qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

sbsa-ref.c (29983B)


      1 /*
      2  * ARM SBSA Reference Platform emulation
      3  *
      4  * Copyright (c) 2018 Linaro Limited
      5  * Written by Hongbo Zhang <hongbo.zhang@linaro.org>
      6  *
      7  * This program is free software; you can redistribute it and/or modify it
      8  * under the terms and conditions of the GNU General Public License,
      9  * version 2 or later, as published by the Free Software Foundation.
     10  *
     11  * This program is distributed in the hope it will be useful, but WITHOUT
     12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
     13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
     14  * more details.
     15  *
     16  * You should have received a copy of the GNU General Public License along with
     17  * this program.  If not, see <http://www.gnu.org/licenses/>.
     18  */
     19 
     20 #include "qemu/osdep.h"
     21 #include "qemu/datadir.h"
     22 #include "qapi/error.h"
     23 #include "qemu/error-report.h"
     24 #include "qemu/units.h"
     25 #include "sysemu/device_tree.h"
     26 #include "sysemu/numa.h"
     27 #include "sysemu/runstate.h"
     28 #include "sysemu/sysemu.h"
     29 #include "exec/hwaddr.h"
     30 #include "kvm_arm.h"
     31 #include "hw/arm/boot.h"
     32 #include "hw/block/flash.h"
     33 #include "hw/boards.h"
     34 #include "hw/ide/internal.h"
     35 #include "hw/ide/ahci_internal.h"
     36 #include "hw/intc/arm_gicv3_common.h"
     37 #include "hw/loader.h"
     38 #include "hw/pci-host/gpex.h"
     39 #include "hw/qdev-properties.h"
     40 #include "hw/usb.h"
     41 #include "hw/char/pl011.h"
     42 #include "hw/watchdog/sbsa_gwdt.h"
     43 #include "net/net.h"
     44 #include "qom/object.h"
     45 
     46 #define RAMLIMIT_GB 8192
     47 #define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB)
     48 
     49 #define NUM_IRQS        256
     50 #define NUM_SMMU_IRQS   4
     51 #define NUM_SATA_PORTS  6
     52 
     53 #define VIRTUAL_PMU_IRQ        7
     54 #define ARCH_GIC_MAINT_IRQ     9
     55 #define ARCH_TIMER_VIRT_IRQ    11
     56 #define ARCH_TIMER_S_EL1_IRQ   13
     57 #define ARCH_TIMER_NS_EL1_IRQ  14
     58 #define ARCH_TIMER_NS_EL2_IRQ  10
     59 
     60 enum {
     61     SBSA_FLASH,
     62     SBSA_MEM,
     63     SBSA_CPUPERIPHS,
     64     SBSA_GIC_DIST,
     65     SBSA_GIC_REDIST,
     66     SBSA_SECURE_EC,
     67     SBSA_GWDT_WS0,
     68     SBSA_GWDT_REFRESH,
     69     SBSA_GWDT_CONTROL,
     70     SBSA_SMMU,
     71     SBSA_UART,
     72     SBSA_RTC,
     73     SBSA_PCIE,
     74     SBSA_PCIE_MMIO,
     75     SBSA_PCIE_MMIO_HIGH,
     76     SBSA_PCIE_PIO,
     77     SBSA_PCIE_ECAM,
     78     SBSA_GPIO,
     79     SBSA_SECURE_UART,
     80     SBSA_SECURE_UART_MM,
     81     SBSA_SECURE_MEM,
     82     SBSA_AHCI,
     83     SBSA_EHCI,
     84 };
     85 
     86 struct SBSAMachineState {
     87     MachineState parent;
     88     struct arm_boot_info bootinfo;
     89     int smp_cpus;
     90     void *fdt;
     91     int fdt_size;
     92     int psci_conduit;
     93     DeviceState *gic;
     94     PFlashCFI01 *flash[2];
     95 };
     96 
     97 #define TYPE_SBSA_MACHINE   MACHINE_TYPE_NAME("sbsa-ref")
     98 OBJECT_DECLARE_SIMPLE_TYPE(SBSAMachineState, SBSA_MACHINE)
     99 
    100 static const MemMapEntry sbsa_ref_memmap[] = {
    101     /* 512M boot ROM */
    102     [SBSA_FLASH] =              {          0, 0x20000000 },
    103     /* 512M secure memory */
    104     [SBSA_SECURE_MEM] =         { 0x20000000, 0x20000000 },
    105     /* Space reserved for CPU peripheral devices */
    106     [SBSA_CPUPERIPHS] =         { 0x40000000, 0x00040000 },
    107     [SBSA_GIC_DIST] =           { 0x40060000, 0x00010000 },
    108     [SBSA_GIC_REDIST] =         { 0x40080000, 0x04000000 },
    109     [SBSA_SECURE_EC] =          { 0x50000000, 0x00001000 },
    110     [SBSA_GWDT_REFRESH] =       { 0x50010000, 0x00001000 },
    111     [SBSA_GWDT_CONTROL] =       { 0x50011000, 0x00001000 },
    112     [SBSA_UART] =               { 0x60000000, 0x00001000 },
    113     [SBSA_RTC] =                { 0x60010000, 0x00001000 },
    114     [SBSA_GPIO] =               { 0x60020000, 0x00001000 },
    115     [SBSA_SECURE_UART] =        { 0x60030000, 0x00001000 },
    116     [SBSA_SECURE_UART_MM] =     { 0x60040000, 0x00001000 },
    117     [SBSA_SMMU] =               { 0x60050000, 0x00020000 },
    118     /* Space here reserved for more SMMUs */
    119     [SBSA_AHCI] =               { 0x60100000, 0x00010000 },
    120     [SBSA_EHCI] =               { 0x60110000, 0x00010000 },
    121     /* Space here reserved for other devices */
    122     [SBSA_PCIE_PIO] =           { 0x7fff0000, 0x00010000 },
    123     /* 32-bit address PCIE MMIO space */
    124     [SBSA_PCIE_MMIO] =          { 0x80000000, 0x70000000 },
    125     /* 256M PCIE ECAM space */
    126     [SBSA_PCIE_ECAM] =          { 0xf0000000, 0x10000000 },
    127     /* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */
    128     [SBSA_PCIE_MMIO_HIGH] =     { 0x100000000ULL, 0xFF00000000ULL },
    129     [SBSA_MEM] =                { 0x10000000000ULL, RAMLIMIT_BYTES },
    130 };
    131 
    132 static const int sbsa_ref_irqmap[] = {
    133     [SBSA_UART] = 1,
    134     [SBSA_RTC] = 2,
    135     [SBSA_PCIE] = 3, /* ... to 6 */
    136     [SBSA_GPIO] = 7,
    137     [SBSA_SECURE_UART] = 8,
    138     [SBSA_SECURE_UART_MM] = 9,
    139     [SBSA_AHCI] = 10,
    140     [SBSA_EHCI] = 11,
    141     [SBSA_SMMU] = 12, /* ... to 15 */
    142     [SBSA_GWDT_WS0] = 16,
    143 };
    144 
    145 static const char * const valid_cpus[] = {
    146     ARM_CPU_TYPE_NAME("cortex-a57"),
    147     ARM_CPU_TYPE_NAME("cortex-a72"),
    148     ARM_CPU_TYPE_NAME("cortex-a76"),
    149     ARM_CPU_TYPE_NAME("neoverse-n1"),
    150     ARM_CPU_TYPE_NAME("max"),
    151 };
    152 
    153 static bool cpu_type_valid(const char *cpu)
    154 {
    155     int i;
    156 
    157     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
    158         if (strcmp(cpu, valid_cpus[i]) == 0) {
    159             return true;
    160         }
    161     }
    162     return false;
    163 }
    164 
    165 static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx)
    166 {
    167     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
    168     return arm_cpu_mp_affinity(idx, clustersz);
    169 }
    170 
    171 /*
    172  * Firmware on this machine only uses ACPI table to load OS, these limited
    173  * device tree nodes are just to let firmware know the info which varies from
    174  * command line parameters, so it is not necessary to be fully compatible
    175  * with the kernel CPU and NUMA binding rules.
    176  */
    177 static void create_fdt(SBSAMachineState *sms)
    178 {
    179     void *fdt = create_device_tree(&sms->fdt_size);
    180     const MachineState *ms = MACHINE(sms);
    181     int nb_numa_nodes = ms->numa_state->num_nodes;
    182     int cpu;
    183 
    184     if (!fdt) {
    185         error_report("create_device_tree() failed");
    186         exit(1);
    187     }
    188 
    189     sms->fdt = fdt;
    190 
    191     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref");
    192     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
    193     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
    194 
    195     /*
    196      * This versioning scheme is for informing platform fw only. It is neither:
    197      * - A QEMU versioned machine type; a given version of QEMU will emulate
    198      *   a given version of the platform.
    199      * - A reflection of level of SBSA (now SystemReady SR) support provided.
    200      *
    201      * machine-version-major: updated when changes breaking fw compatibility
    202      *                        are introduced.
    203      * machine-version-minor: updated when features are added that don't break
    204      *                        fw compatibility.
    205      */
    206     qemu_fdt_setprop_cell(fdt, "/", "machine-version-major", 0);
    207     qemu_fdt_setprop_cell(fdt, "/", "machine-version-minor", 0);
    208 
    209     if (ms->numa_state->have_numa_distance) {
    210         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
    211         uint32_t *matrix = g_malloc0(size);
    212         int idx, i, j;
    213 
    214         for (i = 0; i < nb_numa_nodes; i++) {
    215             for (j = 0; j < nb_numa_nodes; j++) {
    216                 idx = (i * nb_numa_nodes + j) * 3;
    217                 matrix[idx + 0] = cpu_to_be32(i);
    218                 matrix[idx + 1] = cpu_to_be32(j);
    219                 matrix[idx + 2] =
    220                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
    221             }
    222         }
    223 
    224         qemu_fdt_add_subnode(fdt, "/distance-map");
    225         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
    226                          matrix, size);
    227         g_free(matrix);
    228     }
    229 
    230     /*
    231      * From Documentation/devicetree/bindings/arm/cpus.yaml
    232      *  On ARM v8 64-bit systems this property is required
    233      *    and matches the MPIDR_EL1 register affinity bits.
    234      *
    235      *    * If cpus node's #address-cells property is set to 2
    236      *
    237      *      The first reg cell bits [7:0] must be set to
    238      *      bits [39:32] of MPIDR_EL1.
    239      *
    240      *      The second reg cell bits [23:0] must be set to
    241      *      bits [23:0] of MPIDR_EL1.
    242      */
    243     qemu_fdt_add_subnode(sms->fdt, "/cpus");
    244     qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#address-cells", 2);
    245     qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#size-cells", 0x0);
    246 
    247     for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) {
    248         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
    249         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
    250         CPUState *cs = CPU(armcpu);
    251         uint64_t mpidr = sbsa_ref_cpu_mp_affinity(sms, cpu);
    252 
    253         qemu_fdt_add_subnode(sms->fdt, nodename);
    254         qemu_fdt_setprop_u64(sms->fdt, nodename, "reg", mpidr);
    255 
    256         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
    257             qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id",
    258                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
    259         }
    260 
    261         g_free(nodename);
    262     }
    263 }
    264 
    265 #define SBSA_FLASH_SECTOR_SIZE (256 * KiB)
    266 
    267 static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms,
    268                                         const char *name,
    269                                         const char *alias_prop_name)
    270 {
    271     /*
    272      * Create a single flash device.  We use the same parameters as
    273      * the flash devices on the Versatile Express board.
    274      */
    275     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
    276 
    277     qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE);
    278     qdev_prop_set_uint8(dev, "width", 4);
    279     qdev_prop_set_uint8(dev, "device-width", 2);
    280     qdev_prop_set_bit(dev, "big-endian", false);
    281     qdev_prop_set_uint16(dev, "id0", 0x89);
    282     qdev_prop_set_uint16(dev, "id1", 0x18);
    283     qdev_prop_set_uint16(dev, "id2", 0x00);
    284     qdev_prop_set_uint16(dev, "id3", 0x00);
    285     qdev_prop_set_string(dev, "name", name);
    286     object_property_add_child(OBJECT(sms), name, OBJECT(dev));
    287     object_property_add_alias(OBJECT(sms), alias_prop_name,
    288                               OBJECT(dev), "drive");
    289     return PFLASH_CFI01(dev);
    290 }
    291 
    292 static void sbsa_flash_create(SBSAMachineState *sms)
    293 {
    294     sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0");
    295     sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1");
    296 }
    297 
    298 static void sbsa_flash_map1(PFlashCFI01 *flash,
    299                             hwaddr base, hwaddr size,
    300                             MemoryRegion *sysmem)
    301 {
    302     DeviceState *dev = DEVICE(flash);
    303 
    304     assert(QEMU_IS_ALIGNED(size, SBSA_FLASH_SECTOR_SIZE));
    305     assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX);
    306     qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE);
    307     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
    308 
    309     memory_region_add_subregion(sysmem, base,
    310                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
    311                                                        0));
    312 }
    313 
    314 static void sbsa_flash_map(SBSAMachineState *sms,
    315                            MemoryRegion *sysmem,
    316                            MemoryRegion *secure_sysmem)
    317 {
    318     /*
    319      * Map two flash devices to fill the SBSA_FLASH space in the memmap.
    320      * sysmem is the system memory space. secure_sysmem is the secure view
    321      * of the system, and the first flash device should be made visible only
    322      * there. The second flash device is visible to both secure and nonsecure.
    323      */
    324     hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2;
    325     hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base;
    326 
    327     sbsa_flash_map1(sms->flash[0], flashbase, flashsize,
    328                     secure_sysmem);
    329     sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize,
    330                     sysmem);
    331 }
    332 
    333 static bool sbsa_firmware_init(SBSAMachineState *sms,
    334                                MemoryRegion *sysmem,
    335                                MemoryRegion *secure_sysmem)
    336 {
    337     const char *bios_name;
    338     int i;
    339     BlockBackend *pflash_blk0;
    340 
    341     /* Map legacy -drive if=pflash to machine properties */
    342     for (i = 0; i < ARRAY_SIZE(sms->flash); i++) {
    343         pflash_cfi01_legacy_drive(sms->flash[i],
    344                                   drive_get(IF_PFLASH, 0, i));
    345     }
    346 
    347     sbsa_flash_map(sms, sysmem, secure_sysmem);
    348 
    349     pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]);
    350 
    351     bios_name = MACHINE(sms)->firmware;
    352     if (bios_name) {
    353         char *fname;
    354         MemoryRegion *mr;
    355         int image_size;
    356 
    357         if (pflash_blk0) {
    358             error_report("The contents of the first flash device may be "
    359                          "specified with -bios or with -drive if=pflash... "
    360                          "but you cannot use both options at once");
    361             exit(1);
    362         }
    363 
    364         /* Fall back to -bios */
    365 
    366         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
    367         if (!fname) {
    368             error_report("Could not find ROM image '%s'", bios_name);
    369             exit(1);
    370         }
    371         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0);
    372         image_size = load_image_mr(fname, mr);
    373         g_free(fname);
    374         if (image_size < 0) {
    375             error_report("Could not load ROM image '%s'", bios_name);
    376             exit(1);
    377         }
    378     }
    379 
    380     return pflash_blk0 || bios_name;
    381 }
    382 
    383 static void create_secure_ram(SBSAMachineState *sms,
    384                               MemoryRegion *secure_sysmem)
    385 {
    386     MemoryRegion *secram = g_new(MemoryRegion, 1);
    387     hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base;
    388     hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size;
    389 
    390     memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size,
    391                            &error_fatal);
    392     memory_region_add_subregion(secure_sysmem, base, secram);
    393 }
    394 
    395 static void create_gic(SBSAMachineState *sms)
    396 {
    397     unsigned int smp_cpus = MACHINE(sms)->smp.cpus;
    398     SysBusDevice *gicbusdev;
    399     const char *gictype;
    400     uint32_t redist0_capacity, redist0_count;
    401     int i;
    402 
    403     gictype = gicv3_class_name();
    404 
    405     sms->gic = qdev_new(gictype);
    406     qdev_prop_set_uint32(sms->gic, "revision", 3);
    407     qdev_prop_set_uint32(sms->gic, "num-cpu", smp_cpus);
    408     /*
    409      * Note that the num-irq property counts both internal and external
    410      * interrupts; there are always 32 of the former (mandated by GIC spec).
    411      */
    412     qdev_prop_set_uint32(sms->gic, "num-irq", NUM_IRQS + 32);
    413     qdev_prop_set_bit(sms->gic, "has-security-extensions", true);
    414 
    415     redist0_capacity =
    416                 sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
    417     redist0_count = MIN(smp_cpus, redist0_capacity);
    418 
    419     qdev_prop_set_uint32(sms->gic, "len-redist-region-count", 1);
    420     qdev_prop_set_uint32(sms->gic, "redist-region-count[0]", redist0_count);
    421 
    422     gicbusdev = SYS_BUS_DEVICE(sms->gic);
    423     sysbus_realize_and_unref(gicbusdev, &error_fatal);
    424     sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base);
    425     sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base);
    426 
    427     /*
    428      * Wire the outputs from each CPU's generic timer and the GICv3
    429      * maintenance interrupt signal to the appropriate GIC PPI inputs,
    430      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
    431      */
    432     for (i = 0; i < smp_cpus; i++) {
    433         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
    434         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
    435         int irq;
    436         /*
    437          * Mapping from the output timer irq lines from the CPU to the
    438          * GIC PPI inputs used for this board.
    439          */
    440         const int timer_irq[] = {
    441             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
    442             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
    443             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
    444             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
    445         };
    446 
    447         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
    448             qdev_connect_gpio_out(cpudev, irq,
    449                                   qdev_get_gpio_in(sms->gic,
    450                                                    ppibase + timer_irq[irq]));
    451         }
    452 
    453         qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
    454                                     qdev_get_gpio_in(sms->gic, ppibase
    455                                                      + ARCH_GIC_MAINT_IRQ));
    456         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
    457                                     qdev_get_gpio_in(sms->gic, ppibase
    458                                                      + VIRTUAL_PMU_IRQ));
    459 
    460         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
    461         sysbus_connect_irq(gicbusdev, i + smp_cpus,
    462                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
    463         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
    464                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
    465         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
    466                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
    467     }
    468 }
    469 
    470 static void create_uart(const SBSAMachineState *sms, int uart,
    471                         MemoryRegion *mem, Chardev *chr)
    472 {
    473     hwaddr base = sbsa_ref_memmap[uart].base;
    474     int irq = sbsa_ref_irqmap[uart];
    475     DeviceState *dev = qdev_new(TYPE_PL011);
    476     SysBusDevice *s = SYS_BUS_DEVICE(dev);
    477 
    478     qdev_prop_set_chr(dev, "chardev", chr);
    479     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
    480     memory_region_add_subregion(mem, base,
    481                                 sysbus_mmio_get_region(s, 0));
    482     sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
    483 }
    484 
    485 static void create_rtc(const SBSAMachineState *sms)
    486 {
    487     hwaddr base = sbsa_ref_memmap[SBSA_RTC].base;
    488     int irq = sbsa_ref_irqmap[SBSA_RTC];
    489 
    490     sysbus_create_simple("pl031", base, qdev_get_gpio_in(sms->gic, irq));
    491 }
    492 
    493 static void create_wdt(const SBSAMachineState *sms)
    494 {
    495     hwaddr rbase = sbsa_ref_memmap[SBSA_GWDT_REFRESH].base;
    496     hwaddr cbase = sbsa_ref_memmap[SBSA_GWDT_CONTROL].base;
    497     DeviceState *dev = qdev_new(TYPE_WDT_SBSA);
    498     SysBusDevice *s = SYS_BUS_DEVICE(dev);
    499     int irq = sbsa_ref_irqmap[SBSA_GWDT_WS0];
    500 
    501     sysbus_realize_and_unref(s, &error_fatal);
    502     sysbus_mmio_map(s, 0, rbase);
    503     sysbus_mmio_map(s, 1, cbase);
    504     sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
    505 }
    506 
    507 static DeviceState *gpio_key_dev;
    508 static void sbsa_ref_powerdown_req(Notifier *n, void *opaque)
    509 {
    510     /* use gpio Pin 3 for power button event */
    511     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
    512 }
    513 
    514 static Notifier sbsa_ref_powerdown_notifier = {
    515     .notify = sbsa_ref_powerdown_req
    516 };
    517 
    518 static void create_gpio(const SBSAMachineState *sms)
    519 {
    520     DeviceState *pl061_dev;
    521     hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base;
    522     int irq = sbsa_ref_irqmap[SBSA_GPIO];
    523 
    524     pl061_dev = sysbus_create_simple("pl061", base,
    525                                      qdev_get_gpio_in(sms->gic, irq));
    526 
    527     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
    528                                         qdev_get_gpio_in(pl061_dev, 3));
    529 
    530     /* connect powerdown request */
    531     qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier);
    532 }
    533 
    534 static void create_ahci(const SBSAMachineState *sms)
    535 {
    536     hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base;
    537     int irq = sbsa_ref_irqmap[SBSA_AHCI];
    538     DeviceState *dev;
    539     DriveInfo *hd[NUM_SATA_PORTS];
    540     SysbusAHCIState *sysahci;
    541     AHCIState *ahci;
    542     int i;
    543 
    544     dev = qdev_new("sysbus-ahci");
    545     qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS);
    546     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
    547     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
    548     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq));
    549 
    550     sysahci = SYSBUS_AHCI(dev);
    551     ahci = &sysahci->ahci;
    552     ide_drive_get(hd, ARRAY_SIZE(hd));
    553     for (i = 0; i < ahci->ports; i++) {
    554         if (hd[i] == NULL) {
    555             continue;
    556         }
    557         ide_create_drive(&ahci->dev[i].port, 0, hd[i]);
    558     }
    559 }
    560 
    561 static void create_ehci(const SBSAMachineState *sms)
    562 {
    563     hwaddr base = sbsa_ref_memmap[SBSA_EHCI].base;
    564     int irq = sbsa_ref_irqmap[SBSA_EHCI];
    565 
    566     sysbus_create_simple("platform-ehci-usb", base,
    567                          qdev_get_gpio_in(sms->gic, irq));
    568 }
    569 
    570 static void create_smmu(const SBSAMachineState *sms, PCIBus *bus)
    571 {
    572     hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base;
    573     int irq =  sbsa_ref_irqmap[SBSA_SMMU];
    574     DeviceState *dev;
    575     int i;
    576 
    577     dev = qdev_new("arm-smmuv3");
    578 
    579     object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
    580                              &error_abort);
    581     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
    582     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
    583     for (i = 0; i < NUM_SMMU_IRQS; i++) {
    584         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
    585                            qdev_get_gpio_in(sms->gic, irq + i));
    586     }
    587 }
    588 
    589 static void create_pcie(SBSAMachineState *sms)
    590 {
    591     hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base;
    592     hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size;
    593     hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base;
    594     hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size;
    595     hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base;
    596     hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size;
    597     hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base;
    598     int irq = sbsa_ref_irqmap[SBSA_PCIE];
    599     MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg;
    600     MemoryRegion *ecam_alias, *ecam_reg;
    601     DeviceState *dev;
    602     PCIHostState *pci;
    603     int i;
    604 
    605     dev = qdev_new(TYPE_GPEX_HOST);
    606     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
    607 
    608     /* Map ECAM space */
    609     ecam_alias = g_new0(MemoryRegion, 1);
    610     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
    611     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
    612                              ecam_reg, 0, size_ecam);
    613     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
    614 
    615     /* Map the MMIO space */
    616     mmio_alias = g_new0(MemoryRegion, 1);
    617     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
    618     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
    619                              mmio_reg, base_mmio, size_mmio);
    620     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
    621 
    622     /* Map the MMIO_HIGH space */
    623     mmio_alias_high = g_new0(MemoryRegion, 1);
    624     memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high",
    625                              mmio_reg, base_mmio_high, size_mmio_high);
    626     memory_region_add_subregion(get_system_memory(), base_mmio_high,
    627                                 mmio_alias_high);
    628 
    629     /* Map IO port space */
    630     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
    631 
    632     for (i = 0; i < GPEX_NUM_IRQS; i++) {
    633         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
    634                            qdev_get_gpio_in(sms->gic, irq + i));
    635         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
    636     }
    637 
    638     pci = PCI_HOST_BRIDGE(dev);
    639     if (pci->bus) {
    640         for (i = 0; i < nb_nics; i++) {
    641             NICInfo *nd = &nd_table[i];
    642 
    643             if (!nd->model) {
    644                 nd->model = g_strdup("e1000e");
    645             }
    646 
    647             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
    648         }
    649     }
    650 
    651     pci_create_simple(pci->bus, -1, "VGA");
    652 
    653     create_smmu(sms, pci->bus);
    654 }
    655 
    656 static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size)
    657 {
    658     const SBSAMachineState *board = container_of(binfo, SBSAMachineState,
    659                                                  bootinfo);
    660 
    661     *fdt_size = board->fdt_size;
    662     return board->fdt;
    663 }
    664 
    665 static void create_secure_ec(MemoryRegion *mem)
    666 {
    667     hwaddr base = sbsa_ref_memmap[SBSA_SECURE_EC].base;
    668     DeviceState *dev = qdev_new("sbsa-ec");
    669     SysBusDevice *s = SYS_BUS_DEVICE(dev);
    670 
    671     memory_region_add_subregion(mem, base,
    672                                 sysbus_mmio_get_region(s, 0));
    673 }
    674 
    675 static void sbsa_ref_init(MachineState *machine)
    676 {
    677     unsigned int smp_cpus = machine->smp.cpus;
    678     unsigned int max_cpus = machine->smp.max_cpus;
    679     SBSAMachineState *sms = SBSA_MACHINE(machine);
    680     MachineClass *mc = MACHINE_GET_CLASS(machine);
    681     MemoryRegion *sysmem = get_system_memory();
    682     MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1);
    683     bool firmware_loaded;
    684     const CPUArchIdList *possible_cpus;
    685     int n, sbsa_max_cpus;
    686 
    687     if (!cpu_type_valid(machine->cpu_type)) {
    688         error_report("sbsa-ref: CPU type %s not supported", machine->cpu_type);
    689         exit(1);
    690     }
    691 
    692     if (kvm_enabled()) {
    693         error_report("sbsa-ref: KVM is not supported for this machine");
    694         exit(1);
    695     }
    696 
    697     /*
    698      * The Secure view of the world is the same as the NonSecure,
    699      * but with a few extra devices. Create it as a container region
    700      * containing the system memory at low priority; any secure-only
    701      * devices go in at higher priority and take precedence.
    702      */
    703     memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
    704                        UINT64_MAX);
    705     memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
    706 
    707     firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem);
    708 
    709     /*
    710      * This machine has EL3 enabled, external firmware should supply PSCI
    711      * implementation, so the QEMU's internal PSCI is disabled.
    712      */
    713     sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
    714 
    715     sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
    716 
    717     if (max_cpus > sbsa_max_cpus) {
    718         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
    719                      "supported by machine 'sbsa-ref' (%d)",
    720                      max_cpus, sbsa_max_cpus);
    721         exit(1);
    722     }
    723 
    724     sms->smp_cpus = smp_cpus;
    725 
    726     if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) {
    727         error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB);
    728         exit(1);
    729     }
    730 
    731     possible_cpus = mc->possible_cpu_arch_ids(machine);
    732     for (n = 0; n < possible_cpus->len; n++) {
    733         Object *cpuobj;
    734         CPUState *cs;
    735 
    736         if (n >= smp_cpus) {
    737             break;
    738         }
    739 
    740         cpuobj = object_new(possible_cpus->cpus[n].type);
    741         object_property_set_int(cpuobj, "mp-affinity",
    742                                 possible_cpus->cpus[n].arch_id, NULL);
    743 
    744         cs = CPU(cpuobj);
    745         cs->cpu_index = n;
    746 
    747         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
    748                           &error_fatal);
    749 
    750         if (object_property_find(cpuobj, "reset-cbar")) {
    751             object_property_set_int(cpuobj, "reset-cbar",
    752                                     sbsa_ref_memmap[SBSA_CPUPERIPHS].base,
    753                                     &error_abort);
    754         }
    755 
    756         object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
    757                                  &error_abort);
    758 
    759         object_property_set_link(cpuobj, "secure-memory",
    760                                  OBJECT(secure_sysmem), &error_abort);
    761 
    762         qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
    763         object_unref(cpuobj);
    764     }
    765 
    766     memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base,
    767                                 machine->ram);
    768 
    769     create_fdt(sms);
    770 
    771     create_secure_ram(sms, secure_sysmem);
    772 
    773     create_gic(sms);
    774 
    775     create_uart(sms, SBSA_UART, sysmem, serial_hd(0));
    776     create_uart(sms, SBSA_SECURE_UART, secure_sysmem, serial_hd(1));
    777     /* Second secure UART for RAS and MM from EL0 */
    778     create_uart(sms, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2));
    779 
    780     create_rtc(sms);
    781 
    782     create_wdt(sms);
    783 
    784     create_gpio(sms);
    785 
    786     create_ahci(sms);
    787 
    788     create_ehci(sms);
    789 
    790     create_pcie(sms);
    791 
    792     create_secure_ec(secure_sysmem);
    793 
    794     sms->bootinfo.ram_size = machine->ram_size;
    795     sms->bootinfo.board_id = -1;
    796     sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base;
    797     sms->bootinfo.get_dtb = sbsa_ref_dtb;
    798     sms->bootinfo.firmware_loaded = firmware_loaded;
    799     arm_load_kernel(ARM_CPU(first_cpu), machine, &sms->bootinfo);
    800 }
    801 
    802 static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms)
    803 {
    804     unsigned int max_cpus = ms->smp.max_cpus;
    805     SBSAMachineState *sms = SBSA_MACHINE(ms);
    806     int n;
    807 
    808     if (ms->possible_cpus) {
    809         assert(ms->possible_cpus->len == max_cpus);
    810         return ms->possible_cpus;
    811     }
    812 
    813     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
    814                                   sizeof(CPUArchId) * max_cpus);
    815     ms->possible_cpus->len = max_cpus;
    816     for (n = 0; n < ms->possible_cpus->len; n++) {
    817         ms->possible_cpus->cpus[n].type = ms->cpu_type;
    818         ms->possible_cpus->cpus[n].arch_id =
    819             sbsa_ref_cpu_mp_affinity(sms, n);
    820         ms->possible_cpus->cpus[n].props.has_thread_id = true;
    821         ms->possible_cpus->cpus[n].props.thread_id = n;
    822     }
    823     return ms->possible_cpus;
    824 }
    825 
    826 static CpuInstanceProperties
    827 sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
    828 {
    829     MachineClass *mc = MACHINE_GET_CLASS(ms);
    830     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
    831 
    832     assert(cpu_index < possible_cpus->len);
    833     return possible_cpus->cpus[cpu_index].props;
    834 }
    835 
    836 static int64_t
    837 sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx)
    838 {
    839     return idx % ms->numa_state->num_nodes;
    840 }
    841 
    842 static void sbsa_ref_instance_init(Object *obj)
    843 {
    844     SBSAMachineState *sms = SBSA_MACHINE(obj);
    845 
    846     sbsa_flash_create(sms);
    847 }
    848 
    849 static void sbsa_ref_class_init(ObjectClass *oc, void *data)
    850 {
    851     MachineClass *mc = MACHINE_CLASS(oc);
    852 
    853     mc->init = sbsa_ref_init;
    854     mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine";
    855     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a57");
    856     mc->max_cpus = 512;
    857     mc->pci_allow_0_address = true;
    858     mc->minimum_page_bits = 12;
    859     mc->block_default_type = IF_IDE;
    860     mc->no_cdrom = 1;
    861     mc->default_ram_size = 1 * GiB;
    862     mc->default_ram_id = "sbsa-ref.ram";
    863     mc->default_cpus = 4;
    864     mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids;
    865     mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props;
    866     mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id;
    867 }
    868 
    869 static const TypeInfo sbsa_ref_info = {
    870     .name          = TYPE_SBSA_MACHINE,
    871     .parent        = TYPE_MACHINE,
    872     .instance_init = sbsa_ref_instance_init,
    873     .class_init    = sbsa_ref_class_init,
    874     .instance_size = sizeof(SBSAMachineState),
    875 };
    876 
    877 static void sbsa_ref_machine_init(void)
    878 {
    879     type_register_static(&sbsa_ref_info);
    880 }
    881 
    882 type_init(sbsa_ref_machine_init);