 }
   3271 DEFINE_VIRT_MACHINE(2, 8)
   3272 
   3273 static void virt_machine_2_7_options(MachineClass *mc)
   3274 {
   3275     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
   3276 
   3277     virt_machine_2_8_options(mc);
   3278     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
   3279     /* ITS was introduced with 2.8 */
   3280     vmc->no_its = true;
   3281     /* Stick with 1K pages for migration compatibility */
   3282     mc->minimum_page_bits = 0;
   3283 }
   3284 DEFINE_VIRT_MACHINE(2, 7)
   3285 
   3286 static void virt_machine_2_6_options(MachineClass *mc)
   3287 {
   3288     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
   3289 
   3290     virt_machine_2_7_options(mc);
   3291     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
   3292     vmc->disallow_affinity_adjustment = true;
   3293     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
   3294     vmc->no_pmu = true;
   3295 }
   3296 DEFINE_VIRT_MACHINE(2, 6)