qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

omap1.c (118908B)


      1 /*
      2  * TI OMAP processors emulation.
      3  *
      4  * Copyright (C) 2006-2008 Andrzej Zaborowski  <balrog@zabor.org>
      5  *
      6  * This program is free software; you can redistribute it and/or
      7  * modify it under the terms of the GNU General Public License as
      8  * published by the Free Software Foundation; either version 2 or
      9  * (at your option) version 3 of the License.
     10  *
     11  * This program is distributed in the hope that it will be useful,
     12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     14  * GNU General Public License for more details.
     15  *
     16  * You should have received a copy of the GNU General Public License along
     17  * with this program; if not, see <http://www.gnu.org/licenses/>.
     18  */
     19 
     20 #include "qemu/osdep.h"
     21 #include "qemu/log.h"
     22 #include "qemu/error-report.h"
     23 #include "qemu/main-loop.h"
     24 #include "qapi/error.h"
     25 #include "cpu.h"
     26 #include "exec/address-spaces.h"
     27 #include "hw/hw.h"
     28 #include "hw/irq.h"
     29 #include "hw/qdev-properties.h"
     30 #include "hw/arm/boot.h"
     31 #include "hw/arm/omap.h"
     32 #include "sysemu/blockdev.h"
     33 #include "sysemu/sysemu.h"
     34 #include "hw/arm/soc_dma.h"
     35 #include "sysemu/qtest.h"
     36 #include "sysemu/reset.h"
     37 #include "sysemu/runstate.h"
     38 #include "sysemu/rtc.h"
     39 #include "qemu/range.h"
     40 #include "hw/sysbus.h"
     41 #include "qemu/cutils.h"
     42 #include "qemu/bcd.h"
     43 
     44 static inline void omap_log_badwidth(const char *funcname, hwaddr addr, int sz)
     45 {
     46     qemu_log_mask(LOG_GUEST_ERROR, "%s: %d-bit register %#08" HWADDR_PRIx "\n",
     47                   funcname, 8 * sz, addr);
     48 }
     49 
     50 /* Should signal the TCMI/GPMC */
     51 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
     52 {
     53     uint8_t ret;
     54 
     55     omap_log_badwidth(__func__, addr, 1);
     56     cpu_physical_memory_read(addr, &ret, 1);
     57     return ret;
     58 }
     59 
     60 void omap_badwidth_write8(void *opaque, hwaddr addr,
     61                 uint32_t value)
     62 {
     63     uint8_t val8 = value;
     64 
     65     omap_log_badwidth(__func__, addr, 1);
     66     cpu_physical_memory_write(addr, &val8, 1);
     67 }
     68 
     69 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
     70 {
     71     uint16_t ret;
     72 
     73     omap_log_badwidth(__func__, addr, 2);
     74     cpu_physical_memory_read(addr, &ret, 2);
     75     return ret;
     76 }
     77 
     78 void omap_badwidth_write16(void *opaque, hwaddr addr,
     79                 uint32_t value)
     80 {
     81     uint16_t val16 = value;
     82 
     83     omap_log_badwidth(__func__, addr, 2);
     84     cpu_physical_memory_write(addr, &val16, 2);
     85 }
     86 
     87 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
     88 {
     89     uint32_t ret;
     90 
     91     omap_log_badwidth(__func__, addr, 4);
     92     cpu_physical_memory_read(addr, &ret, 4);
     93     return ret;
     94 }
     95 
     96 void omap_badwidth_write32(void *opaque, hwaddr addr,
     97                 uint32_t value)
     98 {
     99     omap_log_badwidth(__func__, addr, 4);
    100     cpu_physical_memory_write(addr, &value, 4);
    101 }
    102 
    103 /* MPU OS timers */
    104 struct omap_mpu_timer_s {
    105     MemoryRegion iomem;
    106     qemu_irq irq;
    107     omap_clk clk;
    108     uint32_t val;
    109     int64_t time;
    110     QEMUTimer *timer;
    111     QEMUBH *tick;
    112     int64_t rate;
    113     int it_ena;
    114 
    115     int enable;
    116     int ptv;
    117     int ar;
    118     int st;
    119     uint32_t reset_val;
    120 };
    121 
    122 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
    123 {
    124     uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
    125 
    126     if (timer->st && timer->enable && timer->rate)
    127         return timer->val - muldiv64(distance >> (timer->ptv + 1),
    128                                      timer->rate, NANOSECONDS_PER_SECOND);
    129     else
    130         return timer->val;
    131 }
    132 
    133 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
    134 {
    135     timer->val = omap_timer_read(timer);
    136     timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    137 }
    138 
    139 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
    140 {
    141     int64_t expires;
    142 
    143     if (timer->enable && timer->st && timer->rate) {
    144         timer->val = timer->reset_val;	/* Should skip this on clk enable */
    145         expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
    146                            NANOSECONDS_PER_SECOND, timer->rate);
    147 
    148         /* If timer expiry would be sooner than in about 1 ms and
    149          * auto-reload isn't set, then fire immediately.  This is a hack
    150          * to make systems like PalmOS run in acceptable time.  PalmOS
    151          * sets the interval to a very low value and polls the status bit
    152          * in a busy loop when it wants to sleep just a couple of CPU
    153          * ticks.  */
    154         if (expires > (NANOSECONDS_PER_SECOND >> 10) || timer->ar) {
    155             timer_mod(timer->timer, timer->time + expires);
    156         } else {
    157             qemu_bh_schedule(timer->tick);
    158         }
    159     } else
    160         timer_del(timer->timer);
    161 }
    162 
    163 static void omap_timer_fire(void *opaque)
    164 {
    165     struct omap_mpu_timer_s *timer = opaque;
    166 
    167     if (!timer->ar) {
    168         timer->val = 0;
    169         timer->st = 0;
    170     }
    171 
    172     if (timer->it_ena)
    173         /* Edge-triggered irq */
    174         qemu_irq_pulse(timer->irq);
    175 }
    176 
    177 static void omap_timer_tick(void *opaque)
    178 {
    179     struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
    180 
    181     omap_timer_sync(timer);
    182     omap_timer_fire(timer);
    183     omap_timer_update(timer);
    184 }
    185 
    186 static void omap_timer_clk_update(void *opaque, int line, int on)
    187 {
    188     struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
    189 
    190     omap_timer_sync(timer);
    191     timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
    192     omap_timer_update(timer);
    193 }
    194 
    195 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
    196 {
    197     omap_clk_adduser(timer->clk,
    198                     qemu_allocate_irq(omap_timer_clk_update, timer, 0));
    199     timer->rate = omap_clk_getrate(timer->clk);
    200 }
    201 
    202 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
    203                                     unsigned size)
    204 {
    205     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
    206 
    207     if (size != 4) {
    208         return omap_badwidth_read32(opaque, addr);
    209     }
    210 
    211     switch (addr) {
    212     case 0x00:	/* CNTL_TIMER */
    213         return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
    214 
    215     case 0x04:	/* LOAD_TIM */
    216         break;
    217 
    218     case 0x08:	/* READ_TIM */
    219         return omap_timer_read(s);
    220     }
    221 
    222     OMAP_BAD_REG(addr);
    223     return 0;
    224 }
    225 
    226 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
    227                                  uint64_t value, unsigned size)
    228 {
    229     struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
    230 
    231     if (size != 4) {
    232         omap_badwidth_write32(opaque, addr, value);
    233         return;
    234     }
    235 
    236     switch (addr) {
    237     case 0x00:	/* CNTL_TIMER */
    238         omap_timer_sync(s);
    239         s->enable = (value >> 5) & 1;
    240         s->ptv = (value >> 2) & 7;
    241         s->ar = (value >> 1) & 1;
    242         s->st = value & 1;
    243         omap_timer_update(s);
    244         return;
    245 
    246     case 0x04:	/* LOAD_TIM */
    247         s->reset_val = value;
    248         return;
    249 
    250     case 0x08:	/* READ_TIM */
    251         OMAP_RO_REG(addr);
    252         break;
    253 
    254     default:
    255         OMAP_BAD_REG(addr);
    256     }
    257 }
    258 
    259 static const MemoryRegionOps omap_mpu_timer_ops = {
    260     .read = omap_mpu_timer_read,
    261     .write = omap_mpu_timer_write,
    262     .endianness = DEVICE_LITTLE_ENDIAN,
    263 };
    264 
    265 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
    266 {
    267     timer_del(s->timer);
    268     s->enable = 0;
    269     s->reset_val = 31337;
    270     s->val = 0;
    271     s->ptv = 0;
    272     s->ar = 0;
    273     s->st = 0;
    274     s->it_ena = 1;
    275 }
    276 
    277 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
    278                 hwaddr base,
    279                 qemu_irq irq, omap_clk clk)
    280 {
    281     struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
    282 
    283     s->irq = irq;
    284     s->clk = clk;
    285     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
    286     s->tick = qemu_bh_new(omap_timer_fire, s);
    287     omap_mpu_timer_reset(s);
    288     omap_timer_clk_setup(s);
    289 
    290     memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
    291                           "omap-mpu-timer", 0x100);
    292 
    293     memory_region_add_subregion(system_memory, base, &s->iomem);
    294 
    295     return s;
    296 }
    297 
    298 /* Watchdog timer */
    299 struct omap_watchdog_timer_s {
    300     struct omap_mpu_timer_s timer;
    301     MemoryRegion iomem;
    302     uint8_t last_wr;
    303     int mode;
    304     int free;
    305     int reset;
    306 };
    307 
    308 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
    309                                    unsigned size)
    310 {
    311     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
    312 
    313     if (size != 2) {
    314         return omap_badwidth_read16(opaque, addr);
    315     }
    316 
    317     switch (addr) {
    318     case 0x00:	/* CNTL_TIMER */
    319         return (s->timer.ptv << 9) | (s->timer.ar << 8) |
    320                 (s->timer.st << 7) | (s->free << 1);
    321 
    322     case 0x04:	/* READ_TIMER */
    323         return omap_timer_read(&s->timer);
    324 
    325     case 0x08:	/* TIMER_MODE */
    326         return s->mode << 15;
    327     }
    328 
    329     OMAP_BAD_REG(addr);
    330     return 0;
    331 }
    332 
    333 static void omap_wd_timer_write(void *opaque, hwaddr addr,
    334                                 uint64_t value, unsigned size)
    335 {
    336     struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
    337 
    338     if (size != 2) {
    339         omap_badwidth_write16(opaque, addr, value);
    340         return;
    341     }
    342 
    343     switch (addr) {
    344     case 0x00:	/* CNTL_TIMER */
    345         omap_timer_sync(&s->timer);
    346         s->timer.ptv = (value >> 9) & 7;
    347         s->timer.ar = (value >> 8) & 1;
    348         s->timer.st = (value >> 7) & 1;
    349         s->free = (value >> 1) & 1;
    350         omap_timer_update(&s->timer);
    351         break;
    352 
    353     case 0x04:	/* LOAD_TIMER */
    354         s->timer.reset_val = value & 0xffff;
    355         break;
    356 
    357     case 0x08:	/* TIMER_MODE */
    358         if (!s->mode && ((value >> 15) & 1))
    359             omap_clk_get(s->timer.clk);
    360         s->mode |= (value >> 15) & 1;
    361         if (s->last_wr == 0xf5) {
    362             if ((value & 0xff) == 0xa0) {
    363                 if (s->mode) {
    364                     s->mode = 0;
    365                     omap_clk_put(s->timer.clk);
    366                 }
    367             } else {
    368                 /* XXX: on T|E hardware somehow this has no effect,
    369                  * on Zire 71 it works as specified.  */
    370                 s->reset = 1;
    371                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
    372             }
    373         }
    374         s->last_wr = value & 0xff;
    375         break;
    376 
    377     default:
    378         OMAP_BAD_REG(addr);
    379     }
    380 }
    381 
    382 static const MemoryRegionOps omap_wd_timer_ops = {
    383     .read = omap_wd_timer_read,
    384     .write = omap_wd_timer_write,
    385     .endianness = DEVICE_NATIVE_ENDIAN,
    386 };
    387 
    388 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
    389 {
    390     timer_del(s->timer.timer);
    391     if (!s->mode)
    392         omap_clk_get(s->timer.clk);
    393     s->mode = 1;
    394     s->free = 1;
    395     s->reset = 0;
    396     s->timer.enable = 1;
    397     s->timer.it_ena = 1;
    398     s->timer.reset_val = 0xffff;
    399     s->timer.val = 0;
    400     s->timer.st = 0;
    401     s->timer.ptv = 0;
    402     s->timer.ar = 0;
    403     omap_timer_update(&s->timer);
    404 }
    405 
    406 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
    407                 hwaddr base,
    408                 qemu_irq irq, omap_clk clk)
    409 {
    410     struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
    411 
    412     s->timer.irq = irq;
    413     s->timer.clk = clk;
    414     s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
    415     omap_wd_timer_reset(s);
    416     omap_timer_clk_setup(&s->timer);
    417 
    418     memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
    419                           "omap-wd-timer", 0x100);
    420     memory_region_add_subregion(memory, base, &s->iomem);
    421 
    422     return s;
    423 }
    424 
    425 /* 32-kHz timer */
    426 struct omap_32khz_timer_s {
    427     struct omap_mpu_timer_s timer;
    428     MemoryRegion iomem;
    429 };
    430 
    431 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
    432                                    unsigned size)
    433 {
    434     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
    435     int offset = addr & OMAP_MPUI_REG_MASK;
    436 
    437     if (size != 4) {
    438         return omap_badwidth_read32(opaque, addr);
    439     }
    440 
    441     switch (offset) {
    442     case 0x00:	/* TVR */
    443         return s->timer.reset_val;
    444 
    445     case 0x04:	/* TCR */
    446         return omap_timer_read(&s->timer);
    447 
    448     case 0x08:	/* CR */
    449         return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
    450 
    451     default:
    452         break;
    453     }
    454     OMAP_BAD_REG(addr);
    455     return 0;
    456 }
    457 
    458 static void omap_os_timer_write(void *opaque, hwaddr addr,
    459                                 uint64_t value, unsigned size)
    460 {
    461     struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
    462     int offset = addr & OMAP_MPUI_REG_MASK;
    463 
    464     if (size != 4) {
    465         omap_badwidth_write32(opaque, addr, value);
    466         return;
    467     }
    468 
    469     switch (offset) {
    470     case 0x00:	/* TVR */
    471         s->timer.reset_val = value & 0x00ffffff;
    472         break;
    473 
    474     case 0x04:	/* TCR */
    475         OMAP_RO_REG(addr);
    476         break;
    477 
    478     case 0x08:	/* CR */
    479         s->timer.ar = (value >> 3) & 1;
    480         s->timer.it_ena = (value >> 2) & 1;
    481         if (s->timer.st != (value & 1) || (value & 2)) {
    482             omap_timer_sync(&s->timer);
    483             s->timer.enable = value & 1;
    484             s->timer.st = value & 1;
    485             omap_timer_update(&s->timer);
    486         }
    487         break;
    488 
    489     default:
    490         OMAP_BAD_REG(addr);
    491     }
    492 }
    493 
    494 static const MemoryRegionOps omap_os_timer_ops = {
    495     .read = omap_os_timer_read,
    496     .write = omap_os_timer_write,
    497     .endianness = DEVICE_NATIVE_ENDIAN,
    498 };
    499 
    500 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
    501 {
    502     timer_del(s->timer.timer);
    503     s->timer.enable = 0;
    504     s->timer.it_ena = 0;
    505     s->timer.reset_val = 0x00ffffff;
    506     s->timer.val = 0;
    507     s->timer.st = 0;
    508     s->timer.ptv = 0;
    509     s->timer.ar = 1;
    510 }
    511 
    512 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
    513                 hwaddr base,
    514                 qemu_irq irq, omap_clk clk)
    515 {
    516     struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
    517 
    518     s->timer.irq = irq;
    519     s->timer.clk = clk;
    520     s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
    521     omap_os_timer_reset(s);
    522     omap_timer_clk_setup(&s->timer);
    523 
    524     memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
    525                           "omap-os-timer", 0x800);
    526     memory_region_add_subregion(memory, base, &s->iomem);
    527 
    528     return s;
    529 }
    530 
    531 /* Ultra Low-Power Device Module */
    532 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
    533                                   unsigned size)
    534 {
    535     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
    536     uint16_t ret;
    537 
    538     if (size != 2) {
    539         return omap_badwidth_read16(opaque, addr);
    540     }
    541 
    542     switch (addr) {
    543     case 0x14:	/* IT_STATUS */
    544         ret = s->ulpd_pm_regs[addr >> 2];
    545         s->ulpd_pm_regs[addr >> 2] = 0;
    546         qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
    547         return ret;
    548 
    549     case 0x18:	/* Reserved */
    550     case 0x1c:	/* Reserved */
    551     case 0x20:	/* Reserved */
    552     case 0x28:	/* Reserved */
    553     case 0x2c:	/* Reserved */
    554         OMAP_BAD_REG(addr);
    555         /* fall through */
    556     case 0x00:	/* COUNTER_32_LSB */
    557     case 0x04:	/* COUNTER_32_MSB */
    558     case 0x08:	/* COUNTER_HIGH_FREQ_LSB */
    559     case 0x0c:	/* COUNTER_HIGH_FREQ_MSB */
    560     case 0x10:	/* GAUGING_CTRL */
    561     case 0x24:	/* SETUP_ANALOG_CELL3_ULPD1 */
    562     case 0x30:	/* CLOCK_CTRL */
    563     case 0x34:	/* SOFT_REQ */
    564     case 0x38:	/* COUNTER_32_FIQ */
    565     case 0x3c:	/* DPLL_CTRL */
    566     case 0x40:	/* STATUS_REQ */
    567         /* XXX: check clk::usecount state for every clock */
    568     case 0x48:	/* LOCL_TIME */
    569     case 0x4c:	/* APLL_CTRL */
    570     case 0x50:	/* POWER_CTRL */
    571         return s->ulpd_pm_regs[addr >> 2];
    572     }
    573 
    574     OMAP_BAD_REG(addr);
    575     return 0;
    576 }
    577 
    578 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
    579                 uint16_t diff, uint16_t value)
    580 {
    581     if (diff & (1 << 4))				/* USB_MCLK_EN */
    582         omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
    583     if (diff & (1 << 5))				/* DIS_USB_PVCI_CLK */
    584         omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
    585 }
    586 
    587 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
    588                 uint16_t diff, uint16_t value)
    589 {
    590     if (diff & (1 << 0))				/* SOFT_DPLL_REQ */
    591         omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
    592     if (diff & (1 << 1))				/* SOFT_COM_REQ */
    593         omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
    594     if (diff & (1 << 2))				/* SOFT_SDW_REQ */
    595         omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
    596     if (diff & (1 << 3))				/* SOFT_USB_REQ */
    597         omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
    598 }
    599 
    600 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
    601                                uint64_t value, unsigned size)
    602 {
    603     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
    604     int64_t now, ticks;
    605     int div, mult;
    606     static const int bypass_div[4] = { 1, 2, 4, 4 };
    607     uint16_t diff;
    608 
    609     if (size != 2) {
    610         omap_badwidth_write16(opaque, addr, value);
    611         return;
    612     }
    613 
    614     switch (addr) {
    615     case 0x00:	/* COUNTER_32_LSB */
    616     case 0x04:	/* COUNTER_32_MSB */
    617     case 0x08:	/* COUNTER_HIGH_FREQ_LSB */
    618     case 0x0c:	/* COUNTER_HIGH_FREQ_MSB */
    619     case 0x14:	/* IT_STATUS */
    620     case 0x40:	/* STATUS_REQ */
    621         OMAP_RO_REG(addr);
    622         break;
    623 
    624     case 0x10:	/* GAUGING_CTRL */
    625         /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
    626         if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
    627             now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    628 
    629             if (value & 1)
    630                 s->ulpd_gauge_start = now;
    631             else {
    632                 now -= s->ulpd_gauge_start;
    633 
    634                 /* 32-kHz ticks */
    635                 ticks = muldiv64(now, 32768, NANOSECONDS_PER_SECOND);
    636                 s->ulpd_pm_regs[0x00 >> 2] = (ticks >>  0) & 0xffff;
    637                 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
    638                 if (ticks >> 32)	/* OVERFLOW_32K */
    639                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
    640 
    641                 /* High frequency ticks */
    642                 ticks = muldiv64(now, 12000000, NANOSECONDS_PER_SECOND);
    643                 s->ulpd_pm_regs[0x08 >> 2] = (ticks >>  0) & 0xffff;
    644                 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
    645                 if (ticks >> 32)	/* OVERFLOW_HI_FREQ */
    646                     s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
    647 
    648                 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0;	/* IT_GAUGING */
    649                 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
    650             }
    651         }
    652         s->ulpd_pm_regs[addr >> 2] = value;
    653         break;
    654 
    655     case 0x18:	/* Reserved */
    656     case 0x1c:	/* Reserved */
    657     case 0x20:	/* Reserved */
    658     case 0x28:	/* Reserved */
    659     case 0x2c:	/* Reserved */
    660         OMAP_BAD_REG(addr);
    661         /* fall through */
    662     case 0x24:	/* SETUP_ANALOG_CELL3_ULPD1 */
    663     case 0x38:	/* COUNTER_32_FIQ */
    664     case 0x48:	/* LOCL_TIME */
    665     case 0x50:	/* POWER_CTRL */
    666         s->ulpd_pm_regs[addr >> 2] = value;
    667         break;
    668 
    669     case 0x30:	/* CLOCK_CTRL */
    670         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
    671         s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
    672         omap_ulpd_clk_update(s, diff, value);
    673         break;
    674 
    675     case 0x34:	/* SOFT_REQ */
    676         diff = s->ulpd_pm_regs[addr >> 2] ^ value;
    677         s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
    678         omap_ulpd_req_update(s, diff, value);
    679         break;
    680 
    681     case 0x3c:	/* DPLL_CTRL */
    682         /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
    683          * omitted altogether, probably a typo.  */
    684         /* This register has identical semantics with DPLL(1:3) control
    685          * registers, see omap_dpll_write() */
    686         diff = s->ulpd_pm_regs[addr >> 2] & value;
    687         s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
    688         if (diff & (0x3ff << 2)) {
    689             if (value & (1 << 4)) {			/* PLL_ENABLE */
    690                 div = ((value >> 5) & 3) + 1;		/* PLL_DIV */
    691                 mult = MIN((value >> 7) & 0x1f, 1);	/* PLL_MULT */
    692             } else {
    693                 div = bypass_div[((value >> 2) & 3)];	/* BYPASS_DIV */
    694                 mult = 1;
    695             }
    696             omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
    697         }
    698 
    699         /* Enter the desired mode.  */
    700         s->ulpd_pm_regs[addr >> 2] =
    701                 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
    702                 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
    703 
    704         /* Act as if the lock is restored.  */
    705         s->ulpd_pm_regs[addr >> 2] |= 2;
    706         break;
    707 
    708     case 0x4c:	/* APLL_CTRL */
    709         diff = s->ulpd_pm_regs[addr >> 2] & value;
    710         s->ulpd_pm_regs[addr >> 2] = value & 0xf;
    711         if (diff & (1 << 0))				/* APLL_NDPLL_SWITCH */
    712             omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
    713                                     (value & (1 << 0)) ? "apll" : "dpll4"));
    714         break;
    715 
    716     default:
    717         OMAP_BAD_REG(addr);
    718     }
    719 }
    720 
    721 static const MemoryRegionOps omap_ulpd_pm_ops = {
    722     .read = omap_ulpd_pm_read,
    723     .write = omap_ulpd_pm_write,
    724     .endianness = DEVICE_NATIVE_ENDIAN,
    725 };
    726 
    727 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
    728 {
    729     mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
    730     mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
    731     mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
    732     mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
    733     mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
    734     mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
    735     mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
    736     mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
    737     mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
    738     mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
    739     mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
    740     omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
    741     mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
    742     omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
    743     mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
    744     mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
    745     mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
    746     mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
    747     mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
    748     mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
    749     mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
    750     omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
    751     omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
    752 }
    753 
    754 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
    755                 hwaddr base,
    756                 struct omap_mpu_state_s *mpu)
    757 {
    758     memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
    759                           "omap-ulpd-pm", 0x800);
    760     memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
    761     omap_ulpd_pm_reset(mpu);
    762 }
    763 
    764 /* OMAP Pin Configuration */
    765 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
    766                                   unsigned size)
    767 {
    768     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
    769 
    770     if (size != 4) {
    771         return omap_badwidth_read32(opaque, addr);
    772     }
    773 
    774     switch (addr) {
    775     case 0x00:	/* FUNC_MUX_CTRL_0 */
    776     case 0x04:	/* FUNC_MUX_CTRL_1 */
    777     case 0x08:	/* FUNC_MUX_CTRL_2 */
    778         return s->func_mux_ctrl[addr >> 2];
    779 
    780     case 0x0c:	/* COMP_MODE_CTRL_0 */
    781         return s->comp_mode_ctrl[0];
    782 
    783     case 0x10:	/* FUNC_MUX_CTRL_3 */
    784     case 0x14:	/* FUNC_MUX_CTRL_4 */
    785     case 0x18:	/* FUNC_MUX_CTRL_5 */
    786     case 0x1c:	/* FUNC_MUX_CTRL_6 */
    787     case 0x20:	/* FUNC_MUX_CTRL_7 */
    788     case 0x24:	/* FUNC_MUX_CTRL_8 */
    789     case 0x28:	/* FUNC_MUX_CTRL_9 */
    790     case 0x2c:	/* FUNC_MUX_CTRL_A */
    791     case 0x30:	/* FUNC_MUX_CTRL_B */
    792     case 0x34:	/* FUNC_MUX_CTRL_C */
    793     case 0x38:	/* FUNC_MUX_CTRL_D */
    794         return s->func_mux_ctrl[(addr >> 2) - 1];
    795 
    796     case 0x40:	/* PULL_DWN_CTRL_0 */
    797     case 0x44:	/* PULL_DWN_CTRL_1 */
    798     case 0x48:	/* PULL_DWN_CTRL_2 */
    799     case 0x4c:	/* PULL_DWN_CTRL_3 */
    800         return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
    801 
    802     case 0x50:	/* GATE_INH_CTRL_0 */
    803         return s->gate_inh_ctrl[0];
    804 
    805     case 0x60:	/* VOLTAGE_CTRL_0 */
    806         return s->voltage_ctrl[0];
    807 
    808     case 0x70:	/* TEST_DBG_CTRL_0 */
    809         return s->test_dbg_ctrl[0];
    810 
    811     case 0x80:	/* MOD_CONF_CTRL_0 */
    812         return s->mod_conf_ctrl[0];
    813     }
    814 
    815     OMAP_BAD_REG(addr);
    816     return 0;
    817 }
    818 
    819 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
    820                 uint32_t diff, uint32_t value)
    821 {
    822     if (s->compat1509) {
    823         if (diff & (1 << 9))			/* BLUETOOTH */
    824             omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
    825                             (~value >> 9) & 1);
    826         if (diff & (1 << 7))			/* USB.CLKO */
    827             omap_clk_onoff(omap_findclk(s, "usb.clko"),
    828                             (value >> 7) & 1);
    829     }
    830 }
    831 
    832 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
    833                 uint32_t diff, uint32_t value)
    834 {
    835     if (s->compat1509) {
    836         if (diff & (1U << 31)) {
    837             /* MCBSP3_CLK_HIZ_DI */
    838             omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
    839         }
    840         if (diff & (1 << 1)) {
    841             /* CLK32K */
    842             omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
    843         }
    844     }
    845 }
    846 
    847 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
    848                 uint32_t diff, uint32_t value)
    849 {
    850     if (diff & (1U << 31)) {
    851         /* CONF_MOD_UART3_CLK_MODE_R */
    852         omap_clk_reparent(omap_findclk(s, "uart3_ck"),
    853                           omap_findclk(s, ((value >> 31) & 1) ?
    854                                        "ck_48m" : "armper_ck"));
    855     }
    856     if (diff & (1 << 30))			/* CONF_MOD_UART2_CLK_MODE_R */
    857          omap_clk_reparent(omap_findclk(s, "uart2_ck"),
    858                          omap_findclk(s, ((value >> 30) & 1) ?
    859                                  "ck_48m" : "armper_ck"));
    860     if (diff & (1 << 29))			/* CONF_MOD_UART1_CLK_MODE_R */
    861          omap_clk_reparent(omap_findclk(s, "uart1_ck"),
    862                          omap_findclk(s, ((value >> 29) & 1) ?
    863                                  "ck_48m" : "armper_ck"));
    864     if (diff & (1 << 23))			/* CONF_MOD_MMC_SD_CLK_REQ_R */
    865          omap_clk_reparent(omap_findclk(s, "mmc_ck"),
    866                          omap_findclk(s, ((value >> 23) & 1) ?
    867                                  "ck_48m" : "armper_ck"));
    868     if (diff & (1 << 12))			/* CONF_MOD_COM_MCLK_12_48_S */
    869          omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
    870                          omap_findclk(s, ((value >> 12) & 1) ?
    871                                  "ck_48m" : "armper_ck"));
    872     if (diff & (1 << 9))			/* CONF_MOD_USB_HOST_HHC_UHO */
    873          omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
    874 }
    875 
    876 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
    877                                uint64_t value, unsigned size)
    878 {
    879     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
    880     uint32_t diff;
    881 
    882     if (size != 4) {
    883         omap_badwidth_write32(opaque, addr, value);
    884         return;
    885     }
    886 
    887     switch (addr) {
    888     case 0x00:	/* FUNC_MUX_CTRL_0 */
    889         diff = s->func_mux_ctrl[addr >> 2] ^ value;
    890         s->func_mux_ctrl[addr >> 2] = value;
    891         omap_pin_funcmux0_update(s, diff, value);
    892         return;
    893 
    894     case 0x04:	/* FUNC_MUX_CTRL_1 */
    895         diff = s->func_mux_ctrl[addr >> 2] ^ value;
    896         s->func_mux_ctrl[addr >> 2] = value;
    897         omap_pin_funcmux1_update(s, diff, value);
    898         return;
    899 
    900     case 0x08:	/* FUNC_MUX_CTRL_2 */
    901         s->func_mux_ctrl[addr >> 2] = value;
    902         return;
    903 
    904     case 0x0c:	/* COMP_MODE_CTRL_0 */
    905         s->comp_mode_ctrl[0] = value;
    906         s->compat1509 = (value != 0x0000eaef);
    907         omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
    908         omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
    909         return;
    910 
    911     case 0x10:	/* FUNC_MUX_CTRL_3 */
    912     case 0x14:	/* FUNC_MUX_CTRL_4 */
    913     case 0x18:	/* FUNC_MUX_CTRL_5 */
    914     case 0x1c:	/* FUNC_MUX_CTRL_6 */
    915     case 0x20:	/* FUNC_MUX_CTRL_7 */
    916     case 0x24:	/* FUNC_MUX_CTRL_8 */
    917     case 0x28:	/* FUNC_MUX_CTRL_9 */
    918     case 0x2c:	/* FUNC_MUX_CTRL_A */
    919     case 0x30:	/* FUNC_MUX_CTRL_B */
    920     case 0x34:	/* FUNC_MUX_CTRL_C */
    921     case 0x38:	/* FUNC_MUX_CTRL_D */
    922         s->func_mux_ctrl[(addr >> 2) - 1] = value;
    923         return;
    924 
    925     case 0x40:	/* PULL_DWN_CTRL_0 */
    926     case 0x44:	/* PULL_DWN_CTRL_1 */
    927     case 0x48:	/* PULL_DWN_CTRL_2 */
    928     case 0x4c:	/* PULL_DWN_CTRL_3 */
    929         s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
    930         return;
    931 
    932     case 0x50:	/* GATE_INH_CTRL_0 */
    933         s->gate_inh_ctrl[0] = value;
    934         return;
    935 
    936     case 0x60:	/* VOLTAGE_CTRL_0 */
    937         s->voltage_ctrl[0] = value;
    938         return;
    939 
    940     case 0x70:	/* TEST_DBG_CTRL_0 */
    941         s->test_dbg_ctrl[0] = value;
    942         return;
    943 
    944     case 0x80:	/* MOD_CONF_CTRL_0 */
    945         diff = s->mod_conf_ctrl[0] ^ value;
    946         s->mod_conf_ctrl[0] = value;
    947         omap_pin_modconf1_update(s, diff, value);
    948         return;
    949 
    950     default:
    951         OMAP_BAD_REG(addr);
    952     }
    953 }
    954 
    955 static const MemoryRegionOps omap_pin_cfg_ops = {
    956     .read = omap_pin_cfg_read,
    957     .write = omap_pin_cfg_write,
    958     .endianness = DEVICE_NATIVE_ENDIAN,
    959 };
    960 
    961 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
    962 {
    963     /* Start in Compatibility Mode.  */
    964     mpu->compat1509 = 1;
    965     omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
    966     omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
    967     omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
    968     memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
    969     memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
    970     memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
    971     memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
    972     memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
    973     memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
    974     memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
    975 }
    976 
    977 static void omap_pin_cfg_init(MemoryRegion *system_memory,
    978                 hwaddr base,
    979                 struct omap_mpu_state_s *mpu)
    980 {
    981     memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
    982                           "omap-pin-cfg", 0x800);
    983     memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
    984     omap_pin_cfg_reset(mpu);
    985 }
    986 
    987 /* Device Identification, Die Identification */
    988 static uint64_t omap_id_read(void *opaque, hwaddr addr,
    989                              unsigned size)
    990 {
    991     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
    992 
    993     if (size != 4) {
    994         return omap_badwidth_read32(opaque, addr);
    995     }
    996 
    997     switch (addr) {
    998     case 0xfffe1800:	/* DIE_ID_LSB */
    999         return 0xc9581f0e;
   1000     case 0xfffe1804:	/* DIE_ID_MSB */
   1001         return 0xa8858bfa;
   1002 
   1003     case 0xfffe2000:	/* PRODUCT_ID_LSB */
   1004         return 0x00aaaafc;
   1005     case 0xfffe2004:	/* PRODUCT_ID_MSB */
   1006         return 0xcafeb574;
   1007 
   1008     case 0xfffed400:	/* JTAG_ID_LSB */
   1009         switch (s->mpu_model) {
   1010         case omap310:
   1011             return 0x03310315;
   1012         case omap1510:
   1013             return 0x03310115;
   1014         default:
   1015             hw_error("%s: bad mpu model\n", __func__);
   1016         }
   1017         break;
   1018 
   1019     case 0xfffed404:	/* JTAG_ID_MSB */
   1020         switch (s->mpu_model) {
   1021         case omap310:
   1022             return 0xfb57402f;
   1023         case omap1510:
   1024             return 0xfb47002f;
   1025         default:
   1026             hw_error("%s: bad mpu model\n", __func__);
   1027         }
   1028         break;
   1029     }
   1030 
   1031     OMAP_BAD_REG(addr);
   1032     return 0;
   1033 }
   1034 
   1035 static void omap_id_write(void *opaque, hwaddr addr,
   1036                           uint64_t value, unsigned size)
   1037 {
   1038     if (size != 4) {
   1039         omap_badwidth_write32(opaque, addr, value);
   1040         return;
   1041     }
   1042 
   1043     OMAP_BAD_REG(addr);
   1044 }
   1045 
   1046 static const MemoryRegionOps omap_id_ops = {
   1047     .read = omap_id_read,
   1048     .write = omap_id_write,
   1049     .endianness = DEVICE_NATIVE_ENDIAN,
   1050 };
   1051 
   1052 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
   1053 {
   1054     memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
   1055                           "omap-id", 0x100000000ULL);
   1056     memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
   1057                              0xfffe1800, 0x800);
   1058     memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
   1059     memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
   1060                              0xfffed400, 0x100);
   1061     memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
   1062     if (!cpu_is_omap15xx(mpu)) {
   1063         memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
   1064                                  &mpu->id_iomem, 0xfffe2000, 0x800);
   1065         memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
   1066     }
   1067 }
   1068 
   1069 /* MPUI Control (Dummy) */
   1070 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
   1071                                unsigned size)
   1072 {
   1073     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
   1074 
   1075     if (size != 4) {
   1076         return omap_badwidth_read32(opaque, addr);
   1077     }
   1078 
   1079     switch (addr) {
   1080     case 0x00:	/* CTRL */
   1081         return s->mpui_ctrl;
   1082     case 0x04:	/* DEBUG_ADDR */
   1083         return 0x01ffffff;
   1084     case 0x08:	/* DEBUG_DATA */
   1085         return 0xffffffff;
   1086     case 0x0c:	/* DEBUG_FLAG */
   1087         return 0x00000800;
   1088     case 0x10:	/* STATUS */
   1089         return 0x00000000;
   1090 
   1091     /* Not in OMAP310 */
   1092     case 0x14:	/* DSP_STATUS */
   1093     case 0x18:	/* DSP_BOOT_CONFIG */
   1094         return 0x00000000;
   1095     case 0x1c:	/* DSP_MPUI_CONFIG */
   1096         return 0x0000ffff;
   1097     }
   1098 
   1099     OMAP_BAD_REG(addr);
   1100     return 0;
   1101 }
   1102 
   1103 static void omap_mpui_write(void *opaque, hwaddr addr,
   1104                             uint64_t value, unsigned size)
   1105 {
   1106     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
   1107 
   1108     if (size != 4) {
   1109         omap_badwidth_write32(opaque, addr, value);
   1110         return;
   1111     }
   1112 
   1113     switch (addr) {
   1114     case 0x00:	/* CTRL */
   1115         s->mpui_ctrl = value & 0x007fffff;
   1116         break;
   1117 
   1118     case 0x04:	/* DEBUG_ADDR */
   1119     case 0x08:	/* DEBUG_DATA */
   1120     case 0x0c:	/* DEBUG_FLAG */
   1121     case 0x10:	/* STATUS */
   1122     /* Not in OMAP310 */
   1123     case 0x14:	/* DSP_STATUS */
   1124         OMAP_RO_REG(addr);
   1125         break;
   1126     case 0x18:	/* DSP_BOOT_CONFIG */
   1127     case 0x1c:	/* DSP_MPUI_CONFIG */
   1128         break;
   1129 
   1130     default:
   1131         OMAP_BAD_REG(addr);
   1132     }
   1133 }
   1134 
   1135 static const MemoryRegionOps omap_mpui_ops = {
   1136     .read = omap_mpui_read,
   1137     .write = omap_mpui_write,
   1138     .endianness = DEVICE_NATIVE_ENDIAN,
   1139 };
   1140 
   1141 static void omap_mpui_reset(struct omap_mpu_state_s *s)
   1142 {
   1143     s->mpui_ctrl = 0x0003ff1b;
   1144 }
   1145 
   1146 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
   1147                 struct omap_mpu_state_s *mpu)
   1148 {
   1149     memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
   1150                           "omap-mpui", 0x100);
   1151     memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
   1152 
   1153     omap_mpui_reset(mpu);
   1154 }
   1155 
   1156 /* TIPB Bridges */
   1157 struct omap_tipb_bridge_s {
   1158     qemu_irq abort;
   1159     MemoryRegion iomem;
   1160 
   1161     int width_intr;
   1162     uint16_t control;
   1163     uint16_t alloc;
   1164     uint16_t buffer;
   1165     uint16_t enh_control;
   1166 };
   1167 
   1168 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
   1169                                       unsigned size)
   1170 {
   1171     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
   1172 
   1173     if (size < 2) {
   1174         return omap_badwidth_read16(opaque, addr);
   1175     }
   1176 
   1177     switch (addr) {
   1178     case 0x00:	/* TIPB_CNTL */
   1179         return s->control;
   1180     case 0x04:	/* TIPB_BUS_ALLOC */
   1181         return s->alloc;
   1182     case 0x08:	/* MPU_TIPB_CNTL */
   1183         return s->buffer;
   1184     case 0x0c:	/* ENHANCED_TIPB_CNTL */
   1185         return s->enh_control;
   1186     case 0x10:	/* ADDRESS_DBG */
   1187     case 0x14:	/* DATA_DEBUG_LOW */
   1188     case 0x18:	/* DATA_DEBUG_HIGH */
   1189         return 0xffff;
   1190     case 0x1c:	/* DEBUG_CNTR_SIG */
   1191         return 0x00f8;
   1192     }
   1193 
   1194     OMAP_BAD_REG(addr);
   1195     return 0;
   1196 }
   1197 
   1198 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
   1199                                    uint64_t value, unsigned size)
   1200 {
   1201     struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
   1202 
   1203     if (size < 2) {
   1204         omap_badwidth_write16(opaque, addr, value);
   1205         return;
   1206     }
   1207 
   1208     switch (addr) {
   1209     case 0x00:	/* TIPB_CNTL */
   1210         s->control = value & 0xffff;
   1211         break;
   1212 
   1213     case 0x04:	/* TIPB_BUS_ALLOC */
   1214         s->alloc = value & 0x003f;
   1215         break;
   1216 
   1217     case 0x08:	/* MPU_TIPB_CNTL */
   1218         s->buffer = value & 0x0003;
   1219         break;
   1220 
   1221     case 0x0c:	/* ENHANCED_TIPB_CNTL */
   1222         s->width_intr = !(value & 2);
   1223         s->enh_control = value & 0x000f;
   1224         break;
   1225 
   1226     case 0x10:	/* ADDRESS_DBG */
   1227     case 0x14:	/* DATA_DEBUG_LOW */
   1228     case 0x18:	/* DATA_DEBUG_HIGH */
   1229     case 0x1c:	/* DEBUG_CNTR_SIG */
   1230         OMAP_RO_REG(addr);
   1231         break;
   1232 
   1233     default:
   1234         OMAP_BAD_REG(addr);
   1235     }
   1236 }
   1237 
   1238 static const MemoryRegionOps omap_tipb_bridge_ops = {
   1239     .read = omap_tipb_bridge_read,
   1240     .write = omap_tipb_bridge_write,
   1241     .endianness = DEVICE_NATIVE_ENDIAN,
   1242 };
   1243 
   1244 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
   1245 {
   1246     s->control = 0xffff;
   1247     s->alloc = 0x0009;
   1248     s->buffer = 0x0000;
   1249     s->enh_control = 0x000f;
   1250 }
   1251 
   1252 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
   1253     MemoryRegion *memory, hwaddr base,
   1254     qemu_irq abort_irq, omap_clk clk)
   1255 {
   1256     struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
   1257 
   1258     s->abort = abort_irq;
   1259     omap_tipb_bridge_reset(s);
   1260 
   1261     memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
   1262                           "omap-tipb-bridge", 0x100);
   1263     memory_region_add_subregion(memory, base, &s->iomem);
   1264 
   1265     return s;
   1266 }
   1267 
   1268 /* Dummy Traffic Controller's Memory Interface */
   1269 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
   1270                                unsigned size)
   1271 {
   1272     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
   1273     uint32_t ret;
   1274 
   1275     if (size != 4) {
   1276         return omap_badwidth_read32(opaque, addr);
   1277     }
   1278 
   1279     switch (addr) {
   1280     case 0x00:	/* IMIF_PRIO */
   1281     case 0x04:	/* EMIFS_PRIO */
   1282     case 0x08:	/* EMIFF_PRIO */
   1283     case 0x0c:	/* EMIFS_CONFIG */
   1284     case 0x10:	/* EMIFS_CS0_CONFIG */
   1285     case 0x14:	/* EMIFS_CS1_CONFIG */
   1286     case 0x18:	/* EMIFS_CS2_CONFIG */
   1287     case 0x1c:	/* EMIFS_CS3_CONFIG */
   1288     case 0x24:	/* EMIFF_MRS */
   1289     case 0x28:	/* TIMEOUT1 */
   1290     case 0x2c:	/* TIMEOUT2 */
   1291     case 0x30:	/* TIMEOUT3 */
   1292     case 0x3c:	/* EMIFF_SDRAM_CONFIG_2 */
   1293     case 0x40:	/* EMIFS_CFG_DYN_WAIT */
   1294         return s->tcmi_regs[addr >> 2];
   1295 
   1296     case 0x20:	/* EMIFF_SDRAM_CONFIG */
   1297         ret = s->tcmi_regs[addr >> 2];
   1298         s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
   1299         /* XXX: We can try using the VGA_DIRTY flag for this */
   1300         return ret;
   1301     }
   1302 
   1303     OMAP_BAD_REG(addr);
   1304     return 0;
   1305 }
   1306 
   1307 static void omap_tcmi_write(void *opaque, hwaddr addr,
   1308                             uint64_t value, unsigned size)
   1309 {
   1310     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
   1311 
   1312     if (size != 4) {
   1313         omap_badwidth_write32(opaque, addr, value);
   1314         return;
   1315     }
   1316 
   1317     switch (addr) {
   1318     case 0x00:	/* IMIF_PRIO */
   1319     case 0x04:	/* EMIFS_PRIO */
   1320     case 0x08:	/* EMIFF_PRIO */
   1321     case 0x10:	/* EMIFS_CS0_CONFIG */
   1322     case 0x14:	/* EMIFS_CS1_CONFIG */
   1323     case 0x18:	/* EMIFS_CS2_CONFIG */
   1324     case 0x1c:	/* EMIFS_CS3_CONFIG */
   1325     case 0x20:	/* EMIFF_SDRAM_CONFIG */
   1326     case 0x24:	/* EMIFF_MRS */
   1327     case 0x28:	/* TIMEOUT1 */
   1328     case 0x2c:	/* TIMEOUT2 */
   1329     case 0x30:	/* TIMEOUT3 */
   1330     case 0x3c:	/* EMIFF_SDRAM_CONFIG_2 */
   1331     case 0x40:	/* EMIFS_CFG_DYN_WAIT */
   1332         s->tcmi_regs[addr >> 2] = value;
   1333         break;
   1334     case 0x0c:	/* EMIFS_CONFIG */
   1335         s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
   1336         break;
   1337 
   1338     default:
   1339         OMAP_BAD_REG(addr);
   1340     }
   1341 }
   1342 
   1343 static const MemoryRegionOps omap_tcmi_ops = {
   1344     .read = omap_tcmi_read,
   1345     .write = omap_tcmi_write,
   1346     .endianness = DEVICE_NATIVE_ENDIAN,
   1347 };
   1348 
   1349 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
   1350 {
   1351     mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
   1352     mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
   1353     mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
   1354     mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
   1355     mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
   1356     mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
   1357     mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
   1358     mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
   1359     mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
   1360     mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
   1361     mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
   1362     mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
   1363     mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
   1364     mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
   1365     mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
   1366 }
   1367 
   1368 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
   1369                 struct omap_mpu_state_s *mpu)
   1370 {
   1371     memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
   1372                           "omap-tcmi", 0x100);
   1373     memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
   1374     omap_tcmi_reset(mpu);
   1375 }
   1376 
   1377 /* Digital phase-locked loops control */
   1378 struct dpll_ctl_s {
   1379     MemoryRegion iomem;
   1380     uint16_t mode;
   1381     omap_clk dpll;
   1382 };
   1383 
   1384 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
   1385                                unsigned size)
   1386 {
   1387     struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
   1388 
   1389     if (size != 2) {
   1390         return omap_badwidth_read16(opaque, addr);
   1391     }
   1392 
   1393     if (addr == 0x00)	/* CTL_REG */
   1394         return s->mode;
   1395 
   1396     OMAP_BAD_REG(addr);
   1397     return 0;
   1398 }
   1399 
   1400 static void omap_dpll_write(void *opaque, hwaddr addr,
   1401                             uint64_t value, unsigned size)
   1402 {
   1403     struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
   1404     uint16_t diff;
   1405     static const int bypass_div[4] = { 1, 2, 4, 4 };
   1406     int div, mult;
   1407 
   1408     if (size != 2) {
   1409         omap_badwidth_write16(opaque, addr, value);
   1410         return;
   1411     }
   1412 
   1413     if (addr == 0x00) {	/* CTL_REG */
   1414         /* See omap_ulpd_pm_write() too */
   1415         diff = s->mode & value;
   1416         s->mode = value & 0x2fff;
   1417         if (diff & (0x3ff << 2)) {
   1418             if (value & (1 << 4)) {			/* PLL_ENABLE */
   1419                 div = ((value >> 5) & 3) + 1;		/* PLL_DIV */
   1420                 mult = MIN((value >> 7) & 0x1f, 1);	/* PLL_MULT */
   1421             } else {
   1422                 div = bypass_div[((value >> 2) & 3)];	/* BYPASS_DIV */
   1423                 mult = 1;
   1424             }
   1425             omap_clk_setrate(s->dpll, div, mult);
   1426         }
   1427 
   1428         /* Enter the desired mode.  */
   1429         s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
   1430 
   1431         /* Act as if the lock is restored.  */
   1432         s->mode |= 2;
   1433     } else {
   1434         OMAP_BAD_REG(addr);
   1435     }
   1436 }
   1437 
   1438 static const MemoryRegionOps omap_dpll_ops = {
   1439     .read = omap_dpll_read,
   1440     .write = omap_dpll_write,
   1441     .endianness = DEVICE_NATIVE_ENDIAN,
   1442 };
   1443 
   1444 static void omap_dpll_reset(struct dpll_ctl_s *s)
   1445 {
   1446     s->mode = 0x2002;
   1447     omap_clk_setrate(s->dpll, 1, 1);
   1448 }
   1449 
   1450 static struct dpll_ctl_s  *omap_dpll_init(MemoryRegion *memory,
   1451                            hwaddr base, omap_clk clk)
   1452 {
   1453     struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
   1454     memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
   1455 
   1456     s->dpll = clk;
   1457     omap_dpll_reset(s);
   1458 
   1459     memory_region_add_subregion(memory, base, &s->iomem);
   1460     return s;
   1461 }
   1462 
   1463 /* MPU Clock/Reset/Power Mode Control */
   1464 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
   1465                                unsigned size)
   1466 {
   1467     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
   1468 
   1469     if (size != 2) {
   1470         return omap_badwidth_read16(opaque, addr);
   1471     }
   1472 
   1473     switch (addr) {
   1474     case 0x00:	/* ARM_CKCTL */
   1475         return s->clkm.arm_ckctl;
   1476 
   1477     case 0x04:	/* ARM_IDLECT1 */
   1478         return s->clkm.arm_idlect1;
   1479 
   1480     case 0x08:	/* ARM_IDLECT2 */
   1481         return s->clkm.arm_idlect2;
   1482 
   1483     case 0x0c:	/* ARM_EWUPCT */
   1484         return s->clkm.arm_ewupct;
   1485 
   1486     case 0x10:	/* ARM_RSTCT1 */
   1487         return s->clkm.arm_rstct1;
   1488 
   1489     case 0x14:	/* ARM_RSTCT2 */
   1490         return s->clkm.arm_rstct2;
   1491 
   1492     case 0x18:	/* ARM_SYSST */
   1493         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
   1494 
   1495     case 0x1c:	/* ARM_CKOUT1 */
   1496         return s->clkm.arm_ckout1;
   1497 
   1498     case 0x20:	/* ARM_CKOUT2 */
   1499         break;
   1500     }
   1501 
   1502     OMAP_BAD_REG(addr);
   1503     return 0;
   1504 }
   1505 
   1506 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
   1507                 uint16_t diff, uint16_t value)
   1508 {
   1509     omap_clk clk;
   1510 
   1511     if (diff & (1 << 14)) {				/* ARM_INTHCK_SEL */
   1512         if (value & (1 << 14))
   1513             /* Reserved */;
   1514         else {
   1515             clk = omap_findclk(s, "arminth_ck");
   1516             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
   1517         }
   1518     }
   1519     if (diff & (1 << 12)) {				/* ARM_TIMXO */
   1520         clk = omap_findclk(s, "armtim_ck");
   1521         if (value & (1 << 12))
   1522             omap_clk_reparent(clk, omap_findclk(s, "clkin"));
   1523         else
   1524             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
   1525     }
   1526     /* XXX: en_dspck */
   1527     if (diff & (3 << 10)) {				/* DSPMMUDIV */
   1528         clk = omap_findclk(s, "dspmmu_ck");
   1529         omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
   1530     }
   1531     if (diff & (3 << 8)) {				/* TCDIV */
   1532         clk = omap_findclk(s, "tc_ck");
   1533         omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
   1534     }
   1535     if (diff & (3 << 6)) {				/* DSPDIV */
   1536         clk = omap_findclk(s, "dsp_ck");
   1537         omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
   1538     }
   1539     if (diff & (3 << 4)) {				/* ARMDIV */
   1540         clk = omap_findclk(s, "arm_ck");
   1541         omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
   1542     }
   1543     if (diff & (3 << 2)) {				/* LCDDIV */
   1544         clk = omap_findclk(s, "lcd_ck");
   1545         omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
   1546     }
   1547     if (diff & (3 << 0)) {				/* PERDIV */
   1548         clk = omap_findclk(s, "armper_ck");
   1549         omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
   1550     }
   1551 }
   1552 
   1553 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
   1554                 uint16_t diff, uint16_t value)
   1555 {
   1556     omap_clk clk;
   1557 
   1558     if (value & (1 << 11)) {                            /* SETARM_IDLE */
   1559         cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
   1560     }
   1561     if (!(value & (1 << 10))) {                         /* WKUP_MODE */
   1562         /* XXX: disable wakeup from IRQ */
   1563         qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
   1564     }
   1565 
   1566 #define SET_CANIDLE(clock, bit)				\
   1567     if (diff & (1 << bit)) {				\
   1568         clk = omap_findclk(s, clock);			\
   1569         omap_clk_canidle(clk, (value >> bit) & 1);	\
   1570     }
   1571     SET_CANIDLE("mpuwd_ck", 0)				/* IDLWDT_ARM */
   1572     SET_CANIDLE("armxor_ck", 1)				/* IDLXORP_ARM */
   1573     SET_CANIDLE("mpuper_ck", 2)				/* IDLPER_ARM */
   1574     SET_CANIDLE("lcd_ck", 3)				/* IDLLCD_ARM */
   1575     SET_CANIDLE("lb_ck", 4)				/* IDLLB_ARM */
   1576     SET_CANIDLE("hsab_ck", 5)				/* IDLHSAB_ARM */
   1577     SET_CANIDLE("tipb_ck", 6)				/* IDLIF_ARM */
   1578     SET_CANIDLE("dma_ck", 6)				/* IDLIF_ARM */
   1579     SET_CANIDLE("tc_ck", 6)				/* IDLIF_ARM */
   1580     SET_CANIDLE("dpll1", 7)				/* IDLDPLL_ARM */
   1581     SET_CANIDLE("dpll2", 7)				/* IDLDPLL_ARM */
   1582     SET_CANIDLE("dpll3", 7)				/* IDLDPLL_ARM */
   1583     SET_CANIDLE("mpui_ck", 8)				/* IDLAPI_ARM */
   1584     SET_CANIDLE("armtim_ck", 9)				/* IDLTIM_ARM */
   1585 }
   1586 
   1587 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
   1588                 uint16_t diff, uint16_t value)
   1589 {
   1590     omap_clk clk;
   1591 
   1592 #define SET_ONOFF(clock, bit)				\
   1593     if (diff & (1 << bit)) {				\
   1594         clk = omap_findclk(s, clock);			\
   1595         omap_clk_onoff(clk, (value >> bit) & 1);	\
   1596     }
   1597     SET_ONOFF("mpuwd_ck", 0)				/* EN_WDTCK */
   1598     SET_ONOFF("armxor_ck", 1)				/* EN_XORPCK */
   1599     SET_ONOFF("mpuper_ck", 2)				/* EN_PERCK */
   1600     SET_ONOFF("lcd_ck", 3)				/* EN_LCDCK */
   1601     SET_ONOFF("lb_ck", 4)				/* EN_LBCK */
   1602     SET_ONOFF("hsab_ck", 5)				/* EN_HSABCK */
   1603     SET_ONOFF("mpui_ck", 6)				/* EN_APICK */
   1604     SET_ONOFF("armtim_ck", 7)				/* EN_TIMCK */
   1605     SET_CANIDLE("dma_ck", 8)				/* DMACK_REQ */
   1606     SET_ONOFF("arm_gpio_ck", 9)				/* EN_GPIOCK */
   1607     SET_ONOFF("lbfree_ck", 10)				/* EN_LBFREECK */
   1608 }
   1609 
   1610 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
   1611                 uint16_t diff, uint16_t value)
   1612 {
   1613     omap_clk clk;
   1614 
   1615     if (diff & (3 << 4)) {				/* TCLKOUT */
   1616         clk = omap_findclk(s, "tclk_out");
   1617         switch ((value >> 4) & 3) {
   1618         case 1:
   1619             omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
   1620             omap_clk_onoff(clk, 1);
   1621             break;
   1622         case 2:
   1623             omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
   1624             omap_clk_onoff(clk, 1);
   1625             break;
   1626         default:
   1627             omap_clk_onoff(clk, 0);
   1628         }
   1629     }
   1630     if (diff & (3 << 2)) {				/* DCLKOUT */
   1631         clk = omap_findclk(s, "dclk_out");
   1632         switch ((value >> 2) & 3) {
   1633         case 0:
   1634             omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
   1635             break;
   1636         case 1:
   1637             omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
   1638             break;
   1639         case 2:
   1640             omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
   1641             break;
   1642         case 3:
   1643             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
   1644             break;
   1645         }
   1646     }
   1647     if (diff & (3 << 0)) {				/* ACLKOUT */
   1648         clk = omap_findclk(s, "aclk_out");
   1649         switch ((value >> 0) & 3) {
   1650         case 1:
   1651             omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
   1652             omap_clk_onoff(clk, 1);
   1653             break;
   1654         case 2:
   1655             omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
   1656             omap_clk_onoff(clk, 1);
   1657             break;
   1658         case 3:
   1659             omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
   1660             omap_clk_onoff(clk, 1);
   1661             break;
   1662         default:
   1663             omap_clk_onoff(clk, 0);
   1664         }
   1665     }
   1666 }
   1667 
   1668 static void omap_clkm_write(void *opaque, hwaddr addr,
   1669                             uint64_t value, unsigned size)
   1670 {
   1671     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
   1672     uint16_t diff;
   1673     omap_clk clk;
   1674     static const char *clkschemename[8] = {
   1675         "fully synchronous", "fully asynchronous", "synchronous scalable",
   1676         "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
   1677     };
   1678 
   1679     if (size != 2) {
   1680         omap_badwidth_write16(opaque, addr, value);
   1681         return;
   1682     }
   1683 
   1684     switch (addr) {
   1685     case 0x00:	/* ARM_CKCTL */
   1686         diff = s->clkm.arm_ckctl ^ value;
   1687         s->clkm.arm_ckctl = value & 0x7fff;
   1688         omap_clkm_ckctl_update(s, diff, value);
   1689         return;
   1690 
   1691     case 0x04:	/* ARM_IDLECT1 */
   1692         diff = s->clkm.arm_idlect1 ^ value;
   1693         s->clkm.arm_idlect1 = value & 0x0fff;
   1694         omap_clkm_idlect1_update(s, diff, value);
   1695         return;
   1696 
   1697     case 0x08:	/* ARM_IDLECT2 */
   1698         diff = s->clkm.arm_idlect2 ^ value;
   1699         s->clkm.arm_idlect2 = value & 0x07ff;
   1700         omap_clkm_idlect2_update(s, diff, value);
   1701         return;
   1702 
   1703     case 0x0c:	/* ARM_EWUPCT */
   1704         s->clkm.arm_ewupct = value & 0x003f;
   1705         return;
   1706 
   1707     case 0x10:	/* ARM_RSTCT1 */
   1708         diff = s->clkm.arm_rstct1 ^ value;
   1709         s->clkm.arm_rstct1 = value & 0x0007;
   1710         if (value & 9) {
   1711             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
   1712             s->clkm.cold_start = 0xa;
   1713         }
   1714         if (diff & ~value & 4) {				/* DSP_RST */
   1715             omap_mpui_reset(s);
   1716             omap_tipb_bridge_reset(s->private_tipb);
   1717             omap_tipb_bridge_reset(s->public_tipb);
   1718         }
   1719         if (diff & 2) {						/* DSP_EN */
   1720             clk = omap_findclk(s, "dsp_ck");
   1721             omap_clk_canidle(clk, (~value >> 1) & 1);
   1722         }
   1723         return;
   1724 
   1725     case 0x14:	/* ARM_RSTCT2 */
   1726         s->clkm.arm_rstct2 = value & 0x0001;
   1727         return;
   1728 
   1729     case 0x18:	/* ARM_SYSST */
   1730         if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
   1731             s->clkm.clocking_scheme = (value >> 11) & 7;
   1732             printf("%s: clocking scheme set to %s\n", __func__,
   1733                    clkschemename[s->clkm.clocking_scheme]);
   1734         }
   1735         s->clkm.cold_start &= value & 0x3f;
   1736         return;
   1737 
   1738     case 0x1c:	/* ARM_CKOUT1 */
   1739         diff = s->clkm.arm_ckout1 ^ value;
   1740         s->clkm.arm_ckout1 = value & 0x003f;
   1741         omap_clkm_ckout1_update(s, diff, value);
   1742         return;
   1743 
   1744     case 0x20:	/* ARM_CKOUT2 */
   1745     default:
   1746         OMAP_BAD_REG(addr);
   1747     }
   1748 }
   1749 
   1750 static const MemoryRegionOps omap_clkm_ops = {
   1751     .read = omap_clkm_read,
   1752     .write = omap_clkm_write,
   1753     .endianness = DEVICE_NATIVE_ENDIAN,
   1754 };
   1755 
   1756 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
   1757                                  unsigned size)
   1758 {
   1759     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
   1760     CPUState *cpu = CPU(s->cpu);
   1761 
   1762     if (size != 2) {
   1763         return omap_badwidth_read16(opaque, addr);
   1764     }
   1765 
   1766     switch (addr) {
   1767     case 0x04:	/* DSP_IDLECT1 */
   1768         return s->clkm.dsp_idlect1;
   1769 
   1770     case 0x08:	/* DSP_IDLECT2 */
   1771         return s->clkm.dsp_idlect2;
   1772 
   1773     case 0x14:	/* DSP_RSTCT2 */
   1774         return s->clkm.dsp_rstct2;
   1775 
   1776     case 0x18:	/* DSP_SYSST */
   1777         return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
   1778                 (cpu->halted << 6);      /* Quite useless... */
   1779     }
   1780 
   1781     OMAP_BAD_REG(addr);
   1782     return 0;
   1783 }
   1784 
   1785 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
   1786                 uint16_t diff, uint16_t value)
   1787 {
   1788     omap_clk clk;
   1789 
   1790     SET_CANIDLE("dspxor_ck", 1);			/* IDLXORP_DSP */
   1791 }
   1792 
   1793 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
   1794                 uint16_t diff, uint16_t value)
   1795 {
   1796     omap_clk clk;
   1797 
   1798     SET_ONOFF("dspxor_ck", 1);				/* EN_XORPCK */
   1799 }
   1800 
   1801 static void omap_clkdsp_write(void *opaque, hwaddr addr,
   1802                               uint64_t value, unsigned size)
   1803 {
   1804     struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
   1805     uint16_t diff;
   1806 
   1807     if (size != 2) {
   1808         omap_badwidth_write16(opaque, addr, value);
   1809         return;
   1810     }
   1811 
   1812     switch (addr) {
   1813     case 0x04:	/* DSP_IDLECT1 */
   1814         diff = s->clkm.dsp_idlect1 ^ value;
   1815         s->clkm.dsp_idlect1 = value & 0x01f7;
   1816         omap_clkdsp_idlect1_update(s, diff, value);
   1817         break;
   1818 
   1819     case 0x08:	/* DSP_IDLECT2 */
   1820         s->clkm.dsp_idlect2 = value & 0x0037;
   1821         diff = s->clkm.dsp_idlect1 ^ value;
   1822         omap_clkdsp_idlect2_update(s, diff, value);
   1823         break;
   1824 
   1825     case 0x14:	/* DSP_RSTCT2 */
   1826         s->clkm.dsp_rstct2 = value & 0x0001;
   1827         break;
   1828 
   1829     case 0x18:	/* DSP_SYSST */
   1830         s->clkm.cold_start &= value & 0x3f;
   1831         break;
   1832 
   1833     default:
   1834         OMAP_BAD_REG(addr);
   1835     }
   1836 }
   1837 
   1838 static const MemoryRegionOps omap_clkdsp_ops = {
   1839     .read = omap_clkdsp_read,
   1840     .write = omap_clkdsp_write,
   1841     .endianness = DEVICE_NATIVE_ENDIAN,
   1842 };
   1843 
   1844 static void omap_clkm_reset(struct omap_mpu_state_s *s)
   1845 {
   1846     if (s->wdt && s->wdt->reset)
   1847         s->clkm.cold_start = 0x6;
   1848     s->clkm.clocking_scheme = 0;
   1849     omap_clkm_ckctl_update(s, ~0, 0x3000);
   1850     s->clkm.arm_ckctl = 0x3000;
   1851     omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
   1852     s->clkm.arm_idlect1 = 0x0400;
   1853     omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
   1854     s->clkm.arm_idlect2 = 0x0100;
   1855     s->clkm.arm_ewupct = 0x003f;
   1856     s->clkm.arm_rstct1 = 0x0000;
   1857     s->clkm.arm_rstct2 = 0x0000;
   1858     s->clkm.arm_ckout1 = 0x0015;
   1859     s->clkm.dpll1_mode = 0x2002;
   1860     omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
   1861     s->clkm.dsp_idlect1 = 0x0040;
   1862     omap_clkdsp_idlect2_update(s, ~0, 0x0000);
   1863     s->clkm.dsp_idlect2 = 0x0000;
   1864     s->clkm.dsp_rstct2 = 0x0000;
   1865 }
   1866 
   1867 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
   1868                 hwaddr dsp_base, struct omap_mpu_state_s *s)
   1869 {
   1870     memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
   1871                           "omap-clkm", 0x100);
   1872     memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
   1873                           "omap-clkdsp", 0x1000);
   1874 
   1875     s->clkm.arm_idlect1 = 0x03ff;
   1876     s->clkm.arm_idlect2 = 0x0100;
   1877     s->clkm.dsp_idlect1 = 0x0002;
   1878     omap_clkm_reset(s);
   1879     s->clkm.cold_start = 0x3a;
   1880 
   1881     memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
   1882     memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
   1883 }
   1884 
   1885 /* MPU I/O */
   1886 struct omap_mpuio_s {
   1887     qemu_irq irq;
   1888     qemu_irq kbd_irq;
   1889     qemu_irq *in;
   1890     qemu_irq handler[16];
   1891     qemu_irq wakeup;
   1892     MemoryRegion iomem;
   1893 
   1894     uint16_t inputs;
   1895     uint16_t outputs;
   1896     uint16_t dir;
   1897     uint16_t edge;
   1898     uint16_t mask;
   1899     uint16_t ints;
   1900 
   1901     uint16_t debounce;
   1902     uint16_t latch;
   1903     uint8_t event;
   1904 
   1905     uint8_t buttons[5];
   1906     uint8_t row_latch;
   1907     uint8_t cols;
   1908     int kbd_mask;
   1909     int clk;
   1910 };
   1911 
   1912 static void omap_mpuio_set(void *opaque, int line, int level)
   1913 {
   1914     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
   1915     uint16_t prev = s->inputs;
   1916 
   1917     if (level)
   1918         s->inputs |= 1 << line;
   1919     else
   1920         s->inputs &= ~(1 << line);
   1921 
   1922     if (((1 << line) & s->dir & ~s->mask) && s->clk) {
   1923         if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
   1924             s->ints |= 1 << line;
   1925             qemu_irq_raise(s->irq);
   1926             /* TODO: wakeup */
   1927         }
   1928         if ((s->event & (1 << 0)) &&		/* SET_GPIO_EVENT_MODE */
   1929                 (s->event >> 1) == line)	/* PIN_SELECT */
   1930             s->latch = s->inputs;
   1931     }
   1932 }
   1933 
   1934 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
   1935 {
   1936     int i;
   1937     uint8_t *row, rows = 0, cols = ~s->cols;
   1938 
   1939     for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
   1940         if (*row & cols)
   1941             rows |= i;
   1942 
   1943     qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
   1944     s->row_latch = ~rows;
   1945 }
   1946 
   1947 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
   1948                                 unsigned size)
   1949 {
   1950     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
   1951     int offset = addr & OMAP_MPUI_REG_MASK;
   1952     uint16_t ret;
   1953 
   1954     if (size != 2) {
   1955         return omap_badwidth_read16(opaque, addr);
   1956     }
   1957 
   1958     switch (offset) {
   1959     case 0x00:	/* INPUT_LATCH */
   1960         return s->inputs;
   1961 
   1962     case 0x04:	/* OUTPUT_REG */
   1963         return s->outputs;
   1964 
   1965     case 0x08:	/* IO_CNTL */
   1966         return s->dir;
   1967 
   1968     case 0x10:	/* KBR_LATCH */
   1969         return s->row_latch;
   1970 
   1971     case 0x14:	/* KBC_REG */
   1972         return s->cols;
   1973 
   1974     case 0x18:	/* GPIO_EVENT_MODE_REG */
   1975         return s->event;
   1976 
   1977     case 0x1c:	/* GPIO_INT_EDGE_REG */
   1978         return s->edge;
   1979 
   1980     case 0x20:	/* KBD_INT */
   1981         return (~s->row_latch & 0x1f) && !s->kbd_mask;
   1982 
   1983     case 0x24:	/* GPIO_INT */
   1984         ret = s->ints;
   1985         s->ints &= s->mask;
   1986         if (ret)
   1987             qemu_irq_lower(s->irq);
   1988         return ret;
   1989 
   1990     case 0x28:	/* KBD_MASKIT */
   1991         return s->kbd_mask;
   1992 
   1993     case 0x2c:	/* GPIO_MASKIT */
   1994         return s->mask;
   1995 
   1996     case 0x30:	/* GPIO_DEBOUNCING_REG */
   1997         return s->debounce;
   1998 
   1999     case 0x34:	/* GPIO_LATCH_REG */
   2000         return s->latch;
   2001     }
   2002 
   2003     OMAP_BAD_REG(addr);
   2004     return 0;
   2005 }
   2006 
   2007 static void omap_mpuio_write(void *opaque, hwaddr addr,
   2008                              uint64_t value, unsigned size)
   2009 {
   2010     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
   2011     int offset = addr & OMAP_MPUI_REG_MASK;
   2012     uint16_t diff;
   2013     int ln;
   2014 
   2015     if (size != 2) {
   2016         omap_badwidth_write16(opaque, addr, value);
   2017         return;
   2018     }
   2019 
   2020     switch (offset) {
   2021     case 0x04:	/* OUTPUT_REG */
   2022         diff = (s->outputs ^ value) & ~s->dir;
   2023         s->outputs = value;
   2024         while ((ln = ctz32(diff)) != 32) {
   2025             if (s->handler[ln])
   2026                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
   2027             diff &= ~(1 << ln);
   2028         }
   2029         break;
   2030 
   2031     case 0x08:	/* IO_CNTL */
   2032         diff = s->outputs & (s->dir ^ value);
   2033         s->dir = value;
   2034 
   2035         value = s->outputs & ~s->dir;
   2036         while ((ln = ctz32(diff)) != 32) {
   2037             if (s->handler[ln])
   2038                 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
   2039             diff &= ~(1 << ln);
   2040         }
   2041         break;
   2042 
   2043     case 0x14:	/* KBC_REG */
   2044         s->cols = value;
   2045         omap_mpuio_kbd_update(s);
   2046         break;
   2047 
   2048     case 0x18:	/* GPIO_EVENT_MODE_REG */
   2049         s->event = value & 0x1f;
   2050         break;
   2051 
   2052     case 0x1c:	/* GPIO_INT_EDGE_REG */
   2053         s->edge = value;
   2054         break;
   2055 
   2056     case 0x28:	/* KBD_MASKIT */
   2057         s->kbd_mask = value & 1;
   2058         omap_mpuio_kbd_update(s);
   2059         break;
   2060 
   2061     case 0x2c:	/* GPIO_MASKIT */
   2062         s->mask = value;
   2063         break;
   2064 
   2065     case 0x30:	/* GPIO_DEBOUNCING_REG */
   2066         s->debounce = value & 0x1ff;
   2067         break;
   2068 
   2069     case 0x00:	/* INPUT_LATCH */
   2070     case 0x10:	/* KBR_LATCH */
   2071     case 0x20:	/* KBD_INT */
   2072     case 0x24:	/* GPIO_INT */
   2073     case 0x34:	/* GPIO_LATCH_REG */
   2074         OMAP_RO_REG(addr);
   2075         return;
   2076 
   2077     default:
   2078         OMAP_BAD_REG(addr);
   2079         return;
   2080     }
   2081 }
   2082 
   2083 static const MemoryRegionOps omap_mpuio_ops  = {
   2084     .read = omap_mpuio_read,
   2085     .write = omap_mpuio_write,
   2086     .endianness = DEVICE_NATIVE_ENDIAN,
   2087 };
   2088 
   2089 static void omap_mpuio_reset(struct omap_mpuio_s *s)
   2090 {
   2091     s->inputs = 0;
   2092     s->outputs = 0;
   2093     s->dir = ~0;
   2094     s->event = 0;
   2095     s->edge = 0;
   2096     s->kbd_mask = 0;
   2097     s->mask = 0;
   2098     s->debounce = 0;
   2099     s->latch = 0;
   2100     s->ints = 0;
   2101     s->row_latch = 0x1f;
   2102     s->clk = 1;
   2103 }
   2104 
   2105 static void omap_mpuio_onoff(void *opaque, int line, int on)
   2106 {
   2107     struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
   2108 
   2109     s->clk = on;
   2110     if (on)
   2111         omap_mpuio_kbd_update(s);
   2112 }
   2113 
   2114 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
   2115                 hwaddr base,
   2116                 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
   2117                 omap_clk clk)
   2118 {
   2119     struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
   2120 
   2121     s->irq = gpio_int;
   2122     s->kbd_irq = kbd_int;
   2123     s->wakeup = wakeup;
   2124     s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
   2125     omap_mpuio_reset(s);
   2126 
   2127     memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
   2128                           "omap-mpuio", 0x800);
   2129     memory_region_add_subregion(memory, base, &s->iomem);
   2130 
   2131     omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
   2132 
   2133     return s;
   2134 }
   2135 
   2136 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
   2137 {
   2138     return s->in;
   2139 }
   2140 
   2141 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
   2142 {
   2143     if (line >= 16 || line < 0)
   2144         hw_error("%s: No GPIO line %i\n", __func__, line);
   2145     s->handler[line] = handler;
   2146 }
   2147 
   2148 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
   2149 {
   2150     if (row >= 5 || row < 0)
   2151         hw_error("%s: No key %i-%i\n", __func__, col, row);
   2152 
   2153     if (down)
   2154         s->buttons[row] |= 1 << col;
   2155     else
   2156         s->buttons[row] &= ~(1 << col);
   2157 
   2158     omap_mpuio_kbd_update(s);
   2159 }
   2160 
   2161 /* MicroWire Interface */
   2162 struct omap_uwire_s {
   2163     MemoryRegion iomem;
   2164     qemu_irq txirq;
   2165     qemu_irq rxirq;
   2166     qemu_irq txdrq;
   2167 
   2168     uint16_t txbuf;
   2169     uint16_t rxbuf;
   2170     uint16_t control;
   2171     uint16_t setup[5];
   2172 
   2173     uWireSlave *chip[4];
   2174 };
   2175 
   2176 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
   2177 {
   2178     int chipselect = (s->control >> 10) & 3;		/* INDEX */
   2179     uWireSlave *slave = s->chip[chipselect];
   2180 
   2181     if ((s->control >> 5) & 0x1f) {			/* NB_BITS_WR */
   2182         if (s->control & (1 << 12))			/* CS_CMD */
   2183             if (slave && slave->send)
   2184                 slave->send(slave->opaque,
   2185                                 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
   2186         s->control &= ~(1 << 14);			/* CSRB */
   2187         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
   2188          * a DRQ.  When is the level IRQ supposed to be reset?  */
   2189     }
   2190 
   2191     if ((s->control >> 0) & 0x1f) {			/* NB_BITS_RD */
   2192         if (s->control & (1 << 12))			/* CS_CMD */
   2193             if (slave && slave->receive)
   2194                 s->rxbuf = slave->receive(slave->opaque);
   2195         s->control |= 1 << 15;				/* RDRB */
   2196         /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
   2197          * a DRQ.  When is the level IRQ supposed to be reset?  */
   2198     }
   2199 }
   2200 
   2201 static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
   2202                                 unsigned size)
   2203 {
   2204     struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
   2205     int offset = addr & OMAP_MPUI_REG_MASK;
   2206 
   2207     if (size != 2) {
   2208         return omap_badwidth_read16(opaque, addr);
   2209     }
   2210 
   2211     switch (offset) {
   2212     case 0x00:	/* RDR */
   2213         s->control &= ~(1 << 15);			/* RDRB */
   2214         return s->rxbuf;
   2215 
   2216     case 0x04:	/* CSR */
   2217         return s->control;
   2218 
   2219     case 0x08:	/* SR1 */
   2220         return s->setup[0];
   2221     case 0x0c:	/* SR2 */
   2222         return s->setup[1];
   2223     case 0x10:	/* SR3 */
   2224         return s->setup[2];
   2225     case 0x14:	/* SR4 */
   2226         return s->setup[3];
   2227     case 0x18:	/* SR5 */
   2228         return s->setup[4];
   2229     }
   2230 
   2231     OMAP_BAD_REG(addr);
   2232     return 0;
   2233 }
   2234 
   2235 static void omap_uwire_write(void *opaque, hwaddr addr,
   2236                              uint64_t value, unsigned size)
   2237 {
   2238     struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
   2239     int offset = addr & OMAP_MPUI_REG_MASK;
   2240 
   2241     if (size != 2) {
   2242         omap_badwidth_write16(opaque, addr, value);
   2243         return;
   2244     }
   2245 
   2246     switch (offset) {
   2247     case 0x00:	/* TDR */
   2248         s->txbuf = value;				/* TD */
   2249         if ((s->setup[4] & (1 << 2)) &&			/* AUTO_TX_EN */
   2250                         ((s->setup[4] & (1 << 3)) ||	/* CS_TOGGLE_TX_EN */
   2251                          (s->control & (1 << 12)))) {	/* CS_CMD */
   2252             s->control |= 1 << 14;			/* CSRB */
   2253             omap_uwire_transfer_start(s);
   2254         }
   2255         break;
   2256 
   2257     case 0x04:	/* CSR */
   2258         s->control = value & 0x1fff;
   2259         if (value & (1 << 13))				/* START */
   2260             omap_uwire_transfer_start(s);
   2261         break;
   2262 
   2263     case 0x08:	/* SR1 */
   2264         s->setup[0] = value & 0x003f;
   2265         break;
   2266 
   2267     case 0x0c:	/* SR2 */
   2268         s->setup[1] = value & 0x0fc0;
   2269         break;
   2270 
   2271     case 0x10:	/* SR3 */
   2272         s->setup[2] = value & 0x0003;
   2273         break;
   2274 
   2275     case 0x14:	/* SR4 */
   2276         s->setup[3] = value & 0x0001;
   2277         break;
   2278 
   2279     case 0x18:	/* SR5 */
   2280         s->setup[4] = value & 0x000f;
   2281         break;
   2282 
   2283     default:
   2284         OMAP_BAD_REG(addr);
   2285         return;
   2286     }
   2287 }
   2288 
   2289 static const MemoryRegionOps omap_uwire_ops = {
   2290     .read = omap_uwire_read,
   2291     .write = omap_uwire_write,
   2292     .endianness = DEVICE_NATIVE_ENDIAN,
   2293 };
   2294 
   2295 static void omap_uwire_reset(struct omap_uwire_s *s)
   2296 {
   2297     s->control = 0;
   2298     s->setup[0] = 0;
   2299     s->setup[1] = 0;
   2300     s->setup[2] = 0;
   2301     s->setup[3] = 0;
   2302     s->setup[4] = 0;
   2303 }
   2304 
   2305 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
   2306                                             hwaddr base,
   2307                                             qemu_irq txirq, qemu_irq rxirq,
   2308                                             qemu_irq dma,
   2309                                             omap_clk clk)
   2310 {
   2311     struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
   2312 
   2313     s->txirq = txirq;
   2314     s->rxirq = rxirq;
   2315     s->txdrq = dma;
   2316     omap_uwire_reset(s);
   2317 
   2318     memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
   2319     memory_region_add_subregion(system_memory, base, &s->iomem);
   2320 
   2321     return s;
   2322 }
   2323 
   2324 void omap_uwire_attach(struct omap_uwire_s *s,
   2325                 uWireSlave *slave, int chipselect)
   2326 {
   2327     if (chipselect < 0 || chipselect > 3) {
   2328         error_report("%s: Bad chipselect %i", __func__, chipselect);
   2329         exit(-1);
   2330     }
   2331 
   2332     s->chip[chipselect] = slave;
   2333 }
   2334 
   2335 /* Pseudonoise Pulse-Width Light Modulator */
   2336 struct omap_pwl_s {
   2337     MemoryRegion iomem;
   2338     uint8_t output;
   2339     uint8_t level;
   2340     uint8_t enable;
   2341     int clk;
   2342 };
   2343 
   2344 static void omap_pwl_update(struct omap_pwl_s *s)
   2345 {
   2346     int output = (s->clk && s->enable) ? s->level : 0;
   2347 
   2348     if (output != s->output) {
   2349         s->output = output;
   2350         printf("%s: Backlight now at %i/256\n", __func__, output);
   2351     }
   2352 }
   2353 
   2354 static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
   2355                               unsigned size)
   2356 {
   2357     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
   2358     int offset = addr & OMAP_MPUI_REG_MASK;
   2359 
   2360     if (size != 1) {
   2361         return omap_badwidth_read8(opaque, addr);
   2362     }
   2363 
   2364     switch (offset) {
   2365     case 0x00:	/* PWL_LEVEL */
   2366         return s->level;
   2367     case 0x04:	/* PWL_CTRL */
   2368         return s->enable;
   2369     }
   2370     OMAP_BAD_REG(addr);
   2371     return 0;
   2372 }
   2373 
   2374 static void omap_pwl_write(void *opaque, hwaddr addr,
   2375                            uint64_t value, unsigned size)
   2376 {
   2377     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
   2378     int offset = addr & OMAP_MPUI_REG_MASK;
   2379 
   2380     if (size != 1) {
   2381         omap_badwidth_write8(opaque, addr, value);
   2382         return;
   2383     }
   2384 
   2385     switch (offset) {
   2386     case 0x00:	/* PWL_LEVEL */
   2387         s->level = value;
   2388         omap_pwl_update(s);
   2389         break;
   2390     case 0x04:	/* PWL_CTRL */
   2391         s->enable = value & 1;
   2392         omap_pwl_update(s);
   2393         break;
   2394     default:
   2395         OMAP_BAD_REG(addr);
   2396         return;
   2397     }
   2398 }
   2399 
   2400 static const MemoryRegionOps omap_pwl_ops = {
   2401     .read = omap_pwl_read,
   2402     .write = omap_pwl_write,
   2403     .endianness = DEVICE_NATIVE_ENDIAN,
   2404 };
   2405 
   2406 static void omap_pwl_reset(struct omap_pwl_s *s)
   2407 {
   2408     s->output = 0;
   2409     s->level = 0;
   2410     s->enable = 0;
   2411     s->clk = 1;
   2412     omap_pwl_update(s);
   2413 }
   2414 
   2415 static void omap_pwl_clk_update(void *opaque, int line, int on)
   2416 {
   2417     struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
   2418 
   2419     s->clk = on;
   2420     omap_pwl_update(s);
   2421 }
   2422 
   2423 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
   2424                                         hwaddr base,
   2425                                         omap_clk clk)
   2426 {
   2427     struct omap_pwl_s *s = g_malloc0(sizeof(*s));
   2428 
   2429     omap_pwl_reset(s);
   2430 
   2431     memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
   2432                           "omap-pwl", 0x800);
   2433     memory_region_add_subregion(system_memory, base, &s->iomem);
   2434 
   2435     omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
   2436     return s;
   2437 }
   2438 
   2439 /* Pulse-Width Tone module */
   2440 struct omap_pwt_s {
   2441     MemoryRegion iomem;
   2442     uint8_t frc;
   2443     uint8_t vrc;
   2444     uint8_t gcr;
   2445     omap_clk clk;
   2446 };
   2447 
   2448 static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
   2449                               unsigned size)
   2450 {
   2451     struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
   2452     int offset = addr & OMAP_MPUI_REG_MASK;
   2453 
   2454     if (size != 1) {
   2455         return omap_badwidth_read8(opaque, addr);
   2456     }
   2457 
   2458     switch (offset) {
   2459     case 0x00:	/* FRC */
   2460         return s->frc;
   2461     case 0x04:	/* VCR */
   2462         return s->vrc;
   2463     case 0x08:	/* GCR */
   2464         return s->gcr;
   2465     }
   2466     OMAP_BAD_REG(addr);
   2467     return 0;
   2468 }
   2469 
   2470 static void omap_pwt_write(void *opaque, hwaddr addr,
   2471                            uint64_t value, unsigned size)
   2472 {
   2473     struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
   2474     int offset = addr & OMAP_MPUI_REG_MASK;
   2475 
   2476     if (size != 1) {
   2477         omap_badwidth_write8(opaque, addr, value);
   2478         return;
   2479     }
   2480 
   2481     switch (offset) {
   2482     case 0x00:	/* FRC */
   2483         s->frc = value & 0x3f;
   2484         break;
   2485     case 0x04:	/* VRC */
   2486         if ((value ^ s->vrc) & 1) {
   2487             if (value & 1)
   2488                 printf("%s: %iHz buzz on\n", __func__, (int)
   2489                                 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
   2490                                 ((omap_clk_getrate(s->clk) >> 3) /
   2491                                  /* Pre-multiplexer divider */
   2492                                  ((s->gcr & 2) ? 1 : 154) /
   2493                                  /* Octave multiplexer */
   2494                                  (2 << (value & 3)) *
   2495                                  /* 101/107 divider */
   2496                                  ((value & (1 << 2)) ? 101 : 107) *
   2497                                  /*  49/55 divider */
   2498                                  ((value & (1 << 3)) ?  49 : 55) *
   2499                                  /*  50/63 divider */
   2500                                  ((value & (1 << 4)) ?  50 : 63) *
   2501                                  /*  80/127 divider */
   2502                                  ((value & (1 << 5)) ?  80 : 127) /
   2503                                  (107 * 55 * 63 * 127)));
   2504             else
   2505                 printf("%s: silence!\n", __func__);
   2506         }
   2507         s->vrc = value & 0x7f;
   2508         break;
   2509     case 0x08:	/* GCR */
   2510         s->gcr = value & 3;
   2511         break;
   2512     default:
   2513         OMAP_BAD_REG(addr);
   2514         return;
   2515     }
   2516 }
   2517 
   2518 static const MemoryRegionOps omap_pwt_ops = {
   2519     .read =omap_pwt_read,
   2520     .write = omap_pwt_write,
   2521     .endianness = DEVICE_NATIVE_ENDIAN,
   2522 };
   2523 
   2524 static void omap_pwt_reset(struct omap_pwt_s *s)
   2525 {
   2526     s->frc = 0;
   2527     s->vrc = 0;
   2528     s->gcr = 0;
   2529 }
   2530 
   2531 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
   2532                                         hwaddr base,
   2533                                         omap_clk clk)
   2534 {
   2535     struct omap_pwt_s *s = g_malloc0(sizeof(*s));
   2536     s->clk = clk;
   2537     omap_pwt_reset(s);
   2538 
   2539     memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
   2540                           "omap-pwt", 0x800);
   2541     memory_region_add_subregion(system_memory, base, &s->iomem);
   2542     return s;
   2543 }
   2544 
   2545 /* Real-time Clock module */
   2546 struct omap_rtc_s {
   2547     MemoryRegion iomem;
   2548     qemu_irq irq;
   2549     qemu_irq alarm;
   2550     QEMUTimer *clk;
   2551 
   2552     uint8_t interrupts;
   2553     uint8_t status;
   2554     int16_t comp_reg;
   2555     int running;
   2556     int pm_am;
   2557     int auto_comp;
   2558     int round;
   2559     struct tm alarm_tm;
   2560     time_t alarm_ti;
   2561 
   2562     struct tm current_tm;
   2563     time_t ti;
   2564     uint64_t tick;
   2565 };
   2566 
   2567 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
   2568 {
   2569     /* s->alarm is level-triggered */
   2570     qemu_set_irq(s->alarm, (s->status >> 6) & 1);
   2571 }
   2572 
   2573 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
   2574 {
   2575     s->alarm_ti = mktimegm(&s->alarm_tm);
   2576     if (s->alarm_ti == -1)
   2577         printf("%s: conversion failed\n", __func__);
   2578 }
   2579 
   2580 static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
   2581                               unsigned size)
   2582 {
   2583     struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
   2584     int offset = addr & OMAP_MPUI_REG_MASK;
   2585     uint8_t i;
   2586 
   2587     if (size != 1) {
   2588         return omap_badwidth_read8(opaque, addr);
   2589     }
   2590 
   2591     switch (offset) {
   2592     case 0x00:	/* SECONDS_REG */
   2593         return to_bcd(s->current_tm.tm_sec);
   2594 
   2595     case 0x04:	/* MINUTES_REG */
   2596         return to_bcd(s->current_tm.tm_min);
   2597 
   2598     case 0x08:	/* HOURS_REG */
   2599         if (s->pm_am)
   2600             return ((s->current_tm.tm_hour > 11) << 7) |
   2601                     to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
   2602         else
   2603             return to_bcd(s->current_tm.tm_hour);
   2604 
   2605     case 0x0c:	/* DAYS_REG */
   2606         return to_bcd(s->current_tm.tm_mday);
   2607 
   2608     case 0x10:	/* MONTHS_REG */
   2609         return to_bcd(s->current_tm.tm_mon + 1);
   2610 
   2611     case 0x14:	/* YEARS_REG */
   2612         return to_bcd(s->current_tm.tm_year % 100);
   2613 
   2614     case 0x18:	/* WEEK_REG */
   2615         return s->current_tm.tm_wday;
   2616 
   2617     case 0x20:	/* ALARM_SECONDS_REG */
   2618         return to_bcd(s->alarm_tm.tm_sec);
   2619 
   2620     case 0x24:	/* ALARM_MINUTES_REG */
   2621         return to_bcd(s->alarm_tm.tm_min);
   2622 
   2623     case 0x28:	/* ALARM_HOURS_REG */
   2624         if (s->pm_am)
   2625             return ((s->alarm_tm.tm_hour > 11) << 7) |
   2626                     to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
   2627         else
   2628             return to_bcd(s->alarm_tm.tm_hour);
   2629 
   2630     case 0x2c:	/* ALARM_DAYS_REG */
   2631         return to_bcd(s->alarm_tm.tm_mday);
   2632 
   2633     case 0x30:	/* ALARM_MONTHS_REG */
   2634         return to_bcd(s->alarm_tm.tm_mon + 1);
   2635 
   2636     case 0x34:	/* ALARM_YEARS_REG */
   2637         return to_bcd(s->alarm_tm.tm_year % 100);
   2638 
   2639     case 0x40:	/* RTC_CTRL_REG */
   2640         return (s->pm_am << 3) | (s->auto_comp << 2) |
   2641                 (s->round << 1) | s->running;
   2642 
   2643     case 0x44:	/* RTC_STATUS_REG */
   2644         i = s->status;
   2645         s->status &= ~0x3d;
   2646         return i;
   2647 
   2648     case 0x48:	/* RTC_INTERRUPTS_REG */
   2649         return s->interrupts;
   2650 
   2651     case 0x4c:	/* RTC_COMP_LSB_REG */
   2652         return ((uint16_t) s->comp_reg) & 0xff;
   2653 
   2654     case 0x50:	/* RTC_COMP_MSB_REG */
   2655         return ((uint16_t) s->comp_reg) >> 8;
   2656     }
   2657 
   2658     OMAP_BAD_REG(addr);
   2659     return 0;
   2660 }
   2661 
   2662 static void omap_rtc_write(void *opaque, hwaddr addr,
   2663                            uint64_t value, unsigned size)
   2664 {
   2665     struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
   2666     int offset = addr & OMAP_MPUI_REG_MASK;
   2667     struct tm new_tm;
   2668     time_t ti[2];
   2669 
   2670     if (size != 1) {
   2671         omap_badwidth_write8(opaque, addr, value);
   2672         return;
   2673     }
   2674 
   2675     switch (offset) {
   2676     case 0x00:	/* SECONDS_REG */
   2677 #ifdef ALMDEBUG
   2678         printf("RTC SEC_REG <-- %02x\n", value);
   2679 #endif
   2680         s->ti -= s->current_tm.tm_sec;
   2681         s->ti += from_bcd(value);
   2682         return;
   2683 
   2684     case 0x04:	/* MINUTES_REG */
   2685 #ifdef ALMDEBUG
   2686         printf("RTC MIN_REG <-- %02x\n", value);
   2687 #endif
   2688         s->ti -= s->current_tm.tm_min * 60;
   2689         s->ti += from_bcd(value) * 60;
   2690         return;
   2691 
   2692     case 0x08:	/* HOURS_REG */
   2693 #ifdef ALMDEBUG
   2694         printf("RTC HRS_REG <-- %02x\n", value);
   2695 #endif
   2696         s->ti -= s->current_tm.tm_hour * 3600;
   2697         if (s->pm_am) {
   2698             s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
   2699             s->ti += ((value >> 7) & 1) * 43200;
   2700         } else
   2701             s->ti += from_bcd(value & 0x3f) * 3600;
   2702         return;
   2703 
   2704     case 0x0c:	/* DAYS_REG */
   2705 #ifdef ALMDEBUG
   2706         printf("RTC DAY_REG <-- %02x\n", value);
   2707 #endif
   2708         s->ti -= s->current_tm.tm_mday * 86400;
   2709         s->ti += from_bcd(value) * 86400;
   2710         return;
   2711 
   2712     case 0x10:	/* MONTHS_REG */
   2713 #ifdef ALMDEBUG
   2714         printf("RTC MTH_REG <-- %02x\n", value);
   2715 #endif
   2716         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
   2717         new_tm.tm_mon = from_bcd(value);
   2718         ti[0] = mktimegm(&s->current_tm);
   2719         ti[1] = mktimegm(&new_tm);
   2720 
   2721         if (ti[0] != -1 && ti[1] != -1) {
   2722             s->ti -= ti[0];
   2723             s->ti += ti[1];
   2724         } else {
   2725             /* A less accurate version */
   2726             s->ti -= s->current_tm.tm_mon * 2592000;
   2727             s->ti += from_bcd(value) * 2592000;
   2728         }
   2729         return;
   2730 
   2731     case 0x14:	/* YEARS_REG */
   2732 #ifdef ALMDEBUG
   2733         printf("RTC YRS_REG <-- %02x\n", value);
   2734 #endif
   2735         memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
   2736         new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
   2737         ti[0] = mktimegm(&s->current_tm);
   2738         ti[1] = mktimegm(&new_tm);
   2739 
   2740         if (ti[0] != -1 && ti[1] != -1) {
   2741             s->ti -= ti[0];
   2742             s->ti += ti[1];
   2743         } else {
   2744             /* A less accurate version */
   2745             s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
   2746             s->ti += (time_t)from_bcd(value) * 31536000;
   2747         }
   2748         return;
   2749 
   2750     case 0x18:	/* WEEK_REG */
   2751         return;	/* Ignored */
   2752 
   2753     case 0x20:	/* ALARM_SECONDS_REG */
   2754 #ifdef ALMDEBUG
   2755         printf("ALM SEC_REG <-- %02x\n", value);
   2756 #endif
   2757         s->alarm_tm.tm_sec = from_bcd(value);
   2758         omap_rtc_alarm_update(s);
   2759         return;
   2760 
   2761     case 0x24:	/* ALARM_MINUTES_REG */
   2762 #ifdef ALMDEBUG
   2763         printf("ALM MIN_REG <-- %02x\n", value);
   2764 #endif
   2765         s->alarm_tm.tm_min = from_bcd(value);
   2766         omap_rtc_alarm_update(s);
   2767         return;
   2768 
   2769     case 0x28:	/* ALARM_HOURS_REG */
   2770 #ifdef ALMDEBUG
   2771         printf("ALM HRS_REG <-- %02x\n", value);
   2772 #endif
   2773         if (s->pm_am)
   2774             s->alarm_tm.tm_hour =
   2775                     ((from_bcd(value & 0x3f)) % 12) +
   2776                     ((value >> 7) & 1) * 12;
   2777         else
   2778             s->alarm_tm.tm_hour = from_bcd(value);
   2779         omap_rtc_alarm_update(s);
   2780         return;
   2781 
   2782     case 0x2c:	/* ALARM_DAYS_REG */
   2783 #ifdef ALMDEBUG
   2784         printf("ALM DAY_REG <-- %02x\n", value);
   2785 #endif
   2786         s->alarm_tm.tm_mday = from_bcd(value);
   2787         omap_rtc_alarm_update(s);
   2788         return;
   2789 
   2790     case 0x30:	/* ALARM_MONTHS_REG */
   2791 #ifdef ALMDEBUG
   2792         printf("ALM MON_REG <-- %02x\n", value);
   2793 #endif
   2794         s->alarm_tm.tm_mon = from_bcd(value);
   2795         omap_rtc_alarm_update(s);
   2796         return;
   2797 
   2798     case 0x34:	/* ALARM_YEARS_REG */
   2799 #ifdef ALMDEBUG
   2800         printf("ALM YRS_REG <-- %02x\n", value);
   2801 #endif
   2802         s->alarm_tm.tm_year = from_bcd(value);
   2803         omap_rtc_alarm_update(s);
   2804         return;
   2805 
   2806     case 0x40:	/* RTC_CTRL_REG */
   2807 #ifdef ALMDEBUG
   2808         printf("RTC CONTROL <-- %02x\n", value);
   2809 #endif
   2810         s->pm_am = (value >> 3) & 1;
   2811         s->auto_comp = (value >> 2) & 1;
   2812         s->round = (value >> 1) & 1;
   2813         s->running = value & 1;
   2814         s->status &= 0xfd;
   2815         s->status |= s->running << 1;
   2816         return;
   2817 
   2818     case 0x44:	/* RTC_STATUS_REG */
   2819 #ifdef ALMDEBUG
   2820         printf("RTC STATUSL <-- %02x\n", value);
   2821 #endif
   2822         s->status &= ~((value & 0xc0) ^ 0x80);
   2823         omap_rtc_interrupts_update(s);
   2824         return;
   2825 
   2826     case 0x48:	/* RTC_INTERRUPTS_REG */
   2827 #ifdef ALMDEBUG
   2828         printf("RTC INTRS <-- %02x\n", value);
   2829 #endif
   2830         s->interrupts = value;
   2831         return;
   2832 
   2833     case 0x4c:	/* RTC_COMP_LSB_REG */
   2834 #ifdef ALMDEBUG
   2835         printf("RTC COMPLSB <-- %02x\n", value);
   2836 #endif
   2837         s->comp_reg &= 0xff00;
   2838         s->comp_reg |= 0x00ff & value;
   2839         return;
   2840 
   2841     case 0x50:	/* RTC_COMP_MSB_REG */
   2842 #ifdef ALMDEBUG
   2843         printf("RTC COMPMSB <-- %02x\n", value);
   2844 #endif
   2845         s->comp_reg &= 0x00ff;
   2846         s->comp_reg |= 0xff00 & (value << 8);
   2847         return;
   2848 
   2849     default:
   2850         OMAP_BAD_REG(addr);
   2851         return;
   2852     }
   2853 }
   2854 
   2855 static const MemoryRegionOps omap_rtc_ops = {
   2856     .read = omap_rtc_read,
   2857     .write = omap_rtc_write,
   2858     .endianness = DEVICE_NATIVE_ENDIAN,
   2859 };
   2860 
   2861 static void omap_rtc_tick(void *opaque)
   2862 {
   2863     struct omap_rtc_s *s = opaque;
   2864 
   2865     if (s->round) {
   2866         /* Round to nearest full minute.  */
   2867         if (s->current_tm.tm_sec < 30)
   2868             s->ti -= s->current_tm.tm_sec;
   2869         else
   2870             s->ti += 60 - s->current_tm.tm_sec;
   2871 
   2872         s->round = 0;
   2873     }
   2874 
   2875     localtime_r(&s->ti, &s->current_tm);
   2876 
   2877     if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
   2878         s->status |= 0x40;
   2879         omap_rtc_interrupts_update(s);
   2880     }
   2881 
   2882     if (s->interrupts & 0x04)
   2883         switch (s->interrupts & 3) {
   2884         case 0:
   2885             s->status |= 0x04;
   2886             qemu_irq_pulse(s->irq);
   2887             break;
   2888         case 1:
   2889             if (s->current_tm.tm_sec)
   2890                 break;
   2891             s->status |= 0x08;
   2892             qemu_irq_pulse(s->irq);
   2893             break;
   2894         case 2:
   2895             if (s->current_tm.tm_sec || s->current_tm.tm_min)
   2896                 break;
   2897             s->status |= 0x10;
   2898             qemu_irq_pulse(s->irq);
   2899             break;
   2900         case 3:
   2901             if (s->current_tm.tm_sec ||
   2902                             s->current_tm.tm_min || s->current_tm.tm_hour)
   2903                 break;
   2904             s->status |= 0x20;
   2905             qemu_irq_pulse(s->irq);
   2906             break;
   2907         }
   2908 
   2909     /* Move on */
   2910     if (s->running)
   2911         s->ti ++;
   2912     s->tick += 1000;
   2913 
   2914     /*
   2915      * Every full hour add a rough approximation of the compensation
   2916      * register to the 32kHz Timer (which drives the RTC) value. 
   2917      */
   2918     if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
   2919         s->tick += s->comp_reg * 1000 / 32768;
   2920 
   2921     timer_mod(s->clk, s->tick);
   2922 }
   2923 
   2924 static void omap_rtc_reset(struct omap_rtc_s *s)
   2925 {
   2926     struct tm tm;
   2927 
   2928     s->interrupts = 0;
   2929     s->comp_reg = 0;
   2930     s->running = 0;
   2931     s->pm_am = 0;
   2932     s->auto_comp = 0;
   2933     s->round = 0;
   2934     s->tick = qemu_clock_get_ms(rtc_clock);
   2935     memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
   2936     s->alarm_tm.tm_mday = 0x01;
   2937     s->status = 1 << 7;
   2938     qemu_get_timedate(&tm, 0);
   2939     s->ti = mktimegm(&tm);
   2940 
   2941     omap_rtc_alarm_update(s);
   2942     omap_rtc_tick(s);
   2943 }
   2944 
   2945 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
   2946                                         hwaddr base,
   2947                                         qemu_irq timerirq, qemu_irq alarmirq,
   2948                                         omap_clk clk)
   2949 {
   2950     struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
   2951 
   2952     s->irq = timerirq;
   2953     s->alarm = alarmirq;
   2954     s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
   2955 
   2956     omap_rtc_reset(s);
   2957 
   2958     memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
   2959                           "omap-rtc", 0x800);
   2960     memory_region_add_subregion(system_memory, base, &s->iomem);
   2961 
   2962     return s;
   2963 }
   2964 
   2965 /* Multi-channel Buffered Serial Port interfaces */
   2966 struct omap_mcbsp_s {
   2967     MemoryRegion iomem;
   2968     qemu_irq txirq;
   2969     qemu_irq rxirq;
   2970     qemu_irq txdrq;
   2971     qemu_irq rxdrq;
   2972 
   2973     uint16_t spcr[2];
   2974     uint16_t rcr[2];
   2975     uint16_t xcr[2];
   2976     uint16_t srgr[2];
   2977     uint16_t mcr[2];
   2978     uint16_t pcr;
   2979     uint16_t rcer[8];
   2980     uint16_t xcer[8];
   2981     int tx_rate;
   2982     int rx_rate;
   2983     int tx_req;
   2984     int rx_req;
   2985 
   2986     I2SCodec *codec;
   2987     QEMUTimer *source_timer;
   2988     QEMUTimer *sink_timer;
   2989 };
   2990 
   2991 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
   2992 {
   2993     int irq;
   2994 
   2995     switch ((s->spcr[0] >> 4) & 3) {			/* RINTM */
   2996     case 0:
   2997         irq = (s->spcr[0] >> 1) & 1;			/* RRDY */
   2998         break;
   2999     case 3:
   3000         irq = (s->spcr[0] >> 3) & 1;			/* RSYNCERR */
   3001         break;
   3002     default:
   3003         irq = 0;
   3004         break;
   3005     }
   3006 
   3007     if (irq)
   3008         qemu_irq_pulse(s->rxirq);
   3009 
   3010     switch ((s->spcr[1] >> 4) & 3) {			/* XINTM */
   3011     case 0:
   3012         irq = (s->spcr[1] >> 1) & 1;			/* XRDY */
   3013         break;
   3014     case 3:
   3015         irq = (s->spcr[1] >> 3) & 1;			/* XSYNCERR */
   3016         break;
   3017     default:
   3018         irq = 0;
   3019         break;
   3020     }
   3021 
   3022     if (irq)
   3023         qemu_irq_pulse(s->txirq);
   3024 }
   3025 
   3026 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
   3027 {
   3028     if ((s->spcr[0] >> 1) & 1)				/* RRDY */
   3029         s->spcr[0] |= 1 << 2;				/* RFULL */
   3030     s->spcr[0] |= 1 << 1;				/* RRDY */
   3031     qemu_irq_raise(s->rxdrq);
   3032     omap_mcbsp_intr_update(s);
   3033 }
   3034 
   3035 static void omap_mcbsp_source_tick(void *opaque)
   3036 {
   3037     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
   3038     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
   3039 
   3040     if (!s->rx_rate)
   3041         return;
   3042     if (s->rx_req)
   3043         printf("%s: Rx FIFO overrun\n", __func__);
   3044 
   3045     s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
   3046 
   3047     omap_mcbsp_rx_newdata(s);
   3048     timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
   3049                    NANOSECONDS_PER_SECOND);
   3050 }
   3051 
   3052 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
   3053 {
   3054     if (!s->codec || !s->codec->rts)
   3055         omap_mcbsp_source_tick(s);
   3056     else if (s->codec->in.len) {
   3057         s->rx_req = s->codec->in.len;
   3058         omap_mcbsp_rx_newdata(s);
   3059     }
   3060 }
   3061 
   3062 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
   3063 {
   3064     timer_del(s->source_timer);
   3065 }
   3066 
   3067 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
   3068 {
   3069     s->spcr[0] &= ~(1 << 1);				/* RRDY */
   3070     qemu_irq_lower(s->rxdrq);
   3071     omap_mcbsp_intr_update(s);
   3072 }
   3073 
   3074 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
   3075 {
   3076     s->spcr[1] |= 1 << 1;				/* XRDY */
   3077     qemu_irq_raise(s->txdrq);
   3078     omap_mcbsp_intr_update(s);
   3079 }
   3080 
   3081 static void omap_mcbsp_sink_tick(void *opaque)
   3082 {
   3083     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
   3084     static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
   3085 
   3086     if (!s->tx_rate)
   3087         return;
   3088     if (s->tx_req)
   3089         printf("%s: Tx FIFO underrun\n", __func__);
   3090 
   3091     s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
   3092 
   3093     omap_mcbsp_tx_newdata(s);
   3094     timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
   3095                    NANOSECONDS_PER_SECOND);
   3096 }
   3097 
   3098 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
   3099 {
   3100     if (!s->codec || !s->codec->cts)
   3101         omap_mcbsp_sink_tick(s);
   3102     else if (s->codec->out.size) {
   3103         s->tx_req = s->codec->out.size;
   3104         omap_mcbsp_tx_newdata(s);
   3105     }
   3106 }
   3107 
   3108 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
   3109 {
   3110     s->spcr[1] &= ~(1 << 1);				/* XRDY */
   3111     qemu_irq_lower(s->txdrq);
   3112     omap_mcbsp_intr_update(s);
   3113     if (s->codec && s->codec->cts)
   3114         s->codec->tx_swallow(s->codec->opaque);
   3115 }
   3116 
   3117 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
   3118 {
   3119     s->tx_req = 0;
   3120     omap_mcbsp_tx_done(s);
   3121     timer_del(s->sink_timer);
   3122 }
   3123 
   3124 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
   3125 {
   3126     int prev_rx_rate, prev_tx_rate;
   3127     int rx_rate = 0, tx_rate = 0;
   3128     int cpu_rate = 1500000;	/* XXX */
   3129 
   3130     /* TODO: check CLKSTP bit */
   3131     if (s->spcr[1] & (1 << 6)) {			/* GRST */
   3132         if (s->spcr[0] & (1 << 0)) {			/* RRST */
   3133             if ((s->srgr[1] & (1 << 13)) &&		/* CLKSM */
   3134                             (s->pcr & (1 << 8))) {	/* CLKRM */
   3135                 if (~s->pcr & (1 << 7))			/* SCLKME */
   3136                     rx_rate = cpu_rate /
   3137                             ((s->srgr[0] & 0xff) + 1);	/* CLKGDV */
   3138             } else
   3139                 if (s->codec)
   3140                     rx_rate = s->codec->rx_rate;
   3141         }
   3142 
   3143         if (s->spcr[1] & (1 << 0)) {			/* XRST */
   3144             if ((s->srgr[1] & (1 << 13)) &&		/* CLKSM */
   3145                             (s->pcr & (1 << 9))) {	/* CLKXM */
   3146                 if (~s->pcr & (1 << 7))			/* SCLKME */
   3147                     tx_rate = cpu_rate /
   3148                             ((s->srgr[0] & 0xff) + 1);	/* CLKGDV */
   3149             } else
   3150                 if (s->codec)
   3151                     tx_rate = s->codec->tx_rate;
   3152         }
   3153     }
   3154     prev_tx_rate = s->tx_rate;
   3155     prev_rx_rate = s->rx_rate;
   3156     s->tx_rate = tx_rate;
   3157     s->rx_rate = rx_rate;
   3158 
   3159     if (s->codec)
   3160         s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
   3161 
   3162     if (!prev_tx_rate && tx_rate)
   3163         omap_mcbsp_tx_start(s);
   3164     else if (s->tx_rate && !tx_rate)
   3165         omap_mcbsp_tx_stop(s);
   3166 
   3167     if (!prev_rx_rate && rx_rate)
   3168         omap_mcbsp_rx_start(s);
   3169     else if (prev_tx_rate && !tx_rate)
   3170         omap_mcbsp_rx_stop(s);
   3171 }
   3172 
   3173 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
   3174                                 unsigned size)
   3175 {
   3176     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
   3177     int offset = addr & OMAP_MPUI_REG_MASK;
   3178     uint16_t ret;
   3179 
   3180     if (size != 2) {
   3181         return omap_badwidth_read16(opaque, addr);
   3182     }
   3183 
   3184     switch (offset) {
   3185     case 0x00:	/* DRR2 */
   3186         if (((s->rcr[0] >> 5) & 7) < 3)			/* RWDLEN1 */
   3187             return 0x0000;
   3188         /* Fall through.  */
   3189     case 0x02:	/* DRR1 */
   3190         if (s->rx_req < 2) {
   3191             printf("%s: Rx FIFO underrun\n", __func__);
   3192             omap_mcbsp_rx_done(s);
   3193         } else {
   3194             s->tx_req -= 2;
   3195             if (s->codec && s->codec->in.len >= 2) {
   3196                 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
   3197                 ret |= s->codec->in.fifo[s->codec->in.start ++];
   3198                 s->codec->in.len -= 2;
   3199             } else
   3200                 ret = 0x0000;
   3201             if (!s->tx_req)
   3202                 omap_mcbsp_rx_done(s);
   3203             return ret;
   3204         }
   3205         return 0x0000;
   3206 
   3207     case 0x04:	/* DXR2 */
   3208     case 0x06:	/* DXR1 */
   3209         return 0x0000;
   3210 
   3211     case 0x08:	/* SPCR2 */
   3212         return s->spcr[1];
   3213     case 0x0a:	/* SPCR1 */
   3214         return s->spcr[0];
   3215     case 0x0c:	/* RCR2 */
   3216         return s->rcr[1];
   3217     case 0x0e:	/* RCR1 */
   3218         return s->rcr[0];
   3219     case 0x10:	/* XCR2 */
   3220         return s->xcr[1];
   3221     case 0x12:	/* XCR1 */
   3222         return s->xcr[0];
   3223     case 0x14:	/* SRGR2 */
   3224         return s->srgr[1];
   3225     case 0x16:	/* SRGR1 */
   3226         return s->srgr[0];
   3227     case 0x18:	/* MCR2 */
   3228         return s->mcr[1];
   3229     case 0x1a:	/* MCR1 */
   3230         return s->mcr[0];
   3231     case 0x1c:	/* RCERA */
   3232         return s->rcer[0];
   3233     case 0x1e:	/* RCERB */
   3234         return s->rcer[1];
   3235     case 0x20:	/* XCERA */
   3236         return s->xcer[0];
   3237     case 0x22:	/* XCERB */
   3238         return s->xcer[1];
   3239     case 0x24:	/* PCR0 */
   3240         return s->pcr;
   3241     case 0x26:	/* RCERC */
   3242         return s->rcer[2];
   3243     case 0x28:	/* RCERD */
   3244         return s->rcer[3];
   3245     case 0x2a:	/* XCERC */
   3246         return s->xcer[2];
   3247     case 0x2c:	/* XCERD */
   3248         return s->xcer[3];
   3249     case 0x2e:	/* RCERE */
   3250         return s->rcer[4];
   3251     case 0x30:	/* RCERF */
   3252         return s->rcer[5];
   3253     case 0x32:	/* XCERE */
   3254         return s->xcer[4];
   3255     case 0x34:	/* XCERF */
   3256         return s->xcer[5];
   3257     case 0x36:	/* RCERG */
   3258         return s->rcer[6];
   3259     case 0x38:	/* RCERH */
   3260         return s->rcer[7];
   3261     case 0x3a:	/* XCERG */
   3262         return s->xcer[6];
   3263     case 0x3c:	/* XCERH */
   3264         return s->xcer[7];
   3265     }
   3266 
   3267     OMAP_BAD_REG(addr);
   3268     return 0;
   3269 }
   3270 
   3271 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
   3272                 uint32_t value)
   3273 {
   3274     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
   3275     int offset = addr & OMAP_MPUI_REG_MASK;
   3276 
   3277     switch (offset) {
   3278     case 0x00:	/* DRR2 */
   3279     case 0x02:	/* DRR1 */
   3280         OMAP_RO_REG(addr);
   3281         return;
   3282 
   3283     case 0x04:	/* DXR2 */
   3284         if (((s->xcr[0] >> 5) & 7) < 3)			/* XWDLEN1 */
   3285             return;
   3286         /* Fall through.  */
   3287     case 0x06:	/* DXR1 */
   3288         if (s->tx_req > 1) {
   3289             s->tx_req -= 2;
   3290             if (s->codec && s->codec->cts) {
   3291                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
   3292                 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
   3293             }
   3294             if (s->tx_req < 2)
   3295                 omap_mcbsp_tx_done(s);
   3296         } else
   3297             printf("%s: Tx FIFO overrun\n", __func__);
   3298         return;
   3299 
   3300     case 0x08:	/* SPCR2 */
   3301         s->spcr[1] &= 0x0002;
   3302         s->spcr[1] |= 0x03f9 & value;
   3303         s->spcr[1] |= 0x0004 & (value << 2);		/* XEMPTY := XRST */
   3304         if (~value & 1)					/* XRST */
   3305             s->spcr[1] &= ~6;
   3306         omap_mcbsp_req_update(s);
   3307         return;
   3308     case 0x0a:	/* SPCR1 */
   3309         s->spcr[0] &= 0x0006;
   3310         s->spcr[0] |= 0xf8f9 & value;
   3311         if (value & (1 << 15))				/* DLB */
   3312             printf("%s: Digital Loopback mode enable attempt\n", __func__);
   3313         if (~value & 1) {				/* RRST */
   3314             s->spcr[0] &= ~6;
   3315             s->rx_req = 0;
   3316             omap_mcbsp_rx_done(s);
   3317         }
   3318         omap_mcbsp_req_update(s);
   3319         return;
   3320 
   3321     case 0x0c:	/* RCR2 */
   3322         s->rcr[1] = value & 0xffff;
   3323         return;
   3324     case 0x0e:	/* RCR1 */
   3325         s->rcr[0] = value & 0x7fe0;
   3326         return;
   3327     case 0x10:	/* XCR2 */
   3328         s->xcr[1] = value & 0xffff;
   3329         return;
   3330     case 0x12:	/* XCR1 */
   3331         s->xcr[0] = value & 0x7fe0;
   3332         return;
   3333     case 0x14:	/* SRGR2 */
   3334         s->srgr[1] = value & 0xffff;
   3335         omap_mcbsp_req_update(s);
   3336         return;
   3337     case 0x16:	/* SRGR1 */
   3338         s->srgr[0] = value & 0xffff;
   3339         omap_mcbsp_req_update(s);
   3340         return;
   3341     case 0x18:	/* MCR2 */
   3342         s->mcr[1] = value & 0x03e3;
   3343         if (value & 3)					/* XMCM */
   3344             printf("%s: Tx channel selection mode enable attempt\n", __func__);
   3345         return;
   3346     case 0x1a:	/* MCR1 */
   3347         s->mcr[0] = value & 0x03e1;
   3348         if (value & 1)					/* RMCM */
   3349             printf("%s: Rx channel selection mode enable attempt\n", __func__);
   3350         return;
   3351     case 0x1c:	/* RCERA */
   3352         s->rcer[0] = value & 0xffff;
   3353         return;
   3354     case 0x1e:	/* RCERB */
   3355         s->rcer[1] = value & 0xffff;
   3356         return;
   3357     case 0x20:	/* XCERA */
   3358         s->xcer[0] = value & 0xffff;
   3359         return;
   3360     case 0x22:	/* XCERB */
   3361         s->xcer[1] = value & 0xffff;
   3362         return;
   3363     case 0x24:	/* PCR0 */
   3364         s->pcr = value & 0x7faf;
   3365         return;
   3366     case 0x26:	/* RCERC */
   3367         s->rcer[2] = value & 0xffff;
   3368         return;
   3369     case 0x28:	/* RCERD */
   3370         s->rcer[3] = value & 0xffff;
   3371         return;
   3372     case 0x2a:	/* XCERC */
   3373         s->xcer[2] = value & 0xffff;
   3374         return;
   3375     case 0x2c:	/* XCERD */
   3376         s->xcer[3] = value & 0xffff;
   3377         return;
   3378     case 0x2e:	/* RCERE */
   3379         s->rcer[4] = value & 0xffff;
   3380         return;
   3381     case 0x30:	/* RCERF */
   3382         s->rcer[5] = value & 0xffff;
   3383         return;
   3384     case 0x32:	/* XCERE */
   3385         s->xcer[4] = value & 0xffff;
   3386         return;
   3387     case 0x34:	/* XCERF */
   3388         s->xcer[5] = value & 0xffff;
   3389         return;
   3390     case 0x36:	/* RCERG */
   3391         s->rcer[6] = value & 0xffff;
   3392         return;
   3393     case 0x38:	/* RCERH */
   3394         s->rcer[7] = value & 0xffff;
   3395         return;
   3396     case 0x3a:	/* XCERG */
   3397         s->xcer[6] = value & 0xffff;
   3398         return;
   3399     case 0x3c:	/* XCERH */
   3400         s->xcer[7] = value & 0xffff;
   3401         return;
   3402     }
   3403 
   3404     OMAP_BAD_REG(addr);
   3405 }
   3406 
   3407 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
   3408                 uint32_t value)
   3409 {
   3410     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
   3411     int offset = addr & OMAP_MPUI_REG_MASK;
   3412 
   3413     if (offset == 0x04) {				/* DXR */
   3414         if (((s->xcr[0] >> 5) & 7) < 3)			/* XWDLEN1 */
   3415             return;
   3416         if (s->tx_req > 3) {
   3417             s->tx_req -= 4;
   3418             if (s->codec && s->codec->cts) {
   3419                 s->codec->out.fifo[s->codec->out.len ++] =
   3420                         (value >> 24) & 0xff;
   3421                 s->codec->out.fifo[s->codec->out.len ++] =
   3422                         (value >> 16) & 0xff;
   3423                 s->codec->out.fifo[s->codec->out.len ++] =
   3424                         (value >> 8) & 0xff;
   3425                 s->codec->out.fifo[s->codec->out.len ++] =
   3426                         (value >> 0) & 0xff;
   3427             }
   3428             if (s->tx_req < 4)
   3429                 omap_mcbsp_tx_done(s);
   3430         } else
   3431             printf("%s: Tx FIFO overrun\n", __func__);
   3432         return;
   3433     }
   3434 
   3435     omap_badwidth_write16(opaque, addr, value);
   3436 }
   3437 
   3438 static void omap_mcbsp_write(void *opaque, hwaddr addr,
   3439                              uint64_t value, unsigned size)
   3440 {
   3441     switch (size) {
   3442     case 2:
   3443         omap_mcbsp_writeh(opaque, addr, value);
   3444         break;
   3445     case 4:
   3446         omap_mcbsp_writew(opaque, addr, value);
   3447         break;
   3448     default:
   3449         omap_badwidth_write16(opaque, addr, value);
   3450     }
   3451 }
   3452 
   3453 static const MemoryRegionOps omap_mcbsp_ops = {
   3454     .read = omap_mcbsp_read,
   3455     .write = omap_mcbsp_write,
   3456     .endianness = DEVICE_NATIVE_ENDIAN,
   3457 };
   3458 
   3459 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
   3460 {
   3461     memset(&s->spcr, 0, sizeof(s->spcr));
   3462     memset(&s->rcr, 0, sizeof(s->rcr));
   3463     memset(&s->xcr, 0, sizeof(s->xcr));
   3464     s->srgr[0] = 0x0001;
   3465     s->srgr[1] = 0x2000;
   3466     memset(&s->mcr, 0, sizeof(s->mcr));
   3467     memset(&s->pcr, 0, sizeof(s->pcr));
   3468     memset(&s->rcer, 0, sizeof(s->rcer));
   3469     memset(&s->xcer, 0, sizeof(s->xcer));
   3470     s->tx_req = 0;
   3471     s->rx_req = 0;
   3472     s->tx_rate = 0;
   3473     s->rx_rate = 0;
   3474     timer_del(s->source_timer);
   3475     timer_del(s->sink_timer);
   3476 }
   3477 
   3478 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
   3479                                             hwaddr base,
   3480                                             qemu_irq txirq, qemu_irq rxirq,
   3481                                             qemu_irq *dma, omap_clk clk)
   3482 {
   3483     struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
   3484 
   3485     s->txirq = txirq;
   3486     s->rxirq = rxirq;
   3487     s->txdrq = dma[0];
   3488     s->rxdrq = dma[1];
   3489     s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
   3490     s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
   3491     omap_mcbsp_reset(s);
   3492 
   3493     memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
   3494     memory_region_add_subregion(system_memory, base, &s->iomem);
   3495 
   3496     return s;
   3497 }
   3498 
   3499 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
   3500 {
   3501     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
   3502 
   3503     if (s->rx_rate) {
   3504         s->rx_req = s->codec->in.len;
   3505         omap_mcbsp_rx_newdata(s);
   3506     }
   3507 }
   3508 
   3509 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
   3510 {
   3511     struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
   3512 
   3513     if (s->tx_rate) {
   3514         s->tx_req = s->codec->out.size;
   3515         omap_mcbsp_tx_newdata(s);
   3516     }
   3517 }
   3518 
   3519 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
   3520 {
   3521     s->codec = slave;
   3522     slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
   3523     slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
   3524 }
   3525 
   3526 /* LED Pulse Generators */
   3527 struct omap_lpg_s {
   3528     MemoryRegion iomem;
   3529     QEMUTimer *tm;
   3530 
   3531     uint8_t control;
   3532     uint8_t power;
   3533     int64_t on;
   3534     int64_t period;
   3535     int clk;
   3536     int cycle;
   3537 };
   3538 
   3539 static void omap_lpg_tick(void *opaque)
   3540 {
   3541     struct omap_lpg_s *s = opaque;
   3542 
   3543     if (s->cycle)
   3544         timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
   3545     else
   3546         timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
   3547 
   3548     s->cycle = !s->cycle;
   3549     printf("%s: LED is %s\n", __func__, s->cycle ? "on" : "off");
   3550 }
   3551 
   3552 static void omap_lpg_update(struct omap_lpg_s *s)
   3553 {
   3554     int64_t on, period = 1, ticks = 1000;
   3555     static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
   3556 
   3557     if (~s->control & (1 << 6))					/* LPGRES */
   3558         on = 0;
   3559     else if (s->control & (1 << 7))				/* PERM_ON */
   3560         on = period;
   3561     else {
   3562         period = muldiv64(ticks, per[s->control & 7],		/* PERCTRL */
   3563                         256 / 32);
   3564         on = (s->clk && s->power) ? muldiv64(ticks,
   3565                         per[(s->control >> 3) & 7], 256) : 0;	/* ONCTRL */
   3566     }
   3567 
   3568     timer_del(s->tm);
   3569     if (on == period && s->on < s->period)
   3570         printf("%s: LED is on\n", __func__);
   3571     else if (on == 0 && s->on)
   3572         printf("%s: LED is off\n", __func__);
   3573     else if (on && (on != s->on || period != s->period)) {
   3574         s->cycle = 0;
   3575         s->on = on;
   3576         s->period = period;
   3577         omap_lpg_tick(s);
   3578         return;
   3579     }
   3580 
   3581     s->on = on;
   3582     s->period = period;
   3583 }
   3584 
   3585 static void omap_lpg_reset(struct omap_lpg_s *s)
   3586 {
   3587     s->control = 0x00;
   3588     s->power = 0x00;
   3589     s->clk = 1;
   3590     omap_lpg_update(s);
   3591 }
   3592 
   3593 static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
   3594                               unsigned size)
   3595 {
   3596     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
   3597     int offset = addr & OMAP_MPUI_REG_MASK;
   3598 
   3599     if (size != 1) {
   3600         return omap_badwidth_read8(opaque, addr);
   3601     }
   3602 
   3603     switch (offset) {
   3604     case 0x00:	/* LCR */
   3605         return s->control;
   3606 
   3607     case 0x04:	/* PMR */
   3608         return s->power;
   3609     }
   3610 
   3611     OMAP_BAD_REG(addr);
   3612     return 0;
   3613 }
   3614 
   3615 static void omap_lpg_write(void *opaque, hwaddr addr,
   3616                            uint64_t value, unsigned size)
   3617 {
   3618     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
   3619     int offset = addr & OMAP_MPUI_REG_MASK;
   3620 
   3621     if (size != 1) {
   3622         omap_badwidth_write8(opaque, addr, value);
   3623         return;
   3624     }
   3625 
   3626     switch (offset) {
   3627     case 0x00:	/* LCR */
   3628         if (~value & (1 << 6))					/* LPGRES */
   3629             omap_lpg_reset(s);
   3630         s->control = value & 0xff;
   3631         omap_lpg_update(s);
   3632         return;
   3633 
   3634     case 0x04:	/* PMR */
   3635         s->power = value & 0x01;
   3636         omap_lpg_update(s);
   3637         return;
   3638 
   3639     default:
   3640         OMAP_BAD_REG(addr);
   3641         return;
   3642     }
   3643 }
   3644 
   3645 static const MemoryRegionOps omap_lpg_ops = {
   3646     .read = omap_lpg_read,
   3647     .write = omap_lpg_write,
   3648     .endianness = DEVICE_NATIVE_ENDIAN,
   3649 };
   3650 
   3651 static void omap_lpg_clk_update(void *opaque, int line, int on)
   3652 {
   3653     struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
   3654 
   3655     s->clk = on;
   3656     omap_lpg_update(s);
   3657 }
   3658 
   3659 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
   3660                                         hwaddr base, omap_clk clk)
   3661 {
   3662     struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1);
   3663 
   3664     s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
   3665 
   3666     omap_lpg_reset(s);
   3667 
   3668     memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
   3669     memory_region_add_subregion(system_memory, base, &s->iomem);
   3670 
   3671     omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
   3672 
   3673     return s;
   3674 }
   3675 
   3676 /* MPUI Peripheral Bridge configuration */
   3677 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
   3678                                   unsigned size)
   3679 {
   3680     if (size != 2) {
   3681         return omap_badwidth_read16(opaque, addr);
   3682     }
   3683 
   3684     if (addr == OMAP_MPUI_BASE)	/* CMR */
   3685         return 0xfe4d;
   3686 
   3687     OMAP_BAD_REG(addr);
   3688     return 0;
   3689 }
   3690 
   3691 static void omap_mpui_io_write(void *opaque, hwaddr addr,
   3692                                uint64_t value, unsigned size)
   3693 {
   3694     /* FIXME: infinite loop */
   3695     omap_badwidth_write16(opaque, addr, value);
   3696 }
   3697 
   3698 static const MemoryRegionOps omap_mpui_io_ops = {
   3699     .read = omap_mpui_io_read,
   3700     .write = omap_mpui_io_write,
   3701     .endianness = DEVICE_NATIVE_ENDIAN,
   3702 };
   3703 
   3704 static void omap_setup_mpui_io(MemoryRegion *system_memory,
   3705                                struct omap_mpu_state_s *mpu)
   3706 {
   3707     memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
   3708                           "omap-mpui-io", 0x7fff);
   3709     memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
   3710                                 &mpu->mpui_io_iomem);
   3711 }
   3712 
   3713 /* General chip reset */
   3714 static void omap1_mpu_reset(void *opaque)
   3715 {
   3716     struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
   3717 
   3718     omap_dma_reset(mpu->dma);
   3719     omap_mpu_timer_reset(mpu->timer[0]);
   3720     omap_mpu_timer_reset(mpu->timer[1]);
   3721     omap_mpu_timer_reset(mpu->timer[2]);
   3722     omap_wd_timer_reset(mpu->wdt);
   3723     omap_os_timer_reset(mpu->os_timer);
   3724     omap_lcdc_reset(mpu->lcd);
   3725     omap_ulpd_pm_reset(mpu);
   3726     omap_pin_cfg_reset(mpu);
   3727     omap_mpui_reset(mpu);
   3728     omap_tipb_bridge_reset(mpu->private_tipb);
   3729     omap_tipb_bridge_reset(mpu->public_tipb);
   3730     omap_dpll_reset(mpu->dpll[0]);
   3731     omap_dpll_reset(mpu->dpll[1]);
   3732     omap_dpll_reset(mpu->dpll[2]);
   3733     omap_uart_reset(mpu->uart[0]);
   3734     omap_uart_reset(mpu->uart[1]);
   3735     omap_uart_reset(mpu->uart[2]);
   3736     omap_mmc_reset(mpu->mmc);
   3737     omap_mpuio_reset(mpu->mpuio);
   3738     omap_uwire_reset(mpu->microwire);
   3739     omap_pwl_reset(mpu->pwl);
   3740     omap_pwt_reset(mpu->pwt);
   3741     omap_rtc_reset(mpu->rtc);
   3742     omap_mcbsp_reset(mpu->mcbsp1);
   3743     omap_mcbsp_reset(mpu->mcbsp2);
   3744     omap_mcbsp_reset(mpu->mcbsp3);
   3745     omap_lpg_reset(mpu->led[0]);
   3746     omap_lpg_reset(mpu->led[1]);
   3747     omap_clkm_reset(mpu);
   3748     cpu_reset(CPU(mpu->cpu));
   3749 }
   3750 
   3751 static const struct omap_map_s {
   3752     hwaddr phys_dsp;
   3753     hwaddr phys_mpu;
   3754     uint32_t size;
   3755     const char *name;
   3756 } omap15xx_dsp_mm[] = {
   3757     /* Strobe 0 */
   3758     { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" },		/* CS0 */
   3759     { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" },		/* CS1 */
   3760     { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" },		/* CS3 */
   3761     { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" },	/* CS4 */
   3762     { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" },	/* CS5 */
   3763     { 0xe1013000, 0xfffb3000, 0x800, "uWire" },			/* CS6 */
   3764     { 0xe1013800, 0xfffb3800, 0x800, "I^2C" },			/* CS7 */
   3765     { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" },		/* CS8 */
   3766     { 0xe1014800, 0xfffb4800, 0x800, "RTC" },			/* CS9 */
   3767     { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" },			/* CS10 */
   3768     { 0xe1015800, 0xfffb5800, 0x800, "PWL" },			/* CS11 */
   3769     { 0xe1016000, 0xfffb6000, 0x800, "PWT" },			/* CS12 */
   3770     { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" },		/* CS14 */
   3771     { 0xe1017800, 0xfffb7800, 0x800, "MMC" },			/* CS15 */
   3772     { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" },		/* CS18 */
   3773     { 0xe1019800, 0xfffb9800, 0x800, "UART3" },			/* CS19 */
   3774     { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" },		/* CS25 */
   3775     /* Strobe 1 */
   3776     { 0xe101e000, 0xfffce000, 0x800, "GPIOs" },			/* CS28 */
   3777 
   3778     { 0 }
   3779 };
   3780 
   3781 static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
   3782                                    const struct omap_map_s *map)
   3783 {
   3784     MemoryRegion *io;
   3785 
   3786     for (; map->phys_dsp; map ++) {
   3787         io = g_new(MemoryRegion, 1);
   3788         memory_region_init_alias(io, NULL, map->name,
   3789                                  system_memory, map->phys_mpu, map->size);
   3790         memory_region_add_subregion(system_memory, map->phys_dsp, io);
   3791     }
   3792 }
   3793 
   3794 void omap_mpu_wakeup(void *opaque, int irq, int req)
   3795 {
   3796     struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
   3797     CPUState *cpu = CPU(mpu->cpu);
   3798 
   3799     if (cpu->halted) {
   3800         cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
   3801     }
   3802 }
   3803 
   3804 static const struct dma_irq_map omap1_dma_irq_map[] = {
   3805     { 0, OMAP_INT_DMA_CH0_6 },
   3806     { 0, OMAP_INT_DMA_CH1_7 },
   3807     { 0, OMAP_INT_DMA_CH2_8 },
   3808     { 0, OMAP_INT_DMA_CH3 },
   3809     { 0, OMAP_INT_DMA_CH4 },
   3810     { 0, OMAP_INT_DMA_CH5 },
   3811     { 1, OMAP_INT_1610_DMA_CH6 },
   3812     { 1, OMAP_INT_1610_DMA_CH7 },
   3813     { 1, OMAP_INT_1610_DMA_CH8 },
   3814     { 1, OMAP_INT_1610_DMA_CH9 },
   3815     { 1, OMAP_INT_1610_DMA_CH10 },
   3816     { 1, OMAP_INT_1610_DMA_CH11 },
   3817     { 1, OMAP_INT_1610_DMA_CH12 },
   3818     { 1, OMAP_INT_1610_DMA_CH13 },
   3819     { 1, OMAP_INT_1610_DMA_CH14 },
   3820     { 1, OMAP_INT_1610_DMA_CH15 }
   3821 };
   3822 
   3823 /* DMA ports for OMAP1 */
   3824 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
   3825                 hwaddr addr)
   3826 {
   3827     return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
   3828 }
   3829 
   3830 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
   3831                 hwaddr addr)
   3832 {
   3833     return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
   3834                              addr);
   3835 }
   3836 
   3837 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
   3838                 hwaddr addr)
   3839 {
   3840     return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
   3841 }
   3842 
   3843 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
   3844                 hwaddr addr)
   3845 {
   3846     return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
   3847 }
   3848 
   3849 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
   3850                 hwaddr addr)
   3851 {
   3852     return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
   3853 }
   3854 
   3855 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
   3856                 hwaddr addr)
   3857 {
   3858     return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
   3859 }
   3860 
   3861 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *dram,
   3862                 const char *cpu_type)
   3863 {
   3864     int i;
   3865     struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1);
   3866     qemu_irq dma_irqs[6];
   3867     DriveInfo *dinfo;
   3868     SysBusDevice *busdev;
   3869     MemoryRegion *system_memory = get_system_memory();
   3870 
   3871     /* Core */
   3872     s->mpu_model = omap310;
   3873     s->cpu = ARM_CPU(cpu_create(cpu_type));
   3874     s->sdram_size = memory_region_size(dram);
   3875     s->sram_size = OMAP15XX_SRAM_SIZE;
   3876 
   3877     s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
   3878 
   3879     /* Clocks */
   3880     omap_clk_init(s);
   3881 
   3882     /* Memory-mapped stuff */
   3883     memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
   3884                            &error_fatal);
   3885     memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
   3886 
   3887     omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
   3888 
   3889     s->ih[0] = qdev_new("omap-intc");
   3890     qdev_prop_set_uint32(s->ih[0], "size", 0x100);
   3891     omap_intc_set_iclk(OMAP_INTC(s->ih[0]), omap_findclk(s, "arminth_ck"));
   3892     busdev = SYS_BUS_DEVICE(s->ih[0]);
   3893     sysbus_realize_and_unref(busdev, &error_fatal);
   3894     sysbus_connect_irq(busdev, 0,
   3895                        qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
   3896     sysbus_connect_irq(busdev, 1,
   3897                        qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
   3898     sysbus_mmio_map(busdev, 0, 0xfffecb00);
   3899     s->ih[1] = qdev_new("omap-intc");
   3900     qdev_prop_set_uint32(s->ih[1], "size", 0x800);
   3901     omap_intc_set_iclk(OMAP_INTC(s->ih[1]), omap_findclk(s, "arminth_ck"));
   3902     busdev = SYS_BUS_DEVICE(s->ih[1]);
   3903     sysbus_realize_and_unref(busdev, &error_fatal);
   3904     sysbus_connect_irq(busdev, 0,
   3905                        qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
   3906     /* The second interrupt controller's FIQ output is not wired up */
   3907     sysbus_mmio_map(busdev, 0, 0xfffe0000);
   3908 
   3909     for (i = 0; i < 6; i++) {
   3910         dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
   3911                                        omap1_dma_irq_map[i].intr);
   3912     }
   3913     s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
   3914                            qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
   3915                            s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
   3916 
   3917     s->port[emiff    ].addr_valid = omap_validate_emiff_addr;
   3918     s->port[emifs    ].addr_valid = omap_validate_emifs_addr;
   3919     s->port[imif     ].addr_valid = omap_validate_imif_addr;
   3920     s->port[tipb     ].addr_valid = omap_validate_tipb_addr;
   3921     s->port[local    ].addr_valid = omap_validate_local_addr;
   3922     s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
   3923 
   3924     /* Register SDRAM and SRAM DMA ports for fast transfers.  */
   3925     soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(dram),
   3926                          OMAP_EMIFF_BASE, s->sdram_size);
   3927     soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
   3928                          OMAP_IMIF_BASE, s->sram_size);
   3929 
   3930     s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
   3931                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
   3932                     omap_findclk(s, "mputim_ck"));
   3933     s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
   3934                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
   3935                     omap_findclk(s, "mputim_ck"));
   3936     s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
   3937                     qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
   3938                     omap_findclk(s, "mputim_ck"));
   3939 
   3940     s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
   3941                     qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
   3942                     omap_findclk(s, "armwdt_ck"));
   3943 
   3944     s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
   3945                     qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
   3946                     omap_findclk(s, "clk32-kHz"));
   3947 
   3948     s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
   3949                             qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
   3950                             omap_dma_get_lcdch(s->dma),
   3951                             omap_findclk(s, "lcd_ck"));
   3952 
   3953     omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
   3954     omap_pin_cfg_init(system_memory, 0xfffe1000, s);
   3955     omap_id_init(system_memory, s);
   3956 
   3957     omap_mpui_init(system_memory, 0xfffec900, s);
   3958 
   3959     s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
   3960                     qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
   3961                     omap_findclk(s, "tipb_ck"));
   3962     s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
   3963                     qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
   3964                     omap_findclk(s, "tipb_ck"));
   3965 
   3966     omap_tcmi_init(system_memory, 0xfffecc00, s);
   3967 
   3968     s->uart[0] = omap_uart_init(0xfffb0000,
   3969                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
   3970                     omap_findclk(s, "uart1_ck"),
   3971                     omap_findclk(s, "uart1_ck"),
   3972                     s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
   3973                     "uart1",
   3974                     serial_hd(0));
   3975     s->uart[1] = omap_uart_init(0xfffb0800,
   3976                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
   3977                     omap_findclk(s, "uart2_ck"),
   3978                     omap_findclk(s, "uart2_ck"),
   3979                     s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
   3980                     "uart2",
   3981                     serial_hd(0) ? serial_hd(1) : NULL);
   3982     s->uart[2] = omap_uart_init(0xfffb9800,
   3983                                 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
   3984                     omap_findclk(s, "uart3_ck"),
   3985                     omap_findclk(s, "uart3_ck"),
   3986                     s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
   3987                     "uart3",
   3988                     serial_hd(0) && serial_hd(1) ? serial_hd(2) : NULL);
   3989 
   3990     s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
   3991                                 omap_findclk(s, "dpll1"));
   3992     s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
   3993                                 omap_findclk(s, "dpll2"));
   3994     s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
   3995                                 omap_findclk(s, "dpll3"));
   3996 
   3997     dinfo = drive_get(IF_SD, 0, 0);
   3998     if (!dinfo && !qtest_enabled()) {
   3999         warn_report("missing SecureDigital device");
   4000     }
   4001     s->mmc = omap_mmc_init(0xfffb7800, system_memory,
   4002                            dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
   4003                            qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
   4004                            &s->drq[OMAP_DMA_MMC_TX],
   4005                     omap_findclk(s, "mmc_ck"));
   4006 
   4007     s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
   4008                                qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
   4009                                qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
   4010                                s->wakeup, omap_findclk(s, "clk32-kHz"));
   4011 
   4012     s->gpio = qdev_new("omap-gpio");
   4013     qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
   4014     omap_gpio_set_clk(OMAP1_GPIO(s->gpio), omap_findclk(s, "arm_gpio_ck"));
   4015     sysbus_realize_and_unref(SYS_BUS_DEVICE(s->gpio), &error_fatal);
   4016     sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
   4017                        qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
   4018     sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
   4019 
   4020     s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
   4021                                    qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
   4022                                    qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
   4023                     s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
   4024 
   4025     s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
   4026                            omap_findclk(s, "armxor_ck"));
   4027     s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
   4028                            omap_findclk(s, "armxor_ck"));
   4029 
   4030     s->i2c[0] = qdev_new("omap_i2c");
   4031     qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
   4032     omap_i2c_set_fclk(OMAP_I2C(s->i2c[0]), omap_findclk(s, "mpuper_ck"));
   4033     busdev = SYS_BUS_DEVICE(s->i2c[0]);
   4034     sysbus_realize_and_unref(busdev, &error_fatal);
   4035     sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
   4036     sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
   4037     sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
   4038     sysbus_mmio_map(busdev, 0, 0xfffb3800);
   4039 
   4040     s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
   4041                            qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
   4042                            qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
   4043                     omap_findclk(s, "clk32-kHz"));
   4044 
   4045     s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
   4046                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
   4047                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
   4048                     &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
   4049     s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
   4050                                 qdev_get_gpio_in(s->ih[0],
   4051                                                  OMAP_INT_310_McBSP2_TX),
   4052                                 qdev_get_gpio_in(s->ih[0],
   4053                                                  OMAP_INT_310_McBSP2_RX),
   4054                     &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
   4055     s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
   4056                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
   4057                                 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
   4058                     &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
   4059 
   4060     s->led[0] = omap_lpg_init(system_memory,
   4061                               0xfffbd000, omap_findclk(s, "clk32-kHz"));
   4062     s->led[1] = omap_lpg_init(system_memory,
   4063                               0xfffbd800, omap_findclk(s, "clk32-kHz"));
   4064 
   4065     /* Register mappings not currenlty implemented:
   4066      * MCSI2 Comm	fffb2000 - fffb27ff (not mapped on OMAP310)
   4067      * MCSI1 Bluetooth	fffb2800 - fffb2fff (not mapped on OMAP310)
   4068      * USB W2FC		fffb4000 - fffb47ff
   4069      * Camera Interface	fffb6800 - fffb6fff
   4070      * USB Host		fffba000 - fffba7ff
   4071      * FAC		fffba800 - fffbafff
   4072      * HDQ/1-Wire	fffbc000 - fffbc7ff
   4073      * TIPB switches	fffbc800 - fffbcfff
   4074      * Mailbox		fffcf000 - fffcf7ff
   4075      * Local bus IF	fffec100 - fffec1ff
   4076      * Local bus MMU	fffec200 - fffec2ff
   4077      * DSP MMU		fffed200 - fffed2ff
   4078      */
   4079 
   4080     omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
   4081     omap_setup_mpui_io(system_memory, s);
   4082 
   4083     qemu_register_reset(omap1_mpu_reset, s);
   4084 
   4085     return s;
   4086 }