qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

raspi.c (14120B)


      1 /*
      2  * Raspberry Pi emulation (c) 2012 Gregory Estrade
      3  * Upstreaming code cleanup [including bcm2835_*] (c) 2013 Jan Petrous
      4  *
      5  * Rasperry Pi 2 emulation Copyright (c) 2015, Microsoft
      6  * Written by Andrew Baumann
      7  *
      8  * Raspberry Pi 3 emulation Copyright (c) 2018 Zoltán Baldaszti
      9  * Upstream code cleanup (c) 2018 Pekka Enberg
     10  *
     11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
     12  * See the COPYING file in the top-level directory.
     13  */
     14 
     15 #include "qemu/osdep.h"
     16 #include "qemu/units.h"
     17 #include "qemu/cutils.h"
     18 #include "qapi/error.h"
     19 #include "hw/arm/bcm2836.h"
     20 #include "hw/registerfields.h"
     21 #include "qemu/error-report.h"
     22 #include "hw/boards.h"
     23 #include "hw/loader.h"
     24 #include "hw/arm/boot.h"
     25 #include "qom/object.h"
     26 
     27 #define SMPBOOT_ADDR    0x300 /* this should leave enough space for ATAGS */
     28 #define MVBAR_ADDR      0x400 /* secure vectors */
     29 #define BOARDSETUP_ADDR (MVBAR_ADDR + 0x20) /* board setup code */
     30 #define FIRMWARE_ADDR_2 0x8000 /* Pi 2 loads kernel.img here by default */
     31 #define FIRMWARE_ADDR_3 0x80000 /* Pi 3 loads kernel.img here by default */
     32 #define SPINTABLE_ADDR  0xd8 /* Pi 3 bootloader spintable */
     33 
     34 /* Registered machine type (matches RPi Foundation bootloader and U-Boot) */
     35 #define MACH_TYPE_BCM2708   3138
     36 
     37 struct RaspiMachineState {
     38     /*< private >*/
     39     MachineState parent_obj;
     40     /*< public >*/
     41     BCM283XState soc;
     42     struct arm_boot_info binfo;
     43 };
     44 typedef struct RaspiMachineState RaspiMachineState;
     45 
     46 struct RaspiMachineClass {
     47     /*< private >*/
     48     MachineClass parent_obj;
     49     /*< public >*/
     50     uint32_t board_rev;
     51 };
     52 typedef struct RaspiMachineClass RaspiMachineClass;
     53 
     54 #define TYPE_RASPI_MACHINE       MACHINE_TYPE_NAME("raspi-common")
     55 DECLARE_OBJ_CHECKERS(RaspiMachineState, RaspiMachineClass,
     56                      RASPI_MACHINE, TYPE_RASPI_MACHINE)
     57 
     58 
     59 /*
     60  * Board revision codes:
     61  * www.raspberrypi.org/documentation/hardware/raspberrypi/revision-codes/
     62  */
     63 FIELD(REV_CODE, REVISION,           0, 4);
     64 FIELD(REV_CODE, TYPE,               4, 8);
     65 FIELD(REV_CODE, PROCESSOR,         12, 4);
     66 FIELD(REV_CODE, MANUFACTURER,      16, 4);
     67 FIELD(REV_CODE, MEMORY_SIZE,       20, 3);
     68 FIELD(REV_CODE, STYLE,             23, 1);
     69 
     70 typedef enum RaspiProcessorId {
     71     PROCESSOR_ID_BCM2835 = 0,
     72     PROCESSOR_ID_BCM2836 = 1,
     73     PROCESSOR_ID_BCM2837 = 2,
     74 } RaspiProcessorId;
     75 
     76 static const struct {
     77     const char *type;
     78     int cores_count;
     79 } soc_property[] = {
     80     [PROCESSOR_ID_BCM2835] = {TYPE_BCM2835, 1},
     81     [PROCESSOR_ID_BCM2836] = {TYPE_BCM2836, BCM283X_NCPUS},
     82     [PROCESSOR_ID_BCM2837] = {TYPE_BCM2837, BCM283X_NCPUS},
     83 };
     84 
     85 static uint64_t board_ram_size(uint32_t board_rev)
     86 {
     87     assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */
     88     return 256 * MiB << FIELD_EX32(board_rev, REV_CODE, MEMORY_SIZE);
     89 }
     90 
     91 static RaspiProcessorId board_processor_id(uint32_t board_rev)
     92 {
     93     int proc_id = FIELD_EX32(board_rev, REV_CODE, PROCESSOR);
     94 
     95     assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */
     96     assert(proc_id < ARRAY_SIZE(soc_property) && soc_property[proc_id].type);
     97 
     98     return proc_id;
     99 }
    100 
    101 static const char *board_soc_type(uint32_t board_rev)
    102 {
    103     return soc_property[board_processor_id(board_rev)].type;
    104 }
    105 
    106 static int cores_count(uint32_t board_rev)
    107 {
    108     return soc_property[board_processor_id(board_rev)].cores_count;
    109 }
    110 
    111 static const char *board_type(uint32_t board_rev)
    112 {
    113     static const char *types[] = {
    114         "A", "B", "A+", "B+", "2B", "Alpha", "CM1", NULL, "3B", "Zero",
    115         "CM3", NULL, "Zero W", "3B+", "3A+", NULL, "CM3+", "4B",
    116     };
    117     assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */
    118     int bt = FIELD_EX32(board_rev, REV_CODE, TYPE);
    119     if (bt >= ARRAY_SIZE(types) || !types[bt]) {
    120         return "Unknown";
    121     }
    122     return types[bt];
    123 }
    124 
    125 static void write_smpboot(ARMCPU *cpu, const struct arm_boot_info *info)
    126 {
    127     static const uint32_t smpboot[] = {
    128         0xe1a0e00f, /*    mov     lr, pc */
    129         0xe3a0fe00 + (BOARDSETUP_ADDR >> 4), /* mov pc, BOARDSETUP_ADDR */
    130         0xee100fb0, /*    mrc     p15, 0, r0, c0, c0, 5;get core ID */
    131         0xe7e10050, /*    ubfx    r0, r0, #0, #2       ;extract LSB */
    132         0xe59f5014, /*    ldr     r5, =0x400000CC      ;load mbox base */
    133         0xe320f001, /* 1: yield */
    134         0xe7953200, /*    ldr     r3, [r5, r0, lsl #4] ;read mbox for our core*/
    135         0xe3530000, /*    cmp     r3, #0               ;spin while zero */
    136         0x0afffffb, /*    beq     1b */
    137         0xe7853200, /*    str     r3, [r5, r0, lsl #4] ;clear mbox */
    138         0xe12fff13, /*    bx      r3                   ;jump to target */
    139         0x400000cc, /* (constant: mailbox 3 read/clear base) */
    140     };
    141 
    142     /* check that we don't overrun board setup vectors */
    143     QEMU_BUILD_BUG_ON(SMPBOOT_ADDR + sizeof(smpboot) > MVBAR_ADDR);
    144     /* check that board setup address is correctly relocated */
    145     QEMU_BUILD_BUG_ON((BOARDSETUP_ADDR & 0xf) != 0
    146                       || (BOARDSETUP_ADDR >> 4) >= 0x100);
    147 
    148     rom_add_blob_fixed_as("raspi_smpboot", smpboot, sizeof(smpboot),
    149                           info->smp_loader_start,
    150                           arm_boot_address_space(cpu, info));
    151 }
    152 
    153 static void write_smpboot64(ARMCPU *cpu, const struct arm_boot_info *info)
    154 {
    155     AddressSpace *as = arm_boot_address_space(cpu, info);
    156     /* Unlike the AArch32 version we don't need to call the board setup hook.
    157      * The mechanism for doing the spin-table is also entirely different.
    158      * We must have four 64-bit fields at absolute addresses
    159      * 0xd8, 0xe0, 0xe8, 0xf0 in RAM, which are the flag variables for
    160      * our CPUs, and which we must ensure are zero initialized before
    161      * the primary CPU goes into the kernel. We put these variables inside
    162      * a rom blob, so that the reset for ROM contents zeroes them for us.
    163      */
    164     static const uint32_t smpboot[] = {
    165         0xd2801b05, /*        mov     x5, 0xd8 */
    166         0xd53800a6, /*        mrs     x6, mpidr_el1 */
    167         0x924004c6, /*        and     x6, x6, #0x3 */
    168         0xd503205f, /* spin:  wfe */
    169         0xf86678a4, /*        ldr     x4, [x5,x6,lsl #3] */
    170         0xb4ffffc4, /*        cbz     x4, spin */
    171         0xd2800000, /*        mov     x0, #0x0 */
    172         0xd2800001, /*        mov     x1, #0x0 */
    173         0xd2800002, /*        mov     x2, #0x0 */
    174         0xd2800003, /*        mov     x3, #0x0 */
    175         0xd61f0080, /*        br      x4 */
    176     };
    177 
    178     static const uint64_t spintables[] = {
    179         0, 0, 0, 0
    180     };
    181 
    182     rom_add_blob_fixed_as("raspi_smpboot", smpboot, sizeof(smpboot),
    183                           info->smp_loader_start, as);
    184     rom_add_blob_fixed_as("raspi_spintables", spintables, sizeof(spintables),
    185                           SPINTABLE_ADDR, as);
    186 }
    187 
    188 static void write_board_setup(ARMCPU *cpu, const struct arm_boot_info *info)
    189 {
    190     arm_write_secure_board_setup_dummy_smc(cpu, info, MVBAR_ADDR);
    191 }
    192 
    193 static void reset_secondary(ARMCPU *cpu, const struct arm_boot_info *info)
    194 {
    195     CPUState *cs = CPU(cpu);
    196     cpu_set_pc(cs, info->smp_loader_start);
    197 }
    198 
    199 static void setup_boot(MachineState *machine, RaspiProcessorId processor_id,
    200                        size_t ram_size)
    201 {
    202     RaspiMachineState *s = RASPI_MACHINE(machine);
    203     int r;
    204 
    205     s->binfo.board_id = MACH_TYPE_BCM2708;
    206     s->binfo.ram_size = ram_size;
    207 
    208     if (processor_id <= PROCESSOR_ID_BCM2836) {
    209         /*
    210          * The BCM2835 and BCM2836 require some custom setup code to run
    211          * in Secure mode before booting a kernel (to set up the SMC vectors
    212          * so that we get a no-op SMC; this is used by Linux to call the
    213          * firmware for some cache maintenance operations.
    214          * The BCM2837 doesn't need this.
    215          */
    216         s->binfo.board_setup_addr = BOARDSETUP_ADDR;
    217         s->binfo.write_board_setup = write_board_setup;
    218         s->binfo.secure_board_setup = true;
    219         s->binfo.secure_boot = true;
    220     }
    221 
    222     /* BCM2836 and BCM2837 requires SMP setup */
    223     if (processor_id >= PROCESSOR_ID_BCM2836) {
    224         s->binfo.smp_loader_start = SMPBOOT_ADDR;
    225         if (processor_id == PROCESSOR_ID_BCM2836) {
    226             s->binfo.write_secondary_boot = write_smpboot;
    227         } else {
    228             s->binfo.write_secondary_boot = write_smpboot64;
    229         }
    230         s->binfo.secondary_cpu_reset_hook = reset_secondary;
    231     }
    232 
    233     /* If the user specified a "firmware" image (e.g. UEFI), we bypass
    234      * the normal Linux boot process
    235      */
    236     if (machine->firmware) {
    237         hwaddr firmware_addr = processor_id <= PROCESSOR_ID_BCM2836
    238                              ? FIRMWARE_ADDR_2 : FIRMWARE_ADDR_3;
    239         /* load the firmware image (typically kernel.img) */
    240         r = load_image_targphys(machine->firmware, firmware_addr,
    241                                 ram_size - firmware_addr);
    242         if (r < 0) {
    243             error_report("Failed to load firmware from %s", machine->firmware);
    244             exit(1);
    245         }
    246 
    247         s->binfo.entry = firmware_addr;
    248         s->binfo.firmware_loaded = true;
    249     }
    250 
    251     arm_load_kernel(&s->soc.cpu[0].core, machine, &s->binfo);
    252 }
    253 
    254 static void raspi_machine_init(MachineState *machine)
    255 {
    256     RaspiMachineClass *mc = RASPI_MACHINE_GET_CLASS(machine);
    257     RaspiMachineState *s = RASPI_MACHINE(machine);
    258     uint32_t board_rev = mc->board_rev;
    259     uint64_t ram_size = board_ram_size(board_rev);
    260     uint32_t vcram_size;
    261     DriveInfo *di;
    262     BlockBackend *blk;
    263     BusState *bus;
    264     DeviceState *carddev;
    265 
    266     if (machine->ram_size != ram_size) {
    267         char *size_str = size_to_str(ram_size);
    268         error_report("Invalid RAM size, should be %s", size_str);
    269         g_free(size_str);
    270         exit(1);
    271     }
    272 
    273     /* FIXME: Remove when we have custom CPU address space support */
    274     memory_region_add_subregion_overlap(get_system_memory(), 0,
    275                                         machine->ram, 0);
    276 
    277     /* Setup the SOC */
    278     object_initialize_child(OBJECT(machine), "soc", &s->soc,
    279                             board_soc_type(board_rev));
    280     object_property_add_const_link(OBJECT(&s->soc), "ram", OBJECT(machine->ram));
    281     object_property_set_int(OBJECT(&s->soc), "board-rev", board_rev,
    282                             &error_abort);
    283     qdev_realize(DEVICE(&s->soc), NULL, &error_fatal);
    284 
    285     /* Create and plug in the SD cards */
    286     di = drive_get(IF_SD, 0, 0);
    287     blk = di ? blk_by_legacy_dinfo(di) : NULL;
    288     bus = qdev_get_child_bus(DEVICE(&s->soc), "sd-bus");
    289     if (bus == NULL) {
    290         error_report("No SD bus found in SOC object");
    291         exit(1);
    292     }
    293     carddev = qdev_new(TYPE_SD_CARD);
    294     qdev_prop_set_drive_err(carddev, "drive", blk, &error_fatal);
    295     qdev_realize_and_unref(carddev, bus, &error_fatal);
    296 
    297     vcram_size = object_property_get_uint(OBJECT(&s->soc), "vcram-size",
    298                                           &error_abort);
    299     setup_boot(machine, board_processor_id(mc->board_rev),
    300                machine->ram_size - vcram_size);
    301 }
    302 
    303 static void raspi_machine_class_common_init(MachineClass *mc,
    304                                             uint32_t board_rev)
    305 {
    306     mc->desc = g_strdup_printf("Raspberry Pi %s (revision 1.%u)",
    307                                board_type(board_rev),
    308                                FIELD_EX32(board_rev, REV_CODE, REVISION));
    309     mc->init = raspi_machine_init;
    310     mc->block_default_type = IF_SD;
    311     mc->no_parallel = 1;
    312     mc->no_floppy = 1;
    313     mc->no_cdrom = 1;
    314     mc->default_cpus = mc->min_cpus = mc->max_cpus = cores_count(board_rev);
    315     mc->default_ram_size = board_ram_size(board_rev);
    316     mc->default_ram_id = "ram";
    317 };
    318 
    319 static void raspi0_machine_class_init(ObjectClass *oc, void *data)
    320 {
    321     MachineClass *mc = MACHINE_CLASS(oc);
    322     RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
    323 
    324     rmc->board_rev = 0x920092; /* Revision 1.2 */
    325     raspi_machine_class_common_init(mc, rmc->board_rev);
    326 };
    327 
    328 static void raspi1ap_machine_class_init(ObjectClass *oc, void *data)
    329 {
    330     MachineClass *mc = MACHINE_CLASS(oc);
    331     RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
    332 
    333     rmc->board_rev = 0x900021; /* Revision 1.1 */
    334     raspi_machine_class_common_init(mc, rmc->board_rev);
    335 };
    336 
    337 static void raspi2b_machine_class_init(ObjectClass *oc, void *data)
    338 {
    339     MachineClass *mc = MACHINE_CLASS(oc);
    340     RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
    341 
    342     rmc->board_rev = 0xa21041;
    343     raspi_machine_class_common_init(mc, rmc->board_rev);
    344 };
    345 
    346 #ifdef TARGET_AARCH64
    347 static void raspi3ap_machine_class_init(ObjectClass *oc, void *data)
    348 {
    349     MachineClass *mc = MACHINE_CLASS(oc);
    350     RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
    351 
    352     rmc->board_rev = 0x9020e0; /* Revision 1.0 */
    353     raspi_machine_class_common_init(mc, rmc->board_rev);
    354 };
    355 
    356 static void raspi3b_machine_class_init(ObjectClass *oc, void *data)
    357 {
    358     MachineClass *mc = MACHINE_CLASS(oc);
    359     RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
    360 
    361     rmc->board_rev = 0xa02082;
    362     raspi_machine_class_common_init(mc, rmc->board_rev);
    363 };
    364 #endif /* TARGET_AARCH64 */
    365 
    366 static const TypeInfo raspi_machine_types[] = {
    367     {
    368         .name           = MACHINE_TYPE_NAME("raspi0"),
    369         .parent         = TYPE_RASPI_MACHINE,
    370         .class_init     = raspi0_machine_class_init,
    371     }, {
    372         .name           = MACHINE_TYPE_NAME("raspi1ap"),
    373         .parent         = TYPE_RASPI_MACHINE,
    374         .class_init     = raspi1ap_machine_class_init,
    375     }, {
    376         .name           = MACHINE_TYPE_NAME("raspi2b"),
    377         .parent         = TYPE_RASPI_MACHINE,
    378         .class_init     = raspi2b_machine_class_init,
    379 #ifdef TARGET_AARCH64
    380     }, {
    381         .name           = MACHINE_TYPE_NAME("raspi3ap"),
    382         .parent         = TYPE_RASPI_MACHINE,
    383         .class_init     = raspi3ap_machine_class_init,
    384     }, {
    385         .name           = MACHINE_TYPE_NAME("raspi3b"),
    386         .parent         = TYPE_RASPI_MACHINE,
    387         .class_init     = raspi3b_machine_class_init,
    388 #endif
    389     }, {
    390         .name           = TYPE_RASPI_MACHINE,
    391         .parent         = TYPE_MACHINE,
    392         .instance_size  = sizeof(RaspiMachineState),
    393         .class_size     = sizeof(RaspiMachineClass),
    394         .abstract       = true,
    395     }
    396 };
    397 
    398 DEFINE_TYPES(raspi_machine_types)