qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

mps2-tz.c (55198B)


      1 /*
      2  * ARM V2M MPS2 board emulation, trustzone aware FPGA images
      3  *
      4  * Copyright (c) 2017 Linaro Limited
      5  * Written by Peter Maydell
      6  *
      7  *  This program is free software; you can redistribute it and/or modify
      8  *  it under the terms of the GNU General Public License version 2 or
      9  *  (at your option) any later version.
     10  */
     11 
     12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
     13  * FPGA but is otherwise the same as the 2). Since the CPU itself
     14  * and most of the devices are in the FPGA, the details of the board
     15  * as seen by the guest depend significantly on the FPGA image.
     16  * This source file covers the following FPGA images, for TrustZone cores:
     17  *  "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
     18  *  "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
     19  *  "mps2-an524" -- Dual Cortex-M33 as documented in Application Note AN524
     20  *  "mps2-an547" -- Single Cortex-M55 as documented in Application Note AN547
     21  *
     22  * Links to the TRM for the board itself and to the various Application
     23  * Notes which document the FPGA images can be found here:
     24  * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
     25  *
     26  * Board TRM:
     27  * https://developer.arm.com/documentation/100112/latest/
     28  * Application Note AN505:
     29  * https://developer.arm.com/documentation/dai0505/latest/
     30  * Application Note AN521:
     31  * https://developer.arm.com/documentation/dai0521/latest/
     32  * Application Note AN524:
     33  * https://developer.arm.com/documentation/dai0524/latest/
     34  * Application Note AN547:
     35  * https://developer.arm.com/documentation/dai0547/latest/
     36  *
     37  * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
     38  * (ARM ECM0601256) for the details of some of the device layout:
     39  *  https://developer.arm.com/documentation/ecm0601256/latest
     40  * Similarly, the AN521 and AN524 use the SSE-200, and the SSE-200 TRM defines
     41  * most of the device layout:
     42  *  https://developer.arm.com/documentation/101104/latest/
     43  * and the AN547 uses the SSE-300, whose layout is in the SSE-300 TRM:
     44  *  https://developer.arm.com/documentation/101773/latest/
     45  */
     46 
     47 #include "qemu/osdep.h"
     48 #include "qemu/units.h"
     49 #include "qemu/cutils.h"
     50 #include "qapi/error.h"
     51 #include "qemu/error-report.h"
     52 #include "hw/arm/boot.h"
     53 #include "hw/arm/armv7m.h"
     54 #include "hw/or-irq.h"
     55 #include "hw/boards.h"
     56 #include "exec/address-spaces.h"
     57 #include "sysemu/sysemu.h"
     58 #include "sysemu/reset.h"
     59 #include "hw/misc/unimp.h"
     60 #include "hw/char/cmsdk-apb-uart.h"
     61 #include "hw/timer/cmsdk-apb-timer.h"
     62 #include "hw/misc/mps2-scc.h"
     63 #include "hw/misc/mps2-fpgaio.h"
     64 #include "hw/misc/tz-mpc.h"
     65 #include "hw/misc/tz-msc.h"
     66 #include "hw/arm/armsse.h"
     67 #include "hw/dma/pl080.h"
     68 #include "hw/rtc/pl031.h"
     69 #include "hw/ssi/pl022.h"
     70 #include "hw/i2c/arm_sbcon_i2c.h"
     71 #include "hw/net/lan9118.h"
     72 #include "net/net.h"
     73 #include "hw/core/split-irq.h"
     74 #include "hw/qdev-clock.h"
     75 #include "qom/object.h"
     76 #include "hw/irq.h"
     77 
     78 #define MPS2TZ_NUMIRQ_MAX 96
     79 #define MPS2TZ_RAM_MAX 5
     80 
     81 typedef enum MPS2TZFPGAType {
     82     FPGA_AN505,
     83     FPGA_AN521,
     84     FPGA_AN524,
     85     FPGA_AN547,
     86 } MPS2TZFPGAType;
     87 
     88 /*
     89  * Define the layout of RAM in a board, including which parts are
     90  * behind which MPCs.
     91  * mrindex specifies the index into mms->ram[] to use for the backing RAM;
     92  * -1 means "use the system RAM".
     93  */
     94 typedef struct RAMInfo {
     95     const char *name;
     96     uint32_t base;
     97     uint32_t size;
     98     int mpc; /* MPC number, -1 for "not behind an MPC" */
     99     int mrindex;
    100     int flags;
    101 } RAMInfo;
    102 
    103 /*
    104  * Flag values:
    105  *  IS_ALIAS: this RAM area is an alias to the upstream end of the
    106  *    MPC specified by its .mpc value
    107  *  IS_ROM: this RAM area is read-only
    108  */
    109 #define IS_ALIAS 1
    110 #define IS_ROM 2
    111 
    112 struct MPS2TZMachineClass {
    113     MachineClass parent;
    114     MPS2TZFPGAType fpga_type;
    115     uint32_t scc_id;
    116     uint32_t sysclk_frq; /* Main SYSCLK frequency in Hz */
    117     uint32_t apb_periph_frq; /* APB peripheral frequency in Hz */
    118     uint32_t len_oscclk;
    119     const uint32_t *oscclk;
    120     uint32_t fpgaio_num_leds; /* Number of LEDs in FPGAIO LED0 register */
    121     bool fpgaio_has_switches; /* Does FPGAIO have SWITCH register? */
    122     bool fpgaio_has_dbgctrl; /* Does FPGAIO have DBGCTRL register? */
    123     int numirq; /* Number of external interrupts */
    124     int uart_overflow_irq; /* number of the combined UART overflow IRQ */
    125     uint32_t init_svtor; /* init-svtor setting for SSE */
    126     uint32_t sram_addr_width; /* SRAM_ADDR_WIDTH setting for SSE */
    127     const RAMInfo *raminfo;
    128     const char *armsse_type;
    129     uint32_t boot_ram_size; /* size of ram at address 0; 0 == find in raminfo */
    130 };
    131 
    132 struct MPS2TZMachineState {
    133     MachineState parent;
    134 
    135     ARMSSE iotkit;
    136     MemoryRegion ram[MPS2TZ_RAM_MAX];
    137     MemoryRegion eth_usb_container;
    138 
    139     MPS2SCC scc;
    140     MPS2FPGAIO fpgaio;
    141     TZPPC ppc[5];
    142     TZMPC mpc[3];
    143     PL022State spi[5];
    144     ArmSbconI2CState i2c[5];
    145     UnimplementedDeviceState i2s_audio;
    146     UnimplementedDeviceState gpio[4];
    147     UnimplementedDeviceState gfx;
    148     UnimplementedDeviceState cldc;
    149     UnimplementedDeviceState usb;
    150     PL031State rtc;
    151     PL080State dma[4];
    152     TZMSC msc[4];
    153     CMSDKAPBUART uart[6];
    154     SplitIRQ sec_resp_splitter;
    155     qemu_or_irq uart_irq_orgate;
    156     DeviceState *lan9118;
    157     SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ_MAX];
    158     Clock *sysclk;
    159     Clock *s32kclk;
    160 
    161     bool remap;
    162     qemu_irq remap_irq;
    163 };
    164 
    165 #define TYPE_MPS2TZ_MACHINE "mps2tz"
    166 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
    167 #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
    168 #define TYPE_MPS3TZ_AN524_MACHINE MACHINE_TYPE_NAME("mps3-an524")
    169 #define TYPE_MPS3TZ_AN547_MACHINE MACHINE_TYPE_NAME("mps3-an547")
    170 
    171 OBJECT_DECLARE_TYPE(MPS2TZMachineState, MPS2TZMachineClass, MPS2TZ_MACHINE)
    172 
    173 /* Slow 32Khz S32KCLK frequency in Hz */
    174 #define S32KCLK_FRQ (32 * 1000)
    175 
    176 /*
    177  * The MPS3 DDR is 2GiB, but on a 32-bit host QEMU doesn't permit
    178  * emulation of that much guest RAM, so artificially make it smaller.
    179  */
    180 #if HOST_LONG_BITS == 32
    181 #define MPS3_DDR_SIZE (1 * GiB)
    182 #else
    183 #define MPS3_DDR_SIZE (2 * GiB)
    184 #endif
    185 
    186 static const uint32_t an505_oscclk[] = {
    187     40000000,
    188     24580000,
    189     25000000,
    190 };
    191 
    192 static const uint32_t an524_oscclk[] = {
    193     24000000,
    194     32000000,
    195     50000000,
    196     50000000,
    197     24576000,
    198     23750000,
    199 };
    200 
    201 static const RAMInfo an505_raminfo[] = { {
    202         .name = "ssram-0",
    203         .base = 0x00000000,
    204         .size = 0x00400000,
    205         .mpc = 0,
    206         .mrindex = 0,
    207     }, {
    208         .name = "ssram-1",
    209         .base = 0x28000000,
    210         .size = 0x00200000,
    211         .mpc = 1,
    212         .mrindex = 1,
    213     }, {
    214         .name = "ssram-2",
    215         .base = 0x28200000,
    216         .size = 0x00200000,
    217         .mpc = 2,
    218         .mrindex = 2,
    219     }, {
    220         .name = "ssram-0-alias",
    221         .base = 0x00400000,
    222         .size = 0x00400000,
    223         .mpc = 0,
    224         .mrindex = 3,
    225         .flags = IS_ALIAS,
    226     }, {
    227         /* Use the largest bit of contiguous RAM as our "system memory" */
    228         .name = "mps.ram",
    229         .base = 0x80000000,
    230         .size = 16 * MiB,
    231         .mpc = -1,
    232         .mrindex = -1,
    233     }, {
    234         .name = NULL,
    235     },
    236 };
    237 
    238 /*
    239  * Note that the addresses and MPC numbering here should match up
    240  * with those used in remap_memory(), which can swap the BRAM and QSPI.
    241  */
    242 static const RAMInfo an524_raminfo[] = { {
    243         .name = "bram",
    244         .base = 0x00000000,
    245         .size = 512 * KiB,
    246         .mpc = 0,
    247         .mrindex = 0,
    248     }, {
    249         /* We don't model QSPI flash yet; for now expose it as simple ROM */
    250         .name = "QSPI",
    251         .base = 0x28000000,
    252         .size = 8 * MiB,
    253         .mpc = 1,
    254         .mrindex = 1,
    255         .flags = IS_ROM,
    256     }, {
    257         .name = "DDR",
    258         .base = 0x60000000,
    259         .size = MPS3_DDR_SIZE,
    260         .mpc = 2,
    261         .mrindex = -1,
    262     }, {
    263         .name = NULL,
    264     },
    265 };
    266 
    267 static const RAMInfo an547_raminfo[] = { {
    268         .name = "sram",
    269         .base = 0x01000000,
    270         .size = 2 * MiB,
    271         .mpc = 0,
    272         .mrindex = 1,
    273     }, {
    274         .name = "sram 2",
    275         .base = 0x21000000,
    276         .size = 4 * MiB,
    277         .mpc = -1,
    278         .mrindex = 3,
    279     }, {
    280         /* We don't model QSPI flash yet; for now expose it as simple ROM */
    281         .name = "QSPI",
    282         .base = 0x28000000,
    283         .size = 8 * MiB,
    284         .mpc = 1,
    285         .mrindex = 4,
    286         .flags = IS_ROM,
    287     }, {
    288         .name = "DDR",
    289         .base = 0x60000000,
    290         .size = MPS3_DDR_SIZE,
    291         .mpc = 2,
    292         .mrindex = -1,
    293     }, {
    294         .name = NULL,
    295     },
    296 };
    297 
    298 static const RAMInfo *find_raminfo_for_mpc(MPS2TZMachineState *mms, int mpc)
    299 {
    300     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
    301     const RAMInfo *p;
    302     const RAMInfo *found = NULL;
    303 
    304     for (p = mmc->raminfo; p->name; p++) {
    305         if (p->mpc == mpc && !(p->flags & IS_ALIAS)) {
    306             /* There should only be one entry in the array for this MPC */
    307             g_assert(!found);
    308             found = p;
    309         }
    310     }
    311     /* if raminfo array doesn't have an entry for each MPC this is a bug */
    312     assert(found);
    313     return found;
    314 }
    315 
    316 static MemoryRegion *mr_for_raminfo(MPS2TZMachineState *mms,
    317                                     const RAMInfo *raminfo)
    318 {
    319     /* Return an initialized MemoryRegion for the RAMInfo. */
    320     MemoryRegion *ram;
    321 
    322     if (raminfo->mrindex < 0) {
    323         /* Means this RAMInfo is for QEMU's "system memory" */
    324         MachineState *machine = MACHINE(mms);
    325         assert(!(raminfo->flags & IS_ROM));
    326         return machine->ram;
    327     }
    328 
    329     assert(raminfo->mrindex < MPS2TZ_RAM_MAX);
    330     ram = &mms->ram[raminfo->mrindex];
    331 
    332     memory_region_init_ram(ram, NULL, raminfo->name,
    333                            raminfo->size, &error_fatal);
    334     if (raminfo->flags & IS_ROM) {
    335         memory_region_set_readonly(ram, true);
    336     }
    337     return ram;
    338 }
    339 
    340 /* Create an alias of an entire original MemoryRegion @orig
    341  * located at @base in the memory map.
    342  */
    343 static void make_ram_alias(MemoryRegion *mr, const char *name,
    344                            MemoryRegion *orig, hwaddr base)
    345 {
    346     memory_region_init_alias(mr, NULL, name, orig, 0,
    347                              memory_region_size(orig));
    348     memory_region_add_subregion(get_system_memory(), base, mr);
    349 }
    350 
    351 static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno)
    352 {
    353     /*
    354      * Return a qemu_irq which will signal IRQ n to all CPUs in the
    355      * SSE.  The irqno should be as the CPU sees it, so the first
    356      * external-to-the-SSE interrupt is 32.
    357      */
    358     MachineClass *mc = MACHINE_GET_CLASS(mms);
    359     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
    360 
    361     assert(irqno >= 32 && irqno < (mmc->numirq + 32));
    362 
    363     /*
    364      * Convert from "CPU irq number" (as listed in the FPGA image
    365      * documentation) to the SSE external-interrupt number.
    366      */
    367     irqno -= 32;
    368 
    369     if (mc->max_cpus > 1) {
    370         return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
    371     } else {
    372         return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno);
    373     }
    374 }
    375 
    376 /* Union describing the device-specific extra data we pass to the devfn. */
    377 typedef union PPCExtraData {
    378     bool i2c_internal;
    379 } PPCExtraData;
    380 
    381 /* Most of the devices in the AN505 FPGA image sit behind
    382  * Peripheral Protection Controllers. These data structures
    383  * define the layout of which devices sit behind which PPCs.
    384  * The devfn for each port is a function which creates, configures
    385  * and initializes the device, returning the MemoryRegion which
    386  * needs to be plugged into the downstream end of the PPC port.
    387  */
    388 typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
    389                                 const char *name, hwaddr size,
    390                                 const int *irqs,
    391                                 const PPCExtraData *extradata);
    392 
    393 typedef struct PPCPortInfo {
    394     const char *name;
    395     MakeDevFn *devfn;
    396     void *opaque;
    397     hwaddr addr;
    398     hwaddr size;
    399     int irqs[3]; /* currently no device needs more IRQ lines than this */
    400     PPCExtraData extradata; /* to pass device-specific info to the devfn */
    401 } PPCPortInfo;
    402 
    403 typedef struct PPCInfo {
    404     const char *name;
    405     PPCPortInfo ports[TZ_NUM_PORTS];
    406 } PPCInfo;
    407 
    408 static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
    409                                     void *opaque,
    410                                     const char *name, hwaddr size,
    411                                     const int *irqs,
    412                                     const PPCExtraData *extradata)
    413 {
    414     /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
    415      * and return a pointer to its MemoryRegion.
    416      */
    417     UnimplementedDeviceState *uds = opaque;
    418 
    419     object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE);
    420     qdev_prop_set_string(DEVICE(uds), "name", name);
    421     qdev_prop_set_uint64(DEVICE(uds), "size", size);
    422     sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
    423     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
    424 }
    425 
    426 static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
    427                                const char *name, hwaddr size,
    428                                const int *irqs, const PPCExtraData *extradata)
    429 {
    430     /* The irq[] array is tx, rx, combined, in that order */
    431     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
    432     CMSDKAPBUART *uart = opaque;
    433     int i = uart - &mms->uart[0];
    434     SysBusDevice *s;
    435     DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
    436 
    437     object_initialize_child(OBJECT(mms), name, uart, TYPE_CMSDK_APB_UART);
    438     qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
    439     qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", mmc->apb_periph_frq);
    440     sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal);
    441     s = SYS_BUS_DEVICE(uart);
    442     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
    443     sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqs[1]));
    444     sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
    445     sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
    446     sysbus_connect_irq(s, 4, get_sse_irq_in(mms, irqs[2]));
    447     return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
    448 }
    449 
    450 static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
    451                               const char *name, hwaddr size,
    452                               const int *irqs, const PPCExtraData *extradata)
    453 {
    454     MPS2SCC *scc = opaque;
    455     DeviceState *sccdev;
    456     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
    457     uint32_t i;
    458 
    459     object_initialize_child(OBJECT(mms), "scc", scc, TYPE_MPS2_SCC);
    460     sccdev = DEVICE(scc);
    461     qdev_prop_set_uint32(sccdev, "scc-cfg0", mms->remap ? 1 : 0);
    462     qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
    463     qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008);
    464     qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
    465     qdev_prop_set_uint32(sccdev, "len-oscclk", mmc->len_oscclk);
    466     for (i = 0; i < mmc->len_oscclk; i++) {
    467         g_autofree char *propname = g_strdup_printf("oscclk[%u]", i);
    468         qdev_prop_set_uint32(sccdev, propname, mmc->oscclk[i]);
    469     }
    470     sysbus_realize(SYS_BUS_DEVICE(scc), &error_fatal);
    471     return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
    472 }
    473 
    474 static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
    475                                  const char *name, hwaddr size,
    476                                  const int *irqs, const PPCExtraData *extradata)
    477 {
    478     MPS2FPGAIO *fpgaio = opaque;
    479     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
    480 
    481     object_initialize_child(OBJECT(mms), "fpgaio", fpgaio, TYPE_MPS2_FPGAIO);
    482     qdev_prop_set_uint32(DEVICE(fpgaio), "num-leds", mmc->fpgaio_num_leds);
    483     qdev_prop_set_bit(DEVICE(fpgaio), "has-switches", mmc->fpgaio_has_switches);
    484     qdev_prop_set_bit(DEVICE(fpgaio), "has-dbgctrl", mmc->fpgaio_has_dbgctrl);
    485     sysbus_realize(SYS_BUS_DEVICE(fpgaio), &error_fatal);
    486     return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
    487 }
    488 
    489 static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
    490                                   const char *name, hwaddr size,
    491                                   const int *irqs,
    492                                   const PPCExtraData *extradata)
    493 {
    494     SysBusDevice *s;
    495     NICInfo *nd = &nd_table[0];
    496 
    497     /* In hardware this is a LAN9220; the LAN9118 is software compatible
    498      * except that it doesn't support the checksum-offload feature.
    499      */
    500     qemu_check_nic_model(nd, "lan9118");
    501     mms->lan9118 = qdev_new(TYPE_LAN9118);
    502     qdev_set_nic_properties(mms->lan9118, nd);
    503 
    504     s = SYS_BUS_DEVICE(mms->lan9118);
    505     sysbus_realize_and_unref(s, &error_fatal);
    506     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
    507     return sysbus_mmio_get_region(s, 0);
    508 }
    509 
    510 static MemoryRegion *make_eth_usb(MPS2TZMachineState *mms, void *opaque,
    511                                   const char *name, hwaddr size,
    512                                   const int *irqs,
    513                                   const PPCExtraData *extradata)
    514 {
    515     /*
    516      * The AN524 makes the ethernet and USB share a PPC port.
    517      * irqs[] is the ethernet IRQ.
    518      */
    519     SysBusDevice *s;
    520     NICInfo *nd = &nd_table[0];
    521 
    522     memory_region_init(&mms->eth_usb_container, OBJECT(mms),
    523                        "mps2-tz-eth-usb-container", 0x200000);
    524 
    525     /*
    526      * In hardware this is a LAN9220; the LAN9118 is software compatible
    527      * except that it doesn't support the checksum-offload feature.
    528      */
    529     qemu_check_nic_model(nd, "lan9118");
    530     mms->lan9118 = qdev_new(TYPE_LAN9118);
    531     qdev_set_nic_properties(mms->lan9118, nd);
    532 
    533     s = SYS_BUS_DEVICE(mms->lan9118);
    534     sysbus_realize_and_unref(s, &error_fatal);
    535     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
    536 
    537     memory_region_add_subregion(&mms->eth_usb_container,
    538                                 0, sysbus_mmio_get_region(s, 0));
    539 
    540     /* The USB OTG controller is an ISP1763; we don't have a model of it. */
    541     object_initialize_child(OBJECT(mms), "usb-otg",
    542                             &mms->usb, TYPE_UNIMPLEMENTED_DEVICE);
    543     qdev_prop_set_string(DEVICE(&mms->usb), "name", "usb-otg");
    544     qdev_prop_set_uint64(DEVICE(&mms->usb), "size", 0x100000);
    545     s = SYS_BUS_DEVICE(&mms->usb);
    546     sysbus_realize(s, &error_fatal);
    547 
    548     memory_region_add_subregion(&mms->eth_usb_container,
    549                                 0x100000, sysbus_mmio_get_region(s, 0));
    550 
    551     return &mms->eth_usb_container;
    552 }
    553 
    554 static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
    555                               const char *name, hwaddr size,
    556                               const int *irqs, const PPCExtraData *extradata)
    557 {
    558     TZMPC *mpc = opaque;
    559     int i = mpc - &mms->mpc[0];
    560     MemoryRegion *upstream;
    561     const RAMInfo *raminfo = find_raminfo_for_mpc(mms, i);
    562     MemoryRegion *ram = mr_for_raminfo(mms, raminfo);
    563 
    564     object_initialize_child(OBJECT(mms), name, mpc, TYPE_TZ_MPC);
    565     object_property_set_link(OBJECT(mpc), "downstream", OBJECT(ram),
    566                              &error_fatal);
    567     sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal);
    568     /* Map the upstream end of the MPC into system memory */
    569     upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
    570     memory_region_add_subregion(get_system_memory(), raminfo->base, upstream);
    571     /* and connect its interrupt to the IoTKit */
    572     qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
    573                                 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
    574                                                        "mpcexp_status", i));
    575 
    576     /* Return the register interface MR for our caller to map behind the PPC */
    577     return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
    578 }
    579 
    580 static hwaddr boot_mem_base(MPS2TZMachineState *mms)
    581 {
    582     /*
    583      * Return the canonical address of the block which will be mapped
    584      * at address 0x0 (i.e. where the vector table is).
    585      * This is usually 0, but if the AN524 alternate memory map is
    586      * enabled it will be the base address of the QSPI block.
    587      */
    588     return mms->remap ? 0x28000000 : 0;
    589 }
    590 
    591 static void remap_memory(MPS2TZMachineState *mms, int map)
    592 {
    593     /*
    594      * Remap the memory for the AN524. 'map' is the value of
    595      * SCC CFG_REG0 bit 0, i.e. 0 for the default map and 1
    596      * for the "option 1" mapping where QSPI is at address 0.
    597      *
    598      * Effectively we need to swap around the "upstream" ends of
    599      * MPC 0 and MPC 1.
    600      */
    601     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
    602     int i;
    603 
    604     if (mmc->fpga_type != FPGA_AN524) {
    605         return;
    606     }
    607 
    608     memory_region_transaction_begin();
    609     for (i = 0; i < 2; i++) {
    610         TZMPC *mpc = &mms->mpc[i];
    611         MemoryRegion *upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
    612         hwaddr addr = (i ^ map) ? 0x28000000 : 0;
    613 
    614         memory_region_set_address(upstream, addr);
    615     }
    616     memory_region_transaction_commit();
    617 }
    618 
    619 static void remap_irq_fn(void *opaque, int n, int level)
    620 {
    621     MPS2TZMachineState *mms = opaque;
    622 
    623     remap_memory(mms, level);
    624 }
    625 
    626 static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
    627                               const char *name, hwaddr size,
    628                               const int *irqs, const PPCExtraData *extradata)
    629 {
    630     /* The irq[] array is DMACINTR, DMACINTERR, DMACINTTC, in that order */
    631     PL080State *dma = opaque;
    632     int i = dma - &mms->dma[0];
    633     SysBusDevice *s;
    634     char *mscname = g_strdup_printf("%s-msc", name);
    635     TZMSC *msc = &mms->msc[i];
    636     DeviceState *iotkitdev = DEVICE(&mms->iotkit);
    637     MemoryRegion *msc_upstream;
    638     MemoryRegion *msc_downstream;
    639 
    640     /*
    641      * Each DMA device is a PL081 whose transaction master interface
    642      * is guarded by a Master Security Controller. The downstream end of
    643      * the MSC connects to the IoTKit AHB Slave Expansion port, so the
    644      * DMA devices can see all devices and memory that the CPU does.
    645      */
    646     object_initialize_child(OBJECT(mms), mscname, msc, TYPE_TZ_MSC);
    647     msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
    648     object_property_set_link(OBJECT(msc), "downstream",
    649                              OBJECT(msc_downstream), &error_fatal);
    650     object_property_set_link(OBJECT(msc), "idau", OBJECT(mms), &error_fatal);
    651     sysbus_realize(SYS_BUS_DEVICE(msc), &error_fatal);
    652 
    653     qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
    654                                 qdev_get_gpio_in_named(iotkitdev,
    655                                                        "mscexp_status", i));
    656     qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
    657                                 qdev_get_gpio_in_named(DEVICE(msc),
    658                                                        "irq_clear", 0));
    659     qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
    660                                 qdev_get_gpio_in_named(DEVICE(msc),
    661                                                        "cfg_nonsec", 0));
    662     qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
    663                           ARRAY_SIZE(mms->ppc) + i,
    664                           qdev_get_gpio_in_named(DEVICE(msc),
    665                                                  "cfg_sec_resp", 0));
    666     msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);
    667 
    668     object_initialize_child(OBJECT(mms), name, dma, TYPE_PL081);
    669     object_property_set_link(OBJECT(dma), "downstream", OBJECT(msc_upstream),
    670                              &error_fatal);
    671     sysbus_realize(SYS_BUS_DEVICE(dma), &error_fatal);
    672 
    673     s = SYS_BUS_DEVICE(dma);
    674     /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
    675     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
    676     sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqs[1]));
    677     sysbus_connect_irq(s, 2, get_sse_irq_in(mms, irqs[2]));
    678 
    679     g_free(mscname);
    680     return sysbus_mmio_get_region(s, 0);
    681 }
    682 
    683 static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque,
    684                               const char *name, hwaddr size,
    685                               const int *irqs, const PPCExtraData *extradata)
    686 {
    687     /*
    688      * The AN505 has five PL022 SPI controllers.
    689      * One of these should have the LCD controller behind it; the others
    690      * are connected only to the FPGA's "general purpose SPI connector"
    691      * or "shield" expansion connectors.
    692      * Note that if we do implement devices behind SPI, the chip select
    693      * lines are set via the "MISC" register in the MPS2 FPGAIO device.
    694      */
    695     PL022State *spi = opaque;
    696     SysBusDevice *s;
    697 
    698     object_initialize_child(OBJECT(mms), name, spi, TYPE_PL022);
    699     sysbus_realize(SYS_BUS_DEVICE(spi), &error_fatal);
    700     s = SYS_BUS_DEVICE(spi);
    701     sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
    702     return sysbus_mmio_get_region(s, 0);
    703 }
    704 
    705 static MemoryRegion *make_i2c(MPS2TZMachineState *mms, void *opaque,
    706                               const char *name, hwaddr size,
    707                               const int *irqs, const PPCExtraData *extradata)
    708 {
    709     ArmSbconI2CState *i2c = opaque;
    710     SysBusDevice *s;
    711 
    712     object_initialize_child(OBJECT(mms), name, i2c, TYPE_ARM_SBCON_I2C);
    713     s = SYS_BUS_DEVICE(i2c);
    714     sysbus_realize(s, &error_fatal);
    715 
    716     /*
    717      * If this is an internal-use-only i2c bus, mark it full
    718      * so that user-created i2c devices are not plugged into it.
    719      * If we implement models of any on-board i2c devices that
    720      * plug in to one of the internal-use-only buses, then we will
    721      * need to create and plugging those in here before we mark the
    722      * bus as full.
    723      */
    724     if (extradata->i2c_internal) {
    725         BusState *qbus = qdev_get_child_bus(DEVICE(i2c), "i2c");
    726         qbus_mark_full(qbus);
    727     }
    728 
    729     return sysbus_mmio_get_region(s, 0);
    730 }
    731 
    732 static MemoryRegion *make_rtc(MPS2TZMachineState *mms, void *opaque,
    733                               const char *name, hwaddr size,
    734                               const int *irqs, const PPCExtraData *extradata)
    735 {
    736     PL031State *pl031 = opaque;
    737     SysBusDevice *s;
    738 
    739     object_initialize_child(OBJECT(mms), name, pl031, TYPE_PL031);
    740     s = SYS_BUS_DEVICE(pl031);
    741     sysbus_realize(s, &error_fatal);
    742     /*
    743      * The board docs don't give an IRQ number for the PL031, so
    744      * presumably it is not connected.
    745      */
    746     return sysbus_mmio_get_region(s, 0);
    747 }
    748 
    749 static void create_non_mpc_ram(MPS2TZMachineState *mms)
    750 {
    751     /*
    752      * Handle the RAMs which are either not behind MPCs or which are
    753      * aliases to another MPC.
    754      */
    755     const RAMInfo *p;
    756     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
    757 
    758     for (p = mmc->raminfo; p->name; p++) {
    759         if (p->flags & IS_ALIAS) {
    760             SysBusDevice *mpc_sbd = SYS_BUS_DEVICE(&mms->mpc[p->mpc]);
    761             MemoryRegion *upstream = sysbus_mmio_get_region(mpc_sbd, 1);
    762             make_ram_alias(&mms->ram[p->mrindex], p->name, upstream, p->base);
    763         } else if (p->mpc == -1) {
    764             /* RAM not behind an MPC */
    765             MemoryRegion *mr = mr_for_raminfo(mms, p);
    766             memory_region_add_subregion(get_system_memory(), p->base, mr);
    767         }
    768     }
    769 }
    770 
    771 static uint32_t boot_ram_size(MPS2TZMachineState *mms)
    772 {
    773     /* Return the size of the RAM block at guest address zero */
    774     const RAMInfo *p;
    775     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
    776 
    777     /*
    778      * Use a per-board specification (for when the boot RAM is in
    779      * the SSE and so doesn't have a RAMInfo list entry)
    780      */
    781     if (mmc->boot_ram_size) {
    782         return mmc->boot_ram_size;
    783     }
    784 
    785     for (p = mmc->raminfo; p->name; p++) {
    786         if (p->base == boot_mem_base(mms)) {
    787             return p->size;
    788         }
    789     }
    790     g_assert_not_reached();
    791 }
    792 
    793 static void mps2tz_common_init(MachineState *machine)
    794 {
    795     MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
    796     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
    797     MachineClass *mc = MACHINE_GET_CLASS(machine);
    798     MemoryRegion *system_memory = get_system_memory();
    799     DeviceState *iotkitdev;
    800     DeviceState *dev_splitter;
    801     const PPCInfo *ppcs;
    802     int num_ppcs;
    803     int i;
    804 
    805     if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
    806         error_report("This board can only be used with CPU %s",
    807                      mc->default_cpu_type);
    808         exit(1);
    809     }
    810 
    811     if (machine->ram_size != mc->default_ram_size) {
    812         char *sz = size_to_str(mc->default_ram_size);
    813         error_report("Invalid RAM size, should be %s", sz);
    814         g_free(sz);
    815         exit(EXIT_FAILURE);
    816     }
    817 
    818     /* These clocks don't need migration because they are fixed-frequency */
    819     mms->sysclk = clock_new(OBJECT(machine), "SYSCLK");
    820     clock_set_hz(mms->sysclk, mmc->sysclk_frq);
    821     mms->s32kclk = clock_new(OBJECT(machine), "S32KCLK");
    822     clock_set_hz(mms->s32kclk, S32KCLK_FRQ);
    823 
    824     object_initialize_child(OBJECT(machine), TYPE_IOTKIT, &mms->iotkit,
    825                             mmc->armsse_type);
    826     iotkitdev = DEVICE(&mms->iotkit);
    827     object_property_set_link(OBJECT(&mms->iotkit), "memory",
    828                              OBJECT(system_memory), &error_abort);
    829     qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", mmc->numirq);
    830     qdev_prop_set_uint32(iotkitdev, "init-svtor", mmc->init_svtor);
    831     qdev_prop_set_uint32(iotkitdev, "SRAM_ADDR_WIDTH", mmc->sram_addr_width);
    832     qdev_connect_clock_in(iotkitdev, "MAINCLK", mms->sysclk);
    833     qdev_connect_clock_in(iotkitdev, "S32KCLK", mms->s32kclk);
    834     sysbus_realize(SYS_BUS_DEVICE(&mms->iotkit), &error_fatal);
    835 
    836     /*
    837      * If this board has more than one CPU, then we need to create splitters
    838      * to feed the IRQ inputs for each CPU in the SSE from each device in the
    839      * board. If there is only one CPU, we can just wire the device IRQ
    840      * directly to the SSE's IRQ input.
    841      */
    842     assert(mmc->numirq <= MPS2TZ_NUMIRQ_MAX);
    843     if (mc->max_cpus > 1) {
    844         for (i = 0; i < mmc->numirq; i++) {
    845             char *name = g_strdup_printf("mps2-irq-splitter%d", i);
    846             SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
    847 
    848             object_initialize_child_with_props(OBJECT(machine), name,
    849                                                splitter, sizeof(*splitter),
    850                                                TYPE_SPLIT_IRQ, &error_fatal,
    851                                                NULL);
    852             g_free(name);
    853 
    854             object_property_set_int(OBJECT(splitter), "num-lines", 2,
    855                                     &error_fatal);
    856             qdev_realize(DEVICE(splitter), NULL, &error_fatal);
    857             qdev_connect_gpio_out(DEVICE(splitter), 0,
    858                                   qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
    859                                                          "EXP_IRQ", i));
    860             qdev_connect_gpio_out(DEVICE(splitter), 1,
    861                                   qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
    862                                                          "EXP_CPU1_IRQ", i));
    863         }
    864     }
    865 
    866     /* The sec_resp_cfg output from the IoTKit must be split into multiple
    867      * lines, one for each of the PPCs we create here, plus one per MSC.
    868      */
    869     object_initialize_child(OBJECT(machine), "sec-resp-splitter",
    870                             &mms->sec_resp_splitter, TYPE_SPLIT_IRQ);
    871     object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines",
    872                             ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
    873                             &error_fatal);
    874     qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal);
    875     dev_splitter = DEVICE(&mms->sec_resp_splitter);
    876     qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
    877                                 qdev_get_gpio_in(dev_splitter, 0));
    878 
    879     /*
    880      * The IoTKit sets up much of the memory layout, including
    881      * the aliases between secure and non-secure regions in the
    882      * address space, and also most of the devices in the system.
    883      * The FPGA itself contains various RAMs and some additional devices.
    884      * The FPGA images have an odd combination of different RAMs,
    885      * because in hardware they are different implementations and
    886      * connected to different buses, giving varying performance/size
    887      * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
    888      * call the largest lump our "system memory".
    889      */
    890 
    891     /*
    892      * The overflow IRQs for all UARTs are ORed together.
    893      * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
    894      * Create the OR gate for this: it has one input for the TX overflow
    895      * and one for the RX overflow for each UART we might have.
    896      * (If the board has fewer than the maximum possible number of UARTs
    897      * those inputs are never wired up and are treated as always-zero.)
    898      */
    899     object_initialize_child(OBJECT(mms), "uart-irq-orgate",
    900                             &mms->uart_irq_orgate, TYPE_OR_IRQ);
    901     object_property_set_int(OBJECT(&mms->uart_irq_orgate), "num-lines",
    902                             2 * ARRAY_SIZE(mms->uart),
    903                             &error_fatal);
    904     qdev_realize(DEVICE(&mms->uart_irq_orgate), NULL, &error_fatal);
    905     qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
    906                           get_sse_irq_in(mms, mmc->uart_overflow_irq));
    907 
    908     /* Most of the devices in the FPGA are behind Peripheral Protection
    909      * Controllers. The required order for initializing things is:
    910      *  + initialize the PPC
    911      *  + initialize, configure and realize downstream devices
    912      *  + connect downstream device MemoryRegions to the PPC
    913      *  + realize the PPC
    914      *  + map the PPC's MemoryRegions to the places in the address map
    915      *    where the downstream devices should appear
    916      *  + wire up the PPC's control lines to the IoTKit object
    917      */
    918 
    919     const PPCInfo an505_ppcs[] = { {
    920             .name = "apb_ppcexp0",
    921             .ports = {
    922                 { "ssram-0-mpc", make_mpc, &mms->mpc[0], 0x58007000, 0x1000 },
    923                 { "ssram-1-mpc", make_mpc, &mms->mpc[1], 0x58008000, 0x1000 },
    924                 { "ssram-2-mpc", make_mpc, &mms->mpc[2], 0x58009000, 0x1000 },
    925             },
    926         }, {
    927             .name = "apb_ppcexp1",
    928             .ports = {
    929                 { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000, { 51 } },
    930                 { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000, { 52 } },
    931                 { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000, { 53 } },
    932                 { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000, { 54 } },
    933                 { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000, { 55 } },
    934                 { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000, { 32, 33, 42 } },
    935                 { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000, { 34, 35, 43 } },
    936                 { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000, { 36, 37, 44 } },
    937                 { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000, { 38, 39, 45 } },
    938                 { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000, { 40, 41, 46 } },
    939                 { "i2c0", make_i2c, &mms->i2c[0], 0x40207000, 0x1000, {},
    940                   { .i2c_internal = true /* touchscreen */ } },
    941                 { "i2c1", make_i2c, &mms->i2c[1], 0x40208000, 0x1000, {},
    942                   { .i2c_internal = true /* audio conf */ } },
    943                 { "i2c2", make_i2c, &mms->i2c[2], 0x4020c000, 0x1000, {},
    944                   { .i2c_internal = false /* shield 0 */ } },
    945                 { "i2c3", make_i2c, &mms->i2c[3], 0x4020d000, 0x1000, {},
    946                   { .i2c_internal = false /* shield 1 */ } },
    947             },
    948         }, {
    949             .name = "apb_ppcexp2",
    950             .ports = {
    951                 { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
    952                 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
    953                   0x40301000, 0x1000 },
    954                 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
    955             },
    956         }, {
    957             .name = "ahb_ppcexp0",
    958             .ports = {
    959                 { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
    960                 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
    961                 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
    962                 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
    963                 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
    964                 { "eth", make_eth_dev, NULL, 0x42000000, 0x100000, { 48 } },
    965             },
    966         }, {
    967             .name = "ahb_ppcexp1",
    968             .ports = {
    969                 { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000, { 58, 56, 57 } },
    970                 { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000, { 61, 59, 60 } },
    971                 { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000, { 64, 62, 63 } },
    972                 { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000, { 67, 65, 66 } },
    973             },
    974         },
    975     };
    976 
    977     const PPCInfo an524_ppcs[] = { {
    978             .name = "apb_ppcexp0",
    979             .ports = {
    980                 { "bram-mpc", make_mpc, &mms->mpc[0], 0x58007000, 0x1000 },
    981                 { "qspi-mpc", make_mpc, &mms->mpc[1], 0x58008000, 0x1000 },
    982                 { "ddr-mpc", make_mpc, &mms->mpc[2], 0x58009000, 0x1000 },
    983             },
    984         }, {
    985             .name = "apb_ppcexp1",
    986             .ports = {
    987                 { "i2c0", make_i2c, &mms->i2c[0], 0x41200000, 0x1000, {},
    988                   { .i2c_internal = true /* touchscreen */ } },
    989                 { "i2c1", make_i2c, &mms->i2c[1], 0x41201000, 0x1000, {},
    990                   { .i2c_internal = true /* audio conf */ } },
    991                 { "spi0", make_spi, &mms->spi[0], 0x41202000, 0x1000, { 52 } },
    992                 { "spi1", make_spi, &mms->spi[1], 0x41203000, 0x1000, { 53 } },
    993                 { "spi2", make_spi, &mms->spi[2], 0x41204000, 0x1000, { 54 } },
    994                 { "i2c2", make_i2c, &mms->i2c[2], 0x41205000, 0x1000, {},
    995                   { .i2c_internal = false /* shield 0 */ } },
    996                 { "i2c3", make_i2c, &mms->i2c[3], 0x41206000, 0x1000, {},
    997                   { .i2c_internal = false /* shield 1 */ } },
    998                 { /* port 7 reserved */ },
    999                 { "i2c4", make_i2c, &mms->i2c[4], 0x41208000, 0x1000, {},
   1000                   { .i2c_internal = true /* DDR4 EEPROM */ } },
   1001             },
   1002         }, {
   1003             .name = "apb_ppcexp2",
   1004             .ports = {
   1005                 { "scc", make_scc, &mms->scc, 0x41300000, 0x1000 },
   1006                 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
   1007                   0x41301000, 0x1000 },
   1008                 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x41302000, 0x1000 },
   1009                 { "uart0", make_uart, &mms->uart[0], 0x41303000, 0x1000, { 32, 33, 42 } },
   1010                 { "uart1", make_uart, &mms->uart[1], 0x41304000, 0x1000, { 34, 35, 43 } },
   1011                 { "uart2", make_uart, &mms->uart[2], 0x41305000, 0x1000, { 36, 37, 44 } },
   1012                 { "uart3", make_uart, &mms->uart[3], 0x41306000, 0x1000, { 38, 39, 45 } },
   1013                 { "uart4", make_uart, &mms->uart[4], 0x41307000, 0x1000, { 40, 41, 46 } },
   1014                 { "uart5", make_uart, &mms->uart[5], 0x41308000, 0x1000, { 124, 125, 126 } },
   1015 
   1016                 { /* port 9 reserved */ },
   1017                 { "clcd", make_unimp_dev, &mms->cldc, 0x4130a000, 0x1000 },
   1018                 { "rtc", make_rtc, &mms->rtc, 0x4130b000, 0x1000 },
   1019             },
   1020         }, {
   1021             .name = "ahb_ppcexp0",
   1022             .ports = {
   1023                 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x41100000, 0x1000 },
   1024                 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x41101000, 0x1000 },
   1025                 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x41102000, 0x1000 },
   1026                 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x41103000, 0x1000 },
   1027                 { "eth-usb", make_eth_usb, NULL, 0x41400000, 0x200000, { 48 } },
   1028             },
   1029         },
   1030     };
   1031 
   1032     const PPCInfo an547_ppcs[] = { {
   1033             .name = "apb_ppcexp0",
   1034             .ports = {
   1035                 { "ssram-mpc", make_mpc, &mms->mpc[0], 0x57000000, 0x1000 },
   1036                 { "qspi-mpc", make_mpc, &mms->mpc[1], 0x57001000, 0x1000 },
   1037                 { "ddr-mpc", make_mpc, &mms->mpc[2], 0x57002000, 0x1000 },
   1038             },
   1039         }, {
   1040             .name = "apb_ppcexp1",
   1041             .ports = {
   1042                 { "i2c0", make_i2c, &mms->i2c[0], 0x49200000, 0x1000, {},
   1043                   { .i2c_internal = true /* touchscreen */ } },
   1044                 { "i2c1", make_i2c, &mms->i2c[1], 0x49201000, 0x1000, {},
   1045                   { .i2c_internal = true /* audio conf */ } },
   1046                 { "spi0", make_spi, &mms->spi[0], 0x49202000, 0x1000, { 53 } },
   1047                 { "spi1", make_spi, &mms->spi[1], 0x49203000, 0x1000, { 54 } },
   1048                 { "spi2", make_spi, &mms->spi[2], 0x49204000, 0x1000, { 55 } },
   1049                 { "i2c2", make_i2c, &mms->i2c[2], 0x49205000, 0x1000, {},
   1050                   { .i2c_internal = false /* shield 0 */ } },
   1051                 { "i2c3", make_i2c, &mms->i2c[3], 0x49206000, 0x1000, {},
   1052                   { .i2c_internal = false /* shield 1 */ } },
   1053                 { /* port 7 reserved */ },
   1054                 { "i2c4", make_i2c, &mms->i2c[4], 0x49208000, 0x1000, {},
   1055                   { .i2c_internal = true /* DDR4 EEPROM */ } },
   1056             },
   1057         }, {
   1058             .name = "apb_ppcexp2",
   1059             .ports = {
   1060                 { "scc", make_scc, &mms->scc, 0x49300000, 0x1000 },
   1061                 { "i2s-audio", make_unimp_dev, &mms->i2s_audio, 0x49301000, 0x1000 },
   1062                 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x49302000, 0x1000 },
   1063                 { "uart0", make_uart, &mms->uart[0], 0x49303000, 0x1000, { 33, 34, 43 } },
   1064                 { "uart1", make_uart, &mms->uart[1], 0x49304000, 0x1000, { 35, 36, 44 } },
   1065                 { "uart2", make_uart, &mms->uart[2], 0x49305000, 0x1000, { 37, 38, 45 } },
   1066                 { "uart3", make_uart, &mms->uart[3], 0x49306000, 0x1000, { 39, 40, 46 } },
   1067                 { "uart4", make_uart, &mms->uart[4], 0x49307000, 0x1000, { 41, 42, 47 } },
   1068                 { "uart5", make_uart, &mms->uart[5], 0x49308000, 0x1000, { 125, 126, 127 } },
   1069 
   1070                 { /* port 9 reserved */ },
   1071                 { "clcd", make_unimp_dev, &mms->cldc, 0x4930a000, 0x1000 },
   1072                 { "rtc", make_rtc, &mms->rtc, 0x4930b000, 0x1000 },
   1073             },
   1074         }, {
   1075             .name = "ahb_ppcexp0",
   1076             .ports = {
   1077                 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x41100000, 0x1000 },
   1078                 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x41101000, 0x1000 },
   1079                 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x41102000, 0x1000 },
   1080                 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x41103000, 0x1000 },
   1081                 { /* port 4 USER AHB interface 0 */ },
   1082                 { /* port 5 USER AHB interface 1 */ },
   1083                 { /* port 6 USER AHB interface 2 */ },
   1084                 { /* port 7 USER AHB interface 3 */ },
   1085                 { "eth-usb", make_eth_usb, NULL, 0x41400000, 0x200000, { 49 } },
   1086             },
   1087         },
   1088     };
   1089 
   1090     switch (mmc->fpga_type) {
   1091     case FPGA_AN505:
   1092     case FPGA_AN521:
   1093         ppcs = an505_ppcs;
   1094         num_ppcs = ARRAY_SIZE(an505_ppcs);
   1095         break;
   1096     case FPGA_AN524:
   1097         ppcs = an524_ppcs;
   1098         num_ppcs = ARRAY_SIZE(an524_ppcs);
   1099         break;
   1100     case FPGA_AN547:
   1101         ppcs = an547_ppcs;
   1102         num_ppcs = ARRAY_SIZE(an547_ppcs);
   1103         break;
   1104     default:
   1105         g_assert_not_reached();
   1106     }
   1107 
   1108     for (i = 0; i < num_ppcs; i++) {
   1109         const PPCInfo *ppcinfo = &ppcs[i];
   1110         TZPPC *ppc = &mms->ppc[i];
   1111         DeviceState *ppcdev;
   1112         int port;
   1113         char *gpioname;
   1114 
   1115         object_initialize_child(OBJECT(machine), ppcinfo->name, ppc,
   1116                                 TYPE_TZ_PPC);
   1117         ppcdev = DEVICE(ppc);
   1118 
   1119         for (port = 0; port < TZ_NUM_PORTS; port++) {
   1120             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
   1121             MemoryRegion *mr;
   1122             char *portname;
   1123 
   1124             if (!pinfo->devfn) {
   1125                 continue;
   1126             }
   1127 
   1128             mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size,
   1129                               pinfo->irqs, &pinfo->extradata);
   1130             portname = g_strdup_printf("port[%d]", port);
   1131             object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
   1132                                      &error_fatal);
   1133             g_free(portname);
   1134         }
   1135 
   1136         sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal);
   1137 
   1138         for (port = 0; port < TZ_NUM_PORTS; port++) {
   1139             const PPCPortInfo *pinfo = &ppcinfo->ports[port];
   1140 
   1141             if (!pinfo->devfn) {
   1142                 continue;
   1143             }
   1144             sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
   1145 
   1146             gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
   1147             qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
   1148                                         qdev_get_gpio_in_named(ppcdev,
   1149                                                                "cfg_nonsec",
   1150                                                                port));
   1151             g_free(gpioname);
   1152             gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
   1153             qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
   1154                                         qdev_get_gpio_in_named(ppcdev,
   1155                                                                "cfg_ap", port));
   1156             g_free(gpioname);
   1157         }
   1158 
   1159         gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
   1160         qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
   1161                                     qdev_get_gpio_in_named(ppcdev,
   1162                                                            "irq_enable", 0));
   1163         g_free(gpioname);
   1164         gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
   1165         qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
   1166                                     qdev_get_gpio_in_named(ppcdev,
   1167                                                            "irq_clear", 0));
   1168         g_free(gpioname);
   1169         gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
   1170         qdev_connect_gpio_out_named(ppcdev, "irq", 0,
   1171                                     qdev_get_gpio_in_named(iotkitdev,
   1172                                                            gpioname, 0));
   1173         g_free(gpioname);
   1174 
   1175         qdev_connect_gpio_out(dev_splitter, i,
   1176                               qdev_get_gpio_in_named(ppcdev,
   1177                                                      "cfg_sec_resp", 0));
   1178     }
   1179 
   1180     create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
   1181 
   1182     if (mmc->fpga_type == FPGA_AN547) {
   1183         create_unimplemented_device("U55 timing adapter 0", 0x48102000, 0x1000);
   1184         create_unimplemented_device("U55 timing adapter 1", 0x48103000, 0x1000);
   1185     }
   1186 
   1187     create_non_mpc_ram(mms);
   1188 
   1189     if (mmc->fpga_type == FPGA_AN524) {
   1190         /*
   1191          * Connect the line from the SCC so that we can remap when the
   1192          * guest updates that register.
   1193          */
   1194         mms->remap_irq = qemu_allocate_irq(remap_irq_fn, mms, 0);
   1195         qdev_connect_gpio_out_named(DEVICE(&mms->scc), "remap", 0,
   1196                                     mms->remap_irq);
   1197     }
   1198 
   1199     armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename,
   1200                        0, boot_ram_size(mms));
   1201 }
   1202 
   1203 static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
   1204                                int *iregion, bool *exempt, bool *ns, bool *nsc)
   1205 {
   1206     /*
   1207      * The MPS2 TZ FPGA images have IDAUs in them which are connected to
   1208      * the Master Security Controllers. Thes have the same logic as
   1209      * is used by the IoTKit for the IDAU connected to the CPU, except
   1210      * that MSCs don't care about the NSC attribute.
   1211      */
   1212     int region = extract32(address, 28, 4);
   1213 
   1214     *ns = !(region & 1);
   1215     *nsc = false;
   1216     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
   1217     *exempt = (address & 0xeff00000) == 0xe0000000;
   1218     *iregion = region;
   1219 }
   1220 
   1221 static char *mps2_get_remap(Object *obj, Error **errp)
   1222 {
   1223     MPS2TZMachineState *mms = MPS2TZ_MACHINE(obj);
   1224     const char *val = mms->remap ? "QSPI" : "BRAM";
   1225     return g_strdup(val);
   1226 }
   1227 
   1228 static void mps2_set_remap(Object *obj, const char *value, Error **errp)
   1229 {
   1230     MPS2TZMachineState *mms = MPS2TZ_MACHINE(obj);
   1231 
   1232     if (!strcmp(value, "BRAM")) {
   1233         mms->remap = false;
   1234     } else if (!strcmp(value, "QSPI")) {
   1235         mms->remap = true;
   1236     } else {
   1237         error_setg(errp, "Invalid remap value");
   1238         error_append_hint(errp, "Valid values are BRAM and QSPI.\n");
   1239     }
   1240 }
   1241 
   1242 static void mps2_machine_reset(MachineState *machine, ShutdownCause reason)
   1243 {
   1244     MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
   1245 
   1246     /*
   1247      * Set the initial memory mapping before triggering the reset of
   1248      * the rest of the system, so that the guest image loader and CPU
   1249      * reset see the correct mapping.
   1250      */
   1251     remap_memory(mms, mms->remap);
   1252     qemu_devices_reset(reason);
   1253 }
   1254 
   1255 static void mps2tz_class_init(ObjectClass *oc, void *data)
   1256 {
   1257     MachineClass *mc = MACHINE_CLASS(oc);
   1258     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
   1259 
   1260     mc->init = mps2tz_common_init;
   1261     mc->reset = mps2_machine_reset;
   1262     iic->check = mps2_tz_idau_check;
   1263 }
   1264 
   1265 static void mps2tz_set_default_ram_info(MPS2TZMachineClass *mmc)
   1266 {
   1267     /*
   1268      * Set mc->default_ram_size and default_ram_id from the
   1269      * information in mmc->raminfo.
   1270      */
   1271     MachineClass *mc = MACHINE_CLASS(mmc);
   1272     const RAMInfo *p;
   1273 
   1274     for (p = mmc->raminfo; p->name; p++) {
   1275         if (p->mrindex < 0) {
   1276             /* Found the entry for "system memory" */
   1277             mc->default_ram_size = p->size;
   1278             mc->default_ram_id = p->name;
   1279             return;
   1280         }
   1281     }
   1282     g_assert_not_reached();
   1283 }
   1284 
   1285 static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
   1286 {
   1287     MachineClass *mc = MACHINE_CLASS(oc);
   1288     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
   1289 
   1290     mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
   1291     mc->default_cpus = 1;
   1292     mc->min_cpus = mc->default_cpus;
   1293     mc->max_cpus = mc->default_cpus;
   1294     mmc->fpga_type = FPGA_AN505;
   1295     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
   1296     mmc->scc_id = 0x41045050;
   1297     mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */
   1298     mmc->apb_periph_frq = mmc->sysclk_frq;
   1299     mmc->oscclk = an505_oscclk;
   1300     mmc->len_oscclk = ARRAY_SIZE(an505_oscclk);
   1301     mmc->fpgaio_num_leds = 2;
   1302     mmc->fpgaio_has_switches = false;
   1303     mmc->fpgaio_has_dbgctrl = false;
   1304     mmc->numirq = 92;
   1305     mmc->uart_overflow_irq = 47;
   1306     mmc->init_svtor = 0x10000000;
   1307     mmc->sram_addr_width = 15;
   1308     mmc->raminfo = an505_raminfo;
   1309     mmc->armsse_type = TYPE_IOTKIT;
   1310     mmc->boot_ram_size = 0;
   1311     mps2tz_set_default_ram_info(mmc);
   1312 }
   1313 
   1314 static void mps2tz_an521_class_init(ObjectClass *oc, void *data)
   1315 {
   1316     MachineClass *mc = MACHINE_CLASS(oc);
   1317     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
   1318 
   1319     mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
   1320     mc->default_cpus = 2;
   1321     mc->min_cpus = mc->default_cpus;
   1322     mc->max_cpus = mc->default_cpus;
   1323     mmc->fpga_type = FPGA_AN521;
   1324     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
   1325     mmc->scc_id = 0x41045210;
   1326     mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */
   1327     mmc->apb_periph_frq = mmc->sysclk_frq;
   1328     mmc->oscclk = an505_oscclk; /* AN521 is the same as AN505 here */
   1329     mmc->len_oscclk = ARRAY_SIZE(an505_oscclk);
   1330     mmc->fpgaio_num_leds = 2;
   1331     mmc->fpgaio_has_switches = false;
   1332     mmc->fpgaio_has_dbgctrl = false;
   1333     mmc->numirq = 92;
   1334     mmc->uart_overflow_irq = 47;
   1335     mmc->init_svtor = 0x10000000;
   1336     mmc->sram_addr_width = 15;
   1337     mmc->raminfo = an505_raminfo; /* AN521 is the same as AN505 here */
   1338     mmc->armsse_type = TYPE_SSE200;
   1339     mmc->boot_ram_size = 0;
   1340     mps2tz_set_default_ram_info(mmc);
   1341 }
   1342 
   1343 static void mps3tz_an524_class_init(ObjectClass *oc, void *data)
   1344 {
   1345     MachineClass *mc = MACHINE_CLASS(oc);
   1346     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
   1347 
   1348     mc->desc = "ARM MPS3 with AN524 FPGA image for dual Cortex-M33";
   1349     mc->default_cpus = 2;
   1350     mc->min_cpus = mc->default_cpus;
   1351     mc->max_cpus = mc->default_cpus;
   1352     mmc->fpga_type = FPGA_AN524;
   1353     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
   1354     mmc->scc_id = 0x41045240;
   1355     mmc->sysclk_frq = 32 * 1000 * 1000; /* 32MHz */
   1356     mmc->apb_periph_frq = mmc->sysclk_frq;
   1357     mmc->oscclk = an524_oscclk;
   1358     mmc->len_oscclk = ARRAY_SIZE(an524_oscclk);
   1359     mmc->fpgaio_num_leds = 10;
   1360     mmc->fpgaio_has_switches = true;
   1361     mmc->fpgaio_has_dbgctrl = false;
   1362     mmc->numirq = 95;
   1363     mmc->uart_overflow_irq = 47;
   1364     mmc->init_svtor = 0x10000000;
   1365     mmc->sram_addr_width = 15;
   1366     mmc->raminfo = an524_raminfo;
   1367     mmc->armsse_type = TYPE_SSE200;
   1368     mmc->boot_ram_size = 0;
   1369     mps2tz_set_default_ram_info(mmc);
   1370 
   1371     object_class_property_add_str(oc, "remap", mps2_get_remap, mps2_set_remap);
   1372     object_class_property_set_description(oc, "remap",
   1373                                           "Set memory mapping. Valid values "
   1374                                           "are BRAM (default) and QSPI.");
   1375 }
   1376 
   1377 static void mps3tz_an547_class_init(ObjectClass *oc, void *data)
   1378 {
   1379     MachineClass *mc = MACHINE_CLASS(oc);
   1380     MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
   1381 
   1382     mc->desc = "ARM MPS3 with AN547 FPGA image for Cortex-M55";
   1383     mc->default_cpus = 1;
   1384     mc->min_cpus = mc->default_cpus;
   1385     mc->max_cpus = mc->default_cpus;
   1386     mmc->fpga_type = FPGA_AN547;
   1387     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m55");
   1388     mmc->scc_id = 0x41055470;
   1389     mmc->sysclk_frq = 32 * 1000 * 1000; /* 32MHz */
   1390     mmc->apb_periph_frq = 25 * 1000 * 1000; /* 25MHz */
   1391     mmc->oscclk = an524_oscclk; /* same as AN524 */
   1392     mmc->len_oscclk = ARRAY_SIZE(an524_oscclk);
   1393     mmc->fpgaio_num_leds = 10;
   1394     mmc->fpgaio_has_switches = true;
   1395     mmc->fpgaio_has_dbgctrl = true;
   1396     mmc->numirq = 96;
   1397     mmc->uart_overflow_irq = 48;
   1398     mmc->init_svtor = 0x00000000;
   1399     mmc->sram_addr_width = 21;
   1400     mmc->raminfo = an547_raminfo;
   1401     mmc->armsse_type = TYPE_SSE300;
   1402     mmc->boot_ram_size = 512 * KiB;
   1403     mps2tz_set_default_ram_info(mmc);
   1404 }
   1405 
   1406 static const TypeInfo mps2tz_info = {
   1407     .name = TYPE_MPS2TZ_MACHINE,
   1408     .parent = TYPE_MACHINE,
   1409     .abstract = true,
   1410     .instance_size = sizeof(MPS2TZMachineState),
   1411     .class_size = sizeof(MPS2TZMachineClass),
   1412     .class_init = mps2tz_class_init,
   1413     .interfaces = (InterfaceInfo[]) {
   1414         { TYPE_IDAU_INTERFACE },
   1415         { }
   1416     },
   1417 };
   1418 
   1419 static const TypeInfo mps2tz_an505_info = {
   1420     .name = TYPE_MPS2TZ_AN505_MACHINE,
   1421     .parent = TYPE_MPS2TZ_MACHINE,
   1422     .class_init = mps2tz_an505_class_init,
   1423 };
   1424 
   1425 static const TypeInfo mps2tz_an521_info = {
   1426     .name = TYPE_MPS2TZ_AN521_MACHINE,
   1427     .parent = TYPE_MPS2TZ_MACHINE,
   1428     .class_init = mps2tz_an521_class_init,
   1429 };
   1430 
   1431 static const TypeInfo mps3tz_an524_info = {
   1432     .name = TYPE_MPS3TZ_AN524_MACHINE,
   1433     .parent = TYPE_MPS2TZ_MACHINE,
   1434     .class_init = mps3tz_an524_class_init,
   1435 };
   1436 
   1437 static const TypeInfo mps3tz_an547_info = {
   1438     .name = TYPE_MPS3TZ_AN547_MACHINE,
   1439     .parent = TYPE_MPS2TZ_MACHINE,
   1440     .class_init = mps3tz_an547_class_init,
   1441 };
   1442 
   1443 static void mps2tz_machine_init(void)
   1444 {
   1445     type_register_static(&mps2tz_info);
   1446     type_register_static(&mps2tz_an505_info);
   1447     type_register_static(&mps2tz_an521_info);
   1448     type_register_static(&mps3tz_an524_info);
   1449     type_register_static(&mps3tz_an547_info);
   1450 }
   1451 
   1452 type_init(mps2tz_machine_init);