qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

stellaris.c (44552B)


      1 /*
      2  * Luminary Micro Stellaris peripherals
      3  *
      4  * Copyright (c) 2006 CodeSourcery.
      5  * Written by Paul Brook
      6  *
      7  * This code is licensed under the GPL.
      8  */
      9 
     10 #include "qemu/osdep.h"
     11 #include "qapi/error.h"
     12 #include "hw/core/split-irq.h"
     13 #include "hw/sysbus.h"
     14 #include "hw/sd/sd.h"
     15 #include "hw/ssi/ssi.h"
     16 #include "hw/arm/boot.h"
     17 #include "qemu/timer.h"
     18 #include "hw/i2c/i2c.h"
     19 #include "net/net.h"
     20 #include "hw/boards.h"
     21 #include "qemu/log.h"
     22 #include "exec/address-spaces.h"
     23 #include "sysemu/sysemu.h"
     24 #include "hw/arm/armv7m.h"
     25 #include "hw/char/pl011.h"
     26 #include "hw/input/gamepad.h"
     27 #include "hw/irq.h"
     28 #include "hw/watchdog/cmsdk-apb-watchdog.h"
     29 #include "migration/vmstate.h"
     30 #include "hw/misc/unimp.h"
     31 #include "hw/timer/stellaris-gptm.h"
     32 #include "hw/qdev-clock.h"
     33 #include "qom/object.h"
     34 
     35 #define GPIO_A 0
     36 #define GPIO_B 1
     37 #define GPIO_C 2
     38 #define GPIO_D 3
     39 #define GPIO_E 4
     40 #define GPIO_F 5
     41 #define GPIO_G 6
     42 
     43 #define BP_OLED_I2C  0x01
     44 #define BP_OLED_SSI  0x02
     45 #define BP_GAMEPAD   0x04
     46 
     47 #define NUM_IRQ_LINES 64
     48 
     49 typedef const struct {
     50     const char *name;
     51     uint32_t did0;
     52     uint32_t did1;
     53     uint32_t dc0;
     54     uint32_t dc1;
     55     uint32_t dc2;
     56     uint32_t dc3;
     57     uint32_t dc4;
     58     uint32_t peripherals;
     59 } stellaris_board_info;
     60 
     61 /* System controller.  */
     62 
     63 #define TYPE_STELLARIS_SYS "stellaris-sys"
     64 OBJECT_DECLARE_SIMPLE_TYPE(ssys_state, STELLARIS_SYS)
     65 
     66 struct ssys_state {
     67     SysBusDevice parent_obj;
     68 
     69     MemoryRegion iomem;
     70     uint32_t pborctl;
     71     uint32_t ldopctl;
     72     uint32_t int_status;
     73     uint32_t int_mask;
     74     uint32_t resc;
     75     uint32_t rcc;
     76     uint32_t rcc2;
     77     uint32_t rcgc[3];
     78     uint32_t scgc[3];
     79     uint32_t dcgc[3];
     80     uint32_t clkvclr;
     81     uint32_t ldoarst;
     82     qemu_irq irq;
     83     Clock *sysclk;
     84     /* Properties (all read-only registers) */
     85     uint32_t user0;
     86     uint32_t user1;
     87     uint32_t did0;
     88     uint32_t did1;
     89     uint32_t dc0;
     90     uint32_t dc1;
     91     uint32_t dc2;
     92     uint32_t dc3;
     93     uint32_t dc4;
     94 };
     95 
     96 static void ssys_update(ssys_state *s)
     97 {
     98   qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
     99 }
    100 
    101 static uint32_t pllcfg_sandstorm[16] = {
    102     0x31c0, /* 1 Mhz */
    103     0x1ae0, /* 1.8432 Mhz */
    104     0x18c0, /* 2 Mhz */
    105     0xd573, /* 2.4576 Mhz */
    106     0x37a6, /* 3.57954 Mhz */
    107     0x1ae2, /* 3.6864 Mhz */
    108     0x0c40, /* 4 Mhz */
    109     0x98bc, /* 4.906 Mhz */
    110     0x935b, /* 4.9152 Mhz */
    111     0x09c0, /* 5 Mhz */
    112     0x4dee, /* 5.12 Mhz */
    113     0x0c41, /* 6 Mhz */
    114     0x75db, /* 6.144 Mhz */
    115     0x1ae6, /* 7.3728 Mhz */
    116     0x0600, /* 8 Mhz */
    117     0x585b /* 8.192 Mhz */
    118 };
    119 
    120 static uint32_t pllcfg_fury[16] = {
    121     0x3200, /* 1 Mhz */
    122     0x1b20, /* 1.8432 Mhz */
    123     0x1900, /* 2 Mhz */
    124     0xf42b, /* 2.4576 Mhz */
    125     0x37e3, /* 3.57954 Mhz */
    126     0x1b21, /* 3.6864 Mhz */
    127     0x0c80, /* 4 Mhz */
    128     0x98ee, /* 4.906 Mhz */
    129     0xd5b4, /* 4.9152 Mhz */
    130     0x0a00, /* 5 Mhz */
    131     0x4e27, /* 5.12 Mhz */
    132     0x1902, /* 6 Mhz */
    133     0xec1c, /* 6.144 Mhz */
    134     0x1b23, /* 7.3728 Mhz */
    135     0x0640, /* 8 Mhz */
    136     0xb11c /* 8.192 Mhz */
    137 };
    138 
    139 #define DID0_VER_MASK        0x70000000
    140 #define DID0_VER_0           0x00000000
    141 #define DID0_VER_1           0x10000000
    142 
    143 #define DID0_CLASS_MASK      0x00FF0000
    144 #define DID0_CLASS_SANDSTORM 0x00000000
    145 #define DID0_CLASS_FURY      0x00010000
    146 
    147 static int ssys_board_class(const ssys_state *s)
    148 {
    149     uint32_t did0 = s->did0;
    150     switch (did0 & DID0_VER_MASK) {
    151     case DID0_VER_0:
    152         return DID0_CLASS_SANDSTORM;
    153     case DID0_VER_1:
    154         switch (did0 & DID0_CLASS_MASK) {
    155         case DID0_CLASS_SANDSTORM:
    156         case DID0_CLASS_FURY:
    157             return did0 & DID0_CLASS_MASK;
    158         }
    159         /* for unknown classes, fall through */
    160     default:
    161         /* This can only happen if the hardwired constant did0 value
    162          * in this board's stellaris_board_info struct is wrong.
    163          */
    164         g_assert_not_reached();
    165     }
    166 }
    167 
    168 static uint64_t ssys_read(void *opaque, hwaddr offset,
    169                           unsigned size)
    170 {
    171     ssys_state *s = (ssys_state *)opaque;
    172 
    173     switch (offset) {
    174     case 0x000: /* DID0 */
    175         return s->did0;
    176     case 0x004: /* DID1 */
    177         return s->did1;
    178     case 0x008: /* DC0 */
    179         return s->dc0;
    180     case 0x010: /* DC1 */
    181         return s->dc1;
    182     case 0x014: /* DC2 */
    183         return s->dc2;
    184     case 0x018: /* DC3 */
    185         return s->dc3;
    186     case 0x01c: /* DC4 */
    187         return s->dc4;
    188     case 0x030: /* PBORCTL */
    189         return s->pborctl;
    190     case 0x034: /* LDOPCTL */
    191         return s->ldopctl;
    192     case 0x040: /* SRCR0 */
    193         return 0;
    194     case 0x044: /* SRCR1 */
    195         return 0;
    196     case 0x048: /* SRCR2 */
    197         return 0;
    198     case 0x050: /* RIS */
    199         return s->int_status;
    200     case 0x054: /* IMC */
    201         return s->int_mask;
    202     case 0x058: /* MISC */
    203         return s->int_status & s->int_mask;
    204     case 0x05c: /* RESC */
    205         return s->resc;
    206     case 0x060: /* RCC */
    207         return s->rcc;
    208     case 0x064: /* PLLCFG */
    209         {
    210             int xtal;
    211             xtal = (s->rcc >> 6) & 0xf;
    212             switch (ssys_board_class(s)) {
    213             case DID0_CLASS_FURY:
    214                 return pllcfg_fury[xtal];
    215             case DID0_CLASS_SANDSTORM:
    216                 return pllcfg_sandstorm[xtal];
    217             default:
    218                 g_assert_not_reached();
    219             }
    220         }
    221     case 0x070: /* RCC2 */
    222         return s->rcc2;
    223     case 0x100: /* RCGC0 */
    224         return s->rcgc[0];
    225     case 0x104: /* RCGC1 */
    226         return s->rcgc[1];
    227     case 0x108: /* RCGC2 */
    228         return s->rcgc[2];
    229     case 0x110: /* SCGC0 */
    230         return s->scgc[0];
    231     case 0x114: /* SCGC1 */
    232         return s->scgc[1];
    233     case 0x118: /* SCGC2 */
    234         return s->scgc[2];
    235     case 0x120: /* DCGC0 */
    236         return s->dcgc[0];
    237     case 0x124: /* DCGC1 */
    238         return s->dcgc[1];
    239     case 0x128: /* DCGC2 */
    240         return s->dcgc[2];
    241     case 0x150: /* CLKVCLR */
    242         return s->clkvclr;
    243     case 0x160: /* LDOARST */
    244         return s->ldoarst;
    245     case 0x1e0: /* USER0 */
    246         return s->user0;
    247     case 0x1e4: /* USER1 */
    248         return s->user1;
    249     default:
    250         qemu_log_mask(LOG_GUEST_ERROR,
    251                       "SSYS: read at bad offset 0x%x\n", (int)offset);
    252         return 0;
    253     }
    254 }
    255 
    256 static bool ssys_use_rcc2(ssys_state *s)
    257 {
    258     return (s->rcc2 >> 31) & 0x1;
    259 }
    260 
    261 /*
    262  * Calculate the system clock period. We only want to propagate
    263  * this change to the rest of the system if we're not being called
    264  * from migration post-load.
    265  */
    266 static void ssys_calculate_system_clock(ssys_state *s, bool propagate_clock)
    267 {
    268     int period_ns;
    269     /*
    270      * SYSDIV field specifies divisor: 0 == /1, 1 == /2, etc.  Input
    271      * clock is 200MHz, which is a period of 5 ns. Dividing the clock
    272      * frequency by X is the same as multiplying the period by X.
    273      */
    274     if (ssys_use_rcc2(s)) {
    275         period_ns = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
    276     } else {
    277         period_ns = 5 * (((s->rcc >> 23) & 0xf) + 1);
    278     }
    279     clock_set_ns(s->sysclk, period_ns);
    280     if (propagate_clock) {
    281         clock_propagate(s->sysclk);
    282     }
    283 }
    284 
    285 static void ssys_write(void *opaque, hwaddr offset,
    286                        uint64_t value, unsigned size)
    287 {
    288     ssys_state *s = (ssys_state *)opaque;
    289 
    290     switch (offset) {
    291     case 0x030: /* PBORCTL */
    292         s->pborctl = value & 0xffff;
    293         break;
    294     case 0x034: /* LDOPCTL */
    295         s->ldopctl = value & 0x1f;
    296         break;
    297     case 0x040: /* SRCR0 */
    298     case 0x044: /* SRCR1 */
    299     case 0x048: /* SRCR2 */
    300         qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n");
    301         break;
    302     case 0x054: /* IMC */
    303         s->int_mask = value & 0x7f;
    304         break;
    305     case 0x058: /* MISC */
    306         s->int_status &= ~value;
    307         break;
    308     case 0x05c: /* RESC */
    309         s->resc = value & 0x3f;
    310         break;
    311     case 0x060: /* RCC */
    312         if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
    313             /* PLL enable.  */
    314             s->int_status |= (1 << 6);
    315         }
    316         s->rcc = value;
    317         ssys_calculate_system_clock(s, true);
    318         break;
    319     case 0x070: /* RCC2 */
    320         if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
    321             break;
    322         }
    323 
    324         if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
    325             /* PLL enable.  */
    326             s->int_status |= (1 << 6);
    327         }
    328         s->rcc2 = value;
    329         ssys_calculate_system_clock(s, true);
    330         break;
    331     case 0x100: /* RCGC0 */
    332         s->rcgc[0] = value;
    333         break;
    334     case 0x104: /* RCGC1 */
    335         s->rcgc[1] = value;
    336         break;
    337     case 0x108: /* RCGC2 */
    338         s->rcgc[2] = value;
    339         break;
    340     case 0x110: /* SCGC0 */
    341         s->scgc[0] = value;
    342         break;
    343     case 0x114: /* SCGC1 */
    344         s->scgc[1] = value;
    345         break;
    346     case 0x118: /* SCGC2 */
    347         s->scgc[2] = value;
    348         break;
    349     case 0x120: /* DCGC0 */
    350         s->dcgc[0] = value;
    351         break;
    352     case 0x124: /* DCGC1 */
    353         s->dcgc[1] = value;
    354         break;
    355     case 0x128: /* DCGC2 */
    356         s->dcgc[2] = value;
    357         break;
    358     case 0x150: /* CLKVCLR */
    359         s->clkvclr = value;
    360         break;
    361     case 0x160: /* LDOARST */
    362         s->ldoarst = value;
    363         break;
    364     default:
    365         qemu_log_mask(LOG_GUEST_ERROR,
    366                       "SSYS: write at bad offset 0x%x\n", (int)offset);
    367     }
    368     ssys_update(s);
    369 }
    370 
    371 static const MemoryRegionOps ssys_ops = {
    372     .read = ssys_read,
    373     .write = ssys_write,
    374     .endianness = DEVICE_NATIVE_ENDIAN,
    375 };
    376 
    377 static void stellaris_sys_reset_enter(Object *obj, ResetType type)
    378 {
    379     ssys_state *s = STELLARIS_SYS(obj);
    380 
    381     s->pborctl = 0x7ffd;
    382     s->rcc = 0x078e3ac0;
    383 
    384     if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
    385         s->rcc2 = 0;
    386     } else {
    387         s->rcc2 = 0x07802810;
    388     }
    389     s->rcgc[0] = 1;
    390     s->scgc[0] = 1;
    391     s->dcgc[0] = 1;
    392 }
    393 
    394 static void stellaris_sys_reset_hold(Object *obj)
    395 {
    396     ssys_state *s = STELLARIS_SYS(obj);
    397 
    398     /* OK to propagate clocks from the hold phase */
    399     ssys_calculate_system_clock(s, true);
    400 }
    401 
    402 static void stellaris_sys_reset_exit(Object *obj)
    403 {
    404 }
    405 
    406 static int stellaris_sys_post_load(void *opaque, int version_id)
    407 {
    408     ssys_state *s = opaque;
    409 
    410     ssys_calculate_system_clock(s, false);
    411 
    412     return 0;
    413 }
    414 
    415 static const VMStateDescription vmstate_stellaris_sys = {
    416     .name = "stellaris_sys",
    417     .version_id = 2,
    418     .minimum_version_id = 1,
    419     .post_load = stellaris_sys_post_load,
    420     .fields = (VMStateField[]) {
    421         VMSTATE_UINT32(pborctl, ssys_state),
    422         VMSTATE_UINT32(ldopctl, ssys_state),
    423         VMSTATE_UINT32(int_mask, ssys_state),
    424         VMSTATE_UINT32(int_status, ssys_state),
    425         VMSTATE_UINT32(resc, ssys_state),
    426         VMSTATE_UINT32(rcc, ssys_state),
    427         VMSTATE_UINT32_V(rcc2, ssys_state, 2),
    428         VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
    429         VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
    430         VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
    431         VMSTATE_UINT32(clkvclr, ssys_state),
    432         VMSTATE_UINT32(ldoarst, ssys_state),
    433         /* No field for sysclk -- handled in post-load instead */
    434         VMSTATE_END_OF_LIST()
    435     }
    436 };
    437 
    438 static Property stellaris_sys_properties[] = {
    439     DEFINE_PROP_UINT32("user0", ssys_state, user0, 0),
    440     DEFINE_PROP_UINT32("user1", ssys_state, user1, 0),
    441     DEFINE_PROP_UINT32("did0", ssys_state, did0, 0),
    442     DEFINE_PROP_UINT32("did1", ssys_state, did1, 0),
    443     DEFINE_PROP_UINT32("dc0", ssys_state, dc0, 0),
    444     DEFINE_PROP_UINT32("dc1", ssys_state, dc1, 0),
    445     DEFINE_PROP_UINT32("dc2", ssys_state, dc2, 0),
    446     DEFINE_PROP_UINT32("dc3", ssys_state, dc3, 0),
    447     DEFINE_PROP_UINT32("dc4", ssys_state, dc4, 0),
    448     DEFINE_PROP_END_OF_LIST()
    449 };
    450 
    451 static void stellaris_sys_instance_init(Object *obj)
    452 {
    453     ssys_state *s = STELLARIS_SYS(obj);
    454     SysBusDevice *sbd = SYS_BUS_DEVICE(s);
    455 
    456     memory_region_init_io(&s->iomem, obj, &ssys_ops, s, "ssys", 0x00001000);
    457     sysbus_init_mmio(sbd, &s->iomem);
    458     sysbus_init_irq(sbd, &s->irq);
    459     s->sysclk = qdev_init_clock_out(DEVICE(s), "SYSCLK");
    460 }
    461 
    462 /* I2C controller.  */
    463 
    464 #define TYPE_STELLARIS_I2C "stellaris-i2c"
    465 OBJECT_DECLARE_SIMPLE_TYPE(stellaris_i2c_state, STELLARIS_I2C)
    466 
    467 struct stellaris_i2c_state {
    468     SysBusDevice parent_obj;
    469 
    470     I2CBus *bus;
    471     qemu_irq irq;
    472     MemoryRegion iomem;
    473     uint32_t msa;
    474     uint32_t mcs;
    475     uint32_t mdr;
    476     uint32_t mtpr;
    477     uint32_t mimr;
    478     uint32_t mris;
    479     uint32_t mcr;
    480 };
    481 
    482 #define STELLARIS_I2C_MCS_BUSY    0x01
    483 #define STELLARIS_I2C_MCS_ERROR   0x02
    484 #define STELLARIS_I2C_MCS_ADRACK  0x04
    485 #define STELLARIS_I2C_MCS_DATACK  0x08
    486 #define STELLARIS_I2C_MCS_ARBLST  0x10
    487 #define STELLARIS_I2C_MCS_IDLE    0x20
    488 #define STELLARIS_I2C_MCS_BUSBSY  0x40
    489 
    490 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
    491                                    unsigned size)
    492 {
    493     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
    494 
    495     switch (offset) {
    496     case 0x00: /* MSA */
    497         return s->msa;
    498     case 0x04: /* MCS */
    499         /* We don't emulate timing, so the controller is never busy.  */
    500         return s->mcs | STELLARIS_I2C_MCS_IDLE;
    501     case 0x08: /* MDR */
    502         return s->mdr;
    503     case 0x0c: /* MTPR */
    504         return s->mtpr;
    505     case 0x10: /* MIMR */
    506         return s->mimr;
    507     case 0x14: /* MRIS */
    508         return s->mris;
    509     case 0x18: /* MMIS */
    510         return s->mris & s->mimr;
    511     case 0x20: /* MCR */
    512         return s->mcr;
    513     default:
    514         qemu_log_mask(LOG_GUEST_ERROR,
    515                       "stellaris_i2c: read at bad offset 0x%x\n", (int)offset);
    516         return 0;
    517     }
    518 }
    519 
    520 static void stellaris_i2c_update(stellaris_i2c_state *s)
    521 {
    522     int level;
    523 
    524     level = (s->mris & s->mimr) != 0;
    525     qemu_set_irq(s->irq, level);
    526 }
    527 
    528 static void stellaris_i2c_write(void *opaque, hwaddr offset,
    529                                 uint64_t value, unsigned size)
    530 {
    531     stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
    532 
    533     switch (offset) {
    534     case 0x00: /* MSA */
    535         s->msa = value & 0xff;
    536         break;
    537     case 0x04: /* MCS */
    538         if ((s->mcr & 0x10) == 0) {
    539             /* Disabled.  Do nothing.  */
    540             break;
    541         }
    542         /* Grab the bus if this is starting a transfer.  */
    543         if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
    544             if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
    545                 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
    546             } else {
    547                 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
    548                 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
    549             }
    550         }
    551         /* If we don't have the bus then indicate an error.  */
    552         if (!i2c_bus_busy(s->bus)
    553                 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
    554             s->mcs |= STELLARIS_I2C_MCS_ERROR;
    555             break;
    556         }
    557         s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
    558         if (value & 1) {
    559             /* Transfer a byte.  */
    560             /* TODO: Handle errors.  */
    561             if (s->msa & 1) {
    562                 /* Recv */
    563                 s->mdr = i2c_recv(s->bus);
    564             } else {
    565                 /* Send */
    566                 i2c_send(s->bus, s->mdr);
    567             }
    568             /* Raise an interrupt.  */
    569             s->mris |= 1;
    570         }
    571         if (value & 4) {
    572             /* Finish transfer.  */
    573             i2c_end_transfer(s->bus);
    574             s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
    575         }
    576         break;
    577     case 0x08: /* MDR */
    578         s->mdr = value & 0xff;
    579         break;
    580     case 0x0c: /* MTPR */
    581         s->mtpr = value & 0xff;
    582         break;
    583     case 0x10: /* MIMR */
    584         s->mimr = 1;
    585         break;
    586     case 0x1c: /* MICR */
    587         s->mris &= ~value;
    588         break;
    589     case 0x20: /* MCR */
    590         if (value & 1) {
    591             qemu_log_mask(LOG_UNIMP,
    592                           "stellaris_i2c: Loopback not implemented\n");
    593         }
    594         if (value & 0x20) {
    595             qemu_log_mask(LOG_UNIMP,
    596                           "stellaris_i2c: Slave mode not implemented\n");
    597         }
    598         s->mcr = value & 0x31;
    599         break;
    600     default:
    601         qemu_log_mask(LOG_GUEST_ERROR,
    602                       "stellaris_i2c: write at bad offset 0x%x\n", (int)offset);
    603     }
    604     stellaris_i2c_update(s);
    605 }
    606 
    607 static void stellaris_i2c_reset(stellaris_i2c_state *s)
    608 {
    609     if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
    610         i2c_end_transfer(s->bus);
    611 
    612     s->msa = 0;
    613     s->mcs = 0;
    614     s->mdr = 0;
    615     s->mtpr = 1;
    616     s->mimr = 0;
    617     s->mris = 0;
    618     s->mcr = 0;
    619     stellaris_i2c_update(s);
    620 }
    621 
    622 static const MemoryRegionOps stellaris_i2c_ops = {
    623     .read = stellaris_i2c_read,
    624     .write = stellaris_i2c_write,
    625     .endianness = DEVICE_NATIVE_ENDIAN,
    626 };
    627 
    628 static const VMStateDescription vmstate_stellaris_i2c = {
    629     .name = "stellaris_i2c",
    630     .version_id = 1,
    631     .minimum_version_id = 1,
    632     .fields = (VMStateField[]) {
    633         VMSTATE_UINT32(msa, stellaris_i2c_state),
    634         VMSTATE_UINT32(mcs, stellaris_i2c_state),
    635         VMSTATE_UINT32(mdr, stellaris_i2c_state),
    636         VMSTATE_UINT32(mtpr, stellaris_i2c_state),
    637         VMSTATE_UINT32(mimr, stellaris_i2c_state),
    638         VMSTATE_UINT32(mris, stellaris_i2c_state),
    639         VMSTATE_UINT32(mcr, stellaris_i2c_state),
    640         VMSTATE_END_OF_LIST()
    641     }
    642 };
    643 
    644 static void stellaris_i2c_init(Object *obj)
    645 {
    646     DeviceState *dev = DEVICE(obj);
    647     stellaris_i2c_state *s = STELLARIS_I2C(obj);
    648     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
    649     I2CBus *bus;
    650 
    651     sysbus_init_irq(sbd, &s->irq);
    652     bus = i2c_init_bus(dev, "i2c");
    653     s->bus = bus;
    654 
    655     memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s,
    656                           "i2c", 0x1000);
    657     sysbus_init_mmio(sbd, &s->iomem);
    658     /* ??? For now we only implement the master interface.  */
    659     stellaris_i2c_reset(s);
    660 }
    661 
    662 /* Analogue to Digital Converter.  This is only partially implemented,
    663    enough for applications that use a combined ADC and timer tick.  */
    664 
    665 #define STELLARIS_ADC_EM_CONTROLLER 0
    666 #define STELLARIS_ADC_EM_COMP       1
    667 #define STELLARIS_ADC_EM_EXTERNAL   4
    668 #define STELLARIS_ADC_EM_TIMER      5
    669 #define STELLARIS_ADC_EM_PWM0       6
    670 #define STELLARIS_ADC_EM_PWM1       7
    671 #define STELLARIS_ADC_EM_PWM2       8
    672 
    673 #define STELLARIS_ADC_FIFO_EMPTY    0x0100
    674 #define STELLARIS_ADC_FIFO_FULL     0x1000
    675 
    676 #define TYPE_STELLARIS_ADC "stellaris-adc"
    677 typedef struct StellarisADCState stellaris_adc_state;
    678 DECLARE_INSTANCE_CHECKER(stellaris_adc_state, STELLARIS_ADC,
    679                          TYPE_STELLARIS_ADC)
    680 
    681 struct StellarisADCState {
    682     SysBusDevice parent_obj;
    683 
    684     MemoryRegion iomem;
    685     uint32_t actss;
    686     uint32_t ris;
    687     uint32_t im;
    688     uint32_t emux;
    689     uint32_t ostat;
    690     uint32_t ustat;
    691     uint32_t sspri;
    692     uint32_t sac;
    693     struct {
    694         uint32_t state;
    695         uint32_t data[16];
    696     } fifo[4];
    697     uint32_t ssmux[4];
    698     uint32_t ssctl[4];
    699     uint32_t noise;
    700     qemu_irq irq[4];
    701 };
    702 
    703 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
    704 {
    705     int tail;
    706 
    707     tail = s->fifo[n].state & 0xf;
    708     if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
    709         s->ustat |= 1 << n;
    710     } else {
    711         s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
    712         s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
    713         if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
    714             s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
    715     }
    716     return s->fifo[n].data[tail];
    717 }
    718 
    719 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
    720                                      uint32_t value)
    721 {
    722     int head;
    723 
    724     /* TODO: Real hardware has limited size FIFOs.  We have a full 16 entry 
    725        FIFO fir each sequencer.  */
    726     head = (s->fifo[n].state >> 4) & 0xf;
    727     if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
    728         s->ostat |= 1 << n;
    729         return;
    730     }
    731     s->fifo[n].data[head] = value;
    732     head = (head + 1) & 0xf;
    733     s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
    734     s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
    735     if ((s->fifo[n].state & 0xf) == head)
    736         s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
    737 }
    738 
    739 static void stellaris_adc_update(stellaris_adc_state *s)
    740 {
    741     int level;
    742     int n;
    743 
    744     for (n = 0; n < 4; n++) {
    745         level = (s->ris & s->im & (1 << n)) != 0;
    746         qemu_set_irq(s->irq[n], level);
    747     }
    748 }
    749 
    750 static void stellaris_adc_trigger(void *opaque, int irq, int level)
    751 {
    752     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
    753     int n;
    754 
    755     for (n = 0; n < 4; n++) {
    756         if ((s->actss & (1 << n)) == 0) {
    757             continue;
    758         }
    759 
    760         if (((s->emux >> (n * 4)) & 0xff) != 5) {
    761             continue;
    762         }
    763 
    764         /* Some applications use the ADC as a random number source, so introduce
    765            some variation into the signal.  */
    766         s->noise = s->noise * 314159 + 1;
    767         /* ??? actual inputs not implemented.  Return an arbitrary value.  */
    768         stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
    769         s->ris |= (1 << n);
    770         stellaris_adc_update(s);
    771     }
    772 }
    773 
    774 static void stellaris_adc_reset(stellaris_adc_state *s)
    775 {
    776     int n;
    777 
    778     for (n = 0; n < 4; n++) {
    779         s->ssmux[n] = 0;
    780         s->ssctl[n] = 0;
    781         s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
    782     }
    783 }
    784 
    785 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
    786                                    unsigned size)
    787 {
    788     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
    789 
    790     /* TODO: Implement this.  */
    791     if (offset >= 0x40 && offset < 0xc0) {
    792         int n;
    793         n = (offset - 0x40) >> 5;
    794         switch (offset & 0x1f) {
    795         case 0x00: /* SSMUX */
    796             return s->ssmux[n];
    797         case 0x04: /* SSCTL */
    798             return s->ssctl[n];
    799         case 0x08: /* SSFIFO */
    800             return stellaris_adc_fifo_read(s, n);
    801         case 0x0c: /* SSFSTAT */
    802             return s->fifo[n].state;
    803         default:
    804             break;
    805         }
    806     }
    807     switch (offset) {
    808     case 0x00: /* ACTSS */
    809         return s->actss;
    810     case 0x04: /* RIS */
    811         return s->ris;
    812     case 0x08: /* IM */
    813         return s->im;
    814     case 0x0c: /* ISC */
    815         return s->ris & s->im;
    816     case 0x10: /* OSTAT */
    817         return s->ostat;
    818     case 0x14: /* EMUX */
    819         return s->emux;
    820     case 0x18: /* USTAT */
    821         return s->ustat;
    822     case 0x20: /* SSPRI */
    823         return s->sspri;
    824     case 0x30: /* SAC */
    825         return s->sac;
    826     default:
    827         qemu_log_mask(LOG_GUEST_ERROR,
    828                       "stellaris_adc: read at bad offset 0x%x\n", (int)offset);
    829         return 0;
    830     }
    831 }
    832 
    833 static void stellaris_adc_write(void *opaque, hwaddr offset,
    834                                 uint64_t value, unsigned size)
    835 {
    836     stellaris_adc_state *s = (stellaris_adc_state *)opaque;
    837 
    838     /* TODO: Implement this.  */
    839     if (offset >= 0x40 && offset < 0xc0) {
    840         int n;
    841         n = (offset - 0x40) >> 5;
    842         switch (offset & 0x1f) {
    843         case 0x00: /* SSMUX */
    844             s->ssmux[n] = value & 0x33333333;
    845             return;
    846         case 0x04: /* SSCTL */
    847             if (value != 6) {
    848                 qemu_log_mask(LOG_UNIMP,
    849                               "ADC: Unimplemented sequence %" PRIx64 "\n",
    850                               value);
    851             }
    852             s->ssctl[n] = value;
    853             return;
    854         default:
    855             break;
    856         }
    857     }
    858     switch (offset) {
    859     case 0x00: /* ACTSS */
    860         s->actss = value & 0xf;
    861         break;
    862     case 0x08: /* IM */
    863         s->im = value;
    864         break;
    865     case 0x0c: /* ISC */
    866         s->ris &= ~value;
    867         break;
    868     case 0x10: /* OSTAT */
    869         s->ostat &= ~value;
    870         break;
    871     case 0x14: /* EMUX */
    872         s->emux = value;
    873         break;
    874     case 0x18: /* USTAT */
    875         s->ustat &= ~value;
    876         break;
    877     case 0x20: /* SSPRI */
    878         s->sspri = value;
    879         break;
    880     case 0x28: /* PSSI */
    881         qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n");
    882         break;
    883     case 0x30: /* SAC */
    884         s->sac = value;
    885         break;
    886     default:
    887         qemu_log_mask(LOG_GUEST_ERROR,
    888                       "stellaris_adc: write at bad offset 0x%x\n", (int)offset);
    889     }
    890     stellaris_adc_update(s);
    891 }
    892 
    893 static const MemoryRegionOps stellaris_adc_ops = {
    894     .read = stellaris_adc_read,
    895     .write = stellaris_adc_write,
    896     .endianness = DEVICE_NATIVE_ENDIAN,
    897 };
    898 
    899 static const VMStateDescription vmstate_stellaris_adc = {
    900     .name = "stellaris_adc",
    901     .version_id = 1,
    902     .minimum_version_id = 1,
    903     .fields = (VMStateField[]) {
    904         VMSTATE_UINT32(actss, stellaris_adc_state),
    905         VMSTATE_UINT32(ris, stellaris_adc_state),
    906         VMSTATE_UINT32(im, stellaris_adc_state),
    907         VMSTATE_UINT32(emux, stellaris_adc_state),
    908         VMSTATE_UINT32(ostat, stellaris_adc_state),
    909         VMSTATE_UINT32(ustat, stellaris_adc_state),
    910         VMSTATE_UINT32(sspri, stellaris_adc_state),
    911         VMSTATE_UINT32(sac, stellaris_adc_state),
    912         VMSTATE_UINT32(fifo[0].state, stellaris_adc_state),
    913         VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16),
    914         VMSTATE_UINT32(ssmux[0], stellaris_adc_state),
    915         VMSTATE_UINT32(ssctl[0], stellaris_adc_state),
    916         VMSTATE_UINT32(fifo[1].state, stellaris_adc_state),
    917         VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16),
    918         VMSTATE_UINT32(ssmux[1], stellaris_adc_state),
    919         VMSTATE_UINT32(ssctl[1], stellaris_adc_state),
    920         VMSTATE_UINT32(fifo[2].state, stellaris_adc_state),
    921         VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16),
    922         VMSTATE_UINT32(ssmux[2], stellaris_adc_state),
    923         VMSTATE_UINT32(ssctl[2], stellaris_adc_state),
    924         VMSTATE_UINT32(fifo[3].state, stellaris_adc_state),
    925         VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16),
    926         VMSTATE_UINT32(ssmux[3], stellaris_adc_state),
    927         VMSTATE_UINT32(ssctl[3], stellaris_adc_state),
    928         VMSTATE_UINT32(noise, stellaris_adc_state),
    929         VMSTATE_END_OF_LIST()
    930     }
    931 };
    932 
    933 static void stellaris_adc_init(Object *obj)
    934 {
    935     DeviceState *dev = DEVICE(obj);
    936     stellaris_adc_state *s = STELLARIS_ADC(obj);
    937     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
    938     int n;
    939 
    940     for (n = 0; n < 4; n++) {
    941         sysbus_init_irq(sbd, &s->irq[n]);
    942     }
    943 
    944     memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s,
    945                           "adc", 0x1000);
    946     sysbus_init_mmio(sbd, &s->iomem);
    947     stellaris_adc_reset(s);
    948     qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
    949 }
    950 
    951 /* Board init.  */
    952 static stellaris_board_info stellaris_boards[] = {
    953   { "LM3S811EVB",
    954     0,
    955     0x0032000e,
    956     0x001f001f, /* dc0 */
    957     0x001132bf,
    958     0x01071013,
    959     0x3f0f01ff,
    960     0x0000001f,
    961     BP_OLED_I2C
    962   },
    963   { "LM3S6965EVB",
    964     0x10010002,
    965     0x1073402e,
    966     0x00ff007f, /* dc0 */
    967     0x001133ff,
    968     0x030f5317,
    969     0x0f0f87ff,
    970     0x5000007f,
    971     BP_OLED_SSI | BP_GAMEPAD
    972   }
    973 };
    974 
    975 static void stellaris_init(MachineState *ms, stellaris_board_info *board)
    976 {
    977     static const int uart_irq[] = {5, 6, 33, 34};
    978     static const int timer_irq[] = {19, 21, 23, 35};
    979     static const uint32_t gpio_addr[7] =
    980       { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
    981         0x40024000, 0x40025000, 0x40026000};
    982     static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
    983 
    984     /* Memory map of SoC devices, from
    985      * Stellaris LM3S6965 Microcontroller Data Sheet (rev I)
    986      * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf
    987      *
    988      * 40000000 wdtimer
    989      * 40002000 i2c (unimplemented)
    990      * 40004000 GPIO
    991      * 40005000 GPIO
    992      * 40006000 GPIO
    993      * 40007000 GPIO
    994      * 40008000 SSI
    995      * 4000c000 UART
    996      * 4000d000 UART
    997      * 4000e000 UART
    998      * 40020000 i2c
    999      * 40021000 i2c (unimplemented)
   1000      * 40024000 GPIO
   1001      * 40025000 GPIO
   1002      * 40026000 GPIO
   1003      * 40028000 PWM (unimplemented)
   1004      * 4002c000 QEI (unimplemented)
   1005      * 4002d000 QEI (unimplemented)
   1006      * 40030000 gptimer
   1007      * 40031000 gptimer
   1008      * 40032000 gptimer
   1009      * 40033000 gptimer
   1010      * 40038000 ADC
   1011      * 4003c000 analogue comparator (unimplemented)
   1012      * 40048000 ethernet
   1013      * 400fc000 hibernation module (unimplemented)
   1014      * 400fd000 flash memory control (unimplemented)
   1015      * 400fe000 system control
   1016      */
   1017 
   1018     DeviceState *gpio_dev[7], *nvic;
   1019     qemu_irq gpio_in[7][8];
   1020     qemu_irq gpio_out[7][8];
   1021     qemu_irq adc;
   1022     int sram_size;
   1023     int flash_size;
   1024     I2CBus *i2c;
   1025     DeviceState *dev;
   1026     DeviceState *ssys_dev;
   1027     int i;
   1028     int j;
   1029     const uint8_t *macaddr;
   1030 
   1031     MemoryRegion *sram = g_new(MemoryRegion, 1);
   1032     MemoryRegion *flash = g_new(MemoryRegion, 1);
   1033     MemoryRegion *system_memory = get_system_memory();
   1034 
   1035     flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024;
   1036     sram_size = ((board->dc0 >> 18) + 1) * 1024;
   1037 
   1038     /* Flash programming is done via the SCU, so pretend it is ROM.  */
   1039     memory_region_init_rom(flash, NULL, "stellaris.flash", flash_size,
   1040                            &error_fatal);
   1041     memory_region_add_subregion(system_memory, 0, flash);
   1042 
   1043     memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size,
   1044                            &error_fatal);
   1045     memory_region_add_subregion(system_memory, 0x20000000, sram);
   1046 
   1047     /*
   1048      * Create the system-registers object early, because we will
   1049      * need its sysclk output.
   1050      */
   1051     ssys_dev = qdev_new(TYPE_STELLARIS_SYS);
   1052     /* Most devices come preprogrammed with a MAC address in the user data. */
   1053     macaddr = nd_table[0].macaddr.a;
   1054     qdev_prop_set_uint32(ssys_dev, "user0",
   1055                          macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16));
   1056     qdev_prop_set_uint32(ssys_dev, "user1",
   1057                          macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16));
   1058     qdev_prop_set_uint32(ssys_dev, "did0", board->did0);
   1059     qdev_prop_set_uint32(ssys_dev, "did1", board->did1);
   1060     qdev_prop_set_uint32(ssys_dev, "dc0", board->dc0);
   1061     qdev_prop_set_uint32(ssys_dev, "dc1", board->dc1);
   1062     qdev_prop_set_uint32(ssys_dev, "dc2", board->dc2);
   1063     qdev_prop_set_uint32(ssys_dev, "dc3", board->dc3);
   1064     qdev_prop_set_uint32(ssys_dev, "dc4", board->dc4);
   1065     sysbus_realize_and_unref(SYS_BUS_DEVICE(ssys_dev), &error_fatal);
   1066 
   1067     nvic = qdev_new(TYPE_ARMV7M);
   1068     qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES);
   1069     qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type);
   1070     qdev_prop_set_bit(nvic, "enable-bitband", true);
   1071     qdev_connect_clock_in(nvic, "cpuclk",
   1072                           qdev_get_clock_out(ssys_dev, "SYSCLK"));
   1073     /* This SoC does not connect the systick reference clock */
   1074     object_property_set_link(OBJECT(nvic), "memory",
   1075                              OBJECT(get_system_memory()), &error_abort);
   1076     /* This will exit with an error if the user passed us a bad cpu_type */
   1077     sysbus_realize_and_unref(SYS_BUS_DEVICE(nvic), &error_fatal);
   1078 
   1079     /* Now we can wire up the IRQ and MMIO of the system registers */
   1080     sysbus_mmio_map(SYS_BUS_DEVICE(ssys_dev), 0, 0x400fe000);
   1081     sysbus_connect_irq(SYS_BUS_DEVICE(ssys_dev), 0, qdev_get_gpio_in(nvic, 28));
   1082 
   1083     if (board->dc1 & (1 << 16)) {
   1084         dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
   1085                                     qdev_get_gpio_in(nvic, 14),
   1086                                     qdev_get_gpio_in(nvic, 15),
   1087                                     qdev_get_gpio_in(nvic, 16),
   1088                                     qdev_get_gpio_in(nvic, 17),
   1089                                     NULL);
   1090         adc = qdev_get_gpio_in(dev, 0);
   1091     } else {
   1092         adc = NULL;
   1093     }
   1094     for (i = 0; i < 4; i++) {
   1095         if (board->dc2 & (0x10000 << i)) {
   1096             SysBusDevice *sbd;
   1097 
   1098             dev = qdev_new(TYPE_STELLARIS_GPTM);
   1099             sbd = SYS_BUS_DEVICE(dev);
   1100             qdev_connect_clock_in(dev, "clk",
   1101                                   qdev_get_clock_out(ssys_dev, "SYSCLK"));
   1102             sysbus_realize_and_unref(sbd, &error_fatal);
   1103             sysbus_mmio_map(sbd, 0, 0x40030000 + i * 0x1000);
   1104             sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(nvic, timer_irq[i]));
   1105             /* TODO: This is incorrect, but we get away with it because
   1106                the ADC output is only ever pulsed.  */
   1107             qdev_connect_gpio_out(dev, 0, adc);
   1108         }
   1109     }
   1110 
   1111     if (board->dc1 & (1 << 3)) { /* watchdog present */
   1112         dev = qdev_new(TYPE_LUMINARY_WATCHDOG);
   1113 
   1114         qdev_connect_clock_in(dev, "WDOGCLK",
   1115                               qdev_get_clock_out(ssys_dev, "SYSCLK"));
   1116 
   1117         sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
   1118         sysbus_mmio_map(SYS_BUS_DEVICE(dev),
   1119                         0,
   1120                         0x40000000u);
   1121         sysbus_connect_irq(SYS_BUS_DEVICE(dev),
   1122                            0,
   1123                            qdev_get_gpio_in(nvic, 18));
   1124     }
   1125 
   1126 
   1127     for (i = 0; i < 7; i++) {
   1128         if (board->dc4 & (1 << i)) {
   1129             gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
   1130                                                qdev_get_gpio_in(nvic,
   1131                                                                 gpio_irq[i]));
   1132             for (j = 0; j < 8; j++) {
   1133                 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
   1134                 gpio_out[i][j] = NULL;
   1135             }
   1136         }
   1137     }
   1138 
   1139     if (board->dc2 & (1 << 12)) {
   1140         dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000,
   1141                                    qdev_get_gpio_in(nvic, 8));
   1142         i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
   1143         if (board->peripherals & BP_OLED_I2C) {
   1144             i2c_slave_create_simple(i2c, "ssd0303", 0x3d);
   1145         }
   1146     }
   1147 
   1148     for (i = 0; i < 4; i++) {
   1149         if (board->dc2 & (1 << i)) {
   1150             pl011_luminary_create(0x4000c000 + i * 0x1000,
   1151                                   qdev_get_gpio_in(nvic, uart_irq[i]),
   1152                                   serial_hd(i));
   1153         }
   1154     }
   1155     if (board->dc2 & (1 << 4)) {
   1156         dev = sysbus_create_simple("pl022", 0x40008000,
   1157                                    qdev_get_gpio_in(nvic, 7));
   1158         if (board->peripherals & BP_OLED_SSI) {
   1159             void *bus;
   1160             DeviceState *sddev;
   1161             DeviceState *ssddev;
   1162             DriveInfo *dinfo;
   1163             DeviceState *carddev;
   1164             DeviceState *gpio_d_splitter;
   1165             BlockBackend *blk;
   1166 
   1167             /*
   1168              * Some boards have both an OLED controller and SD card connected to
   1169              * the same SSI port, with the SD card chip select connected to a
   1170              * GPIO pin.  Technically the OLED chip select is connected to the
   1171              * SSI Fss pin.  We do not bother emulating that as both devices
   1172              * should never be selected simultaneously, and our OLED controller
   1173              * ignores stray 0xff commands that occur when deselecting the SD
   1174              * card.
   1175              *
   1176              * The h/w wiring is:
   1177              *  - GPIO pin D0 is wired to the active-low SD card chip select
   1178              *  - GPIO pin A3 is wired to the active-low OLED chip select
   1179              *  - The SoC wiring of the PL061 "auxiliary function" for A3 is
   1180              *    SSI0Fss ("frame signal"), which is an output from the SoC's
   1181              *    SSI controller. The SSI controller takes SSI0Fss low when it
   1182              *    transmits a frame, so it can work as a chip-select signal.
   1183              *  - GPIO A4 is aux-function SSI0Rx, and wired to the SD card Tx
   1184              *    (the OLED never sends data to the CPU, so no wiring needed)
   1185              *  - GPIO A5 is aux-function SSI0Tx, and wired to the SD card Rx
   1186              *    and the OLED display-data-in
   1187              *  - GPIO A2 is aux-function SSI0Clk, wired to SD card and OLED
   1188              *    serial-clock input
   1189              * So a guest that wants to use the OLED can configure the PL061
   1190              * to make pins A2, A3, A5 aux-function, so they are connected
   1191              * directly to the SSI controller. When the SSI controller sends
   1192              * data it asserts SSI0Fss which selects the OLED.
   1193              * A guest that wants to use the SD card configures A2, A4 and A5
   1194              * as aux-function, but leaves A3 as a software-controlled GPIO
   1195              * line. It asserts the SD card chip-select by using the PL061
   1196              * to control pin D0, and lets the SSI controller handle Clk, Tx
   1197              * and Rx. (The SSI controller asserts Fss during tx cycles as
   1198              * usual, but because A3 is not set to aux-function this is not
   1199              * forwarded to the OLED, and so the OLED stays unselected.)
   1200              *
   1201              * The QEMU implementation instead is:
   1202              *  - GPIO pin D0 is wired to the active-low SD card chip select,
   1203              *    and also to the OLED chip-select which is implemented
   1204              *    as *active-high*
   1205              *  - SSI controller signals go to the devices regardless of
   1206              *    whether the guest programs A2, A4, A5 as aux-function or not
   1207              *
   1208              * The problem with this implementation is if the guest doesn't
   1209              * care about the SD card and only uses the OLED. In that case it
   1210              * may choose never to do anything with D0 (leaving it in its
   1211              * default floating state, which reliably leaves the card disabled
   1212              * because an SD card has a pullup on CS within the card itself),
   1213              * and only set up A2, A3, A5. This for us would mean the OLED
   1214              * never gets the chip-select assert it needs. We work around
   1215              * this with a manual raise of D0 here (despite board creation
   1216              * code being the wrong place to raise IRQ lines) to put the OLED
   1217              * into an initially selected state.
   1218              *
   1219              * In theory the right way to model this would be:
   1220              *  - Implement aux-function support in the PL061, with an
   1221              *    extra set of AFIN and AFOUT GPIO lines (set up so that
   1222              *    if a GPIO line is in auxfn mode the main GPIO in and out
   1223              *    track the AFIN and AFOUT lines)
   1224              *  - Wire the AFOUT for D0 up to either a line from the
   1225              *    SSI controller that's pulled low around every transmit,
   1226              *    or at least to an always-0 line here on the board
   1227              *  - Make the ssd0323 OLED controller chipselect active-low
   1228              */
   1229             bus = qdev_get_child_bus(dev, "ssi");
   1230             sddev = ssi_create_peripheral(bus, "ssi-sd");
   1231 
   1232             dinfo = drive_get(IF_SD, 0, 0);
   1233             blk = dinfo ? blk_by_legacy_dinfo(dinfo) : NULL;
   1234             carddev = qdev_new(TYPE_SD_CARD);
   1235             qdev_prop_set_drive_err(carddev, "drive", blk, &error_fatal);
   1236             qdev_prop_set_bit(carddev, "spi", true);
   1237             qdev_realize_and_unref(carddev,
   1238                                    qdev_get_child_bus(sddev, "sd-bus"),
   1239                                    &error_fatal);
   1240 
   1241             ssddev = ssi_create_peripheral(bus, "ssd0323");
   1242 
   1243             gpio_d_splitter = qdev_new(TYPE_SPLIT_IRQ);
   1244             qdev_prop_set_uint32(gpio_d_splitter, "num-lines", 2);
   1245             qdev_realize_and_unref(gpio_d_splitter, NULL, &error_fatal);
   1246             qdev_connect_gpio_out(
   1247                     gpio_d_splitter, 0,
   1248                     qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0));
   1249             qdev_connect_gpio_out(
   1250                     gpio_d_splitter, 1,
   1251                     qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0));
   1252             gpio_out[GPIO_D][0] = qdev_get_gpio_in(gpio_d_splitter, 0);
   1253 
   1254             gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0);
   1255 
   1256             /* Make sure the select pin is high.  */
   1257             qemu_irq_raise(gpio_out[GPIO_D][0]);
   1258         }
   1259     }
   1260     if (board->dc4 & (1 << 28)) {
   1261         DeviceState *enet;
   1262 
   1263         qemu_check_nic_model(&nd_table[0], "stellaris");
   1264 
   1265         enet = qdev_new("stellaris_enet");
   1266         qdev_set_nic_properties(enet, &nd_table[0]);
   1267         sysbus_realize_and_unref(SYS_BUS_DEVICE(enet), &error_fatal);
   1268         sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
   1269         sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42));
   1270     }
   1271     if (board->peripherals & BP_GAMEPAD) {
   1272         qemu_irq gpad_irq[5];
   1273         static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
   1274 
   1275         gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
   1276         gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
   1277         gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
   1278         gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
   1279         gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
   1280 
   1281         stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
   1282     }
   1283     for (i = 0; i < 7; i++) {
   1284         if (board->dc4 & (1 << i)) {
   1285             for (j = 0; j < 8; j++) {
   1286                 if (gpio_out[i][j]) {
   1287                     qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
   1288                 }
   1289             }
   1290         }
   1291     }
   1292 
   1293     /* Add dummy regions for the devices we don't implement yet,
   1294      * so guest accesses don't cause unlogged crashes.
   1295      */
   1296     create_unimplemented_device("i2c-0", 0x40002000, 0x1000);
   1297     create_unimplemented_device("i2c-2", 0x40021000, 0x1000);
   1298     create_unimplemented_device("PWM", 0x40028000, 0x1000);
   1299     create_unimplemented_device("QEI-0", 0x4002c000, 0x1000);
   1300     create_unimplemented_device("QEI-1", 0x4002d000, 0x1000);
   1301     create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000);
   1302     create_unimplemented_device("hibernation", 0x400fc000, 0x1000);
   1303     create_unimplemented_device("flash-control", 0x400fd000, 0x1000);
   1304 
   1305     armv7m_load_kernel(ARM_CPU(first_cpu), ms->kernel_filename, 0, flash_size);
   1306 }
   1307 
   1308 /* FIXME: Figure out how to generate these from stellaris_boards.  */
   1309 static void lm3s811evb_init(MachineState *machine)
   1310 {
   1311     stellaris_init(machine, &stellaris_boards[0]);
   1312 }
   1313 
   1314 static void lm3s6965evb_init(MachineState *machine)
   1315 {
   1316     stellaris_init(machine, &stellaris_boards[1]);
   1317 }
   1318 
   1319 static void lm3s811evb_class_init(ObjectClass *oc, void *data)
   1320 {
   1321     MachineClass *mc = MACHINE_CLASS(oc);
   1322 
   1323     mc->desc = "Stellaris LM3S811EVB (Cortex-M3)";
   1324     mc->init = lm3s811evb_init;
   1325     mc->ignore_memory_transaction_failures = true;
   1326     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
   1327 }
   1328 
   1329 static const TypeInfo lm3s811evb_type = {
   1330     .name = MACHINE_TYPE_NAME("lm3s811evb"),
   1331     .parent = TYPE_MACHINE,
   1332     .class_init = lm3s811evb_class_init,
   1333 };
   1334 
   1335 static void lm3s6965evb_class_init(ObjectClass *oc, void *data)
   1336 {
   1337     MachineClass *mc = MACHINE_CLASS(oc);
   1338 
   1339     mc->desc = "Stellaris LM3S6965EVB (Cortex-M3)";
   1340     mc->init = lm3s6965evb_init;
   1341     mc->ignore_memory_transaction_failures = true;
   1342     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
   1343 }
   1344 
   1345 static const TypeInfo lm3s6965evb_type = {
   1346     .name = MACHINE_TYPE_NAME("lm3s6965evb"),
   1347     .parent = TYPE_MACHINE,
   1348     .class_init = lm3s6965evb_class_init,
   1349 };
   1350 
   1351 static void stellaris_machine_init(void)
   1352 {
   1353     type_register_static(&lm3s811evb_type);
   1354     type_register_static(&lm3s6965evb_type);
   1355 }
   1356 
   1357 type_init(stellaris_machine_init)
   1358 
   1359 static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
   1360 {
   1361     DeviceClass *dc = DEVICE_CLASS(klass);
   1362 
   1363     dc->vmsd = &vmstate_stellaris_i2c;
   1364 }
   1365 
   1366 static const TypeInfo stellaris_i2c_info = {
   1367     .name          = TYPE_STELLARIS_I2C,
   1368     .parent        = TYPE_SYS_BUS_DEVICE,
   1369     .instance_size = sizeof(stellaris_i2c_state),
   1370     .instance_init = stellaris_i2c_init,
   1371     .class_init    = stellaris_i2c_class_init,
   1372 };
   1373 
   1374 static void stellaris_adc_class_init(ObjectClass *klass, void *data)
   1375 {
   1376     DeviceClass *dc = DEVICE_CLASS(klass);
   1377 
   1378     dc->vmsd = &vmstate_stellaris_adc;
   1379 }
   1380 
   1381 static const TypeInfo stellaris_adc_info = {
   1382     .name          = TYPE_STELLARIS_ADC,
   1383     .parent        = TYPE_SYS_BUS_DEVICE,
   1384     .instance_size = sizeof(stellaris_adc_state),
   1385     .instance_init = stellaris_adc_init,
   1386     .class_init    = stellaris_adc_class_init,
   1387 };
   1388 
   1389 static void stellaris_sys_class_init(ObjectClass *klass, void *data)
   1390 {
   1391     DeviceClass *dc = DEVICE_CLASS(klass);
   1392     ResettableClass *rc = RESETTABLE_CLASS(klass);
   1393 
   1394     dc->vmsd = &vmstate_stellaris_sys;
   1395     rc->phases.enter = stellaris_sys_reset_enter;
   1396     rc->phases.hold = stellaris_sys_reset_hold;
   1397     rc->phases.exit = stellaris_sys_reset_exit;
   1398     device_class_set_props(dc, stellaris_sys_properties);
   1399 }
   1400 
   1401 static const TypeInfo stellaris_sys_info = {
   1402     .name = TYPE_STELLARIS_SYS,
   1403     .parent = TYPE_SYS_BUS_DEVICE,
   1404     .instance_size = sizeof(ssys_state),
   1405     .instance_init = stellaris_sys_instance_init,
   1406     .class_init = stellaris_sys_class_init,
   1407 };
   1408 
   1409 static void stellaris_register_types(void)
   1410 {
   1411     type_register_static(&stellaris_i2c_info);
   1412     type_register_static(&stellaris_adc_info);
   1413     type_register_static(&stellaris_sys_info);
   1414 }
   1415 
   1416 type_init(stellaris_register_types)