qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

boot.c (49465B)


      1 /*
      2  * ARM kernel loader.
      3  *
      4  * Copyright (c) 2006-2007 CodeSourcery.
      5  * Written by Paul Brook
      6  *
      7  * This code is licensed under the GPL.
      8  */
      9 
     10 #include "qemu/osdep.h"
     11 #include "qemu/datadir.h"
     12 #include "qemu/error-report.h"
     13 #include "qapi/error.h"
     14 #include <libfdt.h>
     15 #include "hw/arm/boot.h"
     16 #include "hw/arm/linux-boot-if.h"
     17 #include "sysemu/kvm.h"
     18 #include "sysemu/sysemu.h"
     19 #include "sysemu/numa.h"
     20 #include "hw/boards.h"
     21 #include "sysemu/reset.h"
     22 #include "hw/loader.h"
     23 #include "elf.h"
     24 #include "sysemu/device_tree.h"
     25 #include "qemu/config-file.h"
     26 #include "qemu/option.h"
     27 #include "qemu/units.h"
     28 
     29 /* Kernel boot protocol is specified in the kernel docs
     30  * Documentation/arm/Booting and Documentation/arm64/booting.txt
     31  * They have different preferred image load offsets from system RAM base.
     32  */
     33 #define KERNEL_ARGS_ADDR   0x100
     34 #define KERNEL_NOLOAD_ADDR 0x02000000
     35 #define KERNEL_LOAD_ADDR   0x00010000
     36 #define KERNEL64_LOAD_ADDR 0x00080000
     37 
     38 #define ARM64_TEXT_OFFSET_OFFSET    8
     39 #define ARM64_MAGIC_OFFSET          56
     40 
     41 #define BOOTLOADER_MAX_SIZE         (4 * KiB)
     42 
     43 AddressSpace *arm_boot_address_space(ARMCPU *cpu,
     44                                      const struct arm_boot_info *info)
     45 {
     46     /* Return the address space to use for bootloader reads and writes.
     47      * We prefer the secure address space if the CPU has it and we're
     48      * going to boot the guest into it.
     49      */
     50     int asidx;
     51     CPUState *cs = CPU(cpu);
     52 
     53     if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
     54         asidx = ARMASIdx_S;
     55     } else {
     56         asidx = ARMASIdx_NS;
     57     }
     58 
     59     return cpu_get_address_space(cs, asidx);
     60 }
     61 
     62 typedef enum {
     63     FIXUP_NONE = 0,     /* do nothing */
     64     FIXUP_TERMINATOR,   /* end of insns */
     65     FIXUP_BOARDID,      /* overwrite with board ID number */
     66     FIXUP_BOARD_SETUP,  /* overwrite with board specific setup code address */
     67     FIXUP_ARGPTR_LO,    /* overwrite with pointer to kernel args */
     68     FIXUP_ARGPTR_HI,    /* overwrite with pointer to kernel args (high half) */
     69     FIXUP_ENTRYPOINT_LO, /* overwrite with kernel entry point */
     70     FIXUP_ENTRYPOINT_HI, /* overwrite with kernel entry point (high half) */
     71     FIXUP_GIC_CPU_IF,   /* overwrite with GIC CPU interface address */
     72     FIXUP_BOOTREG,      /* overwrite with boot register address */
     73     FIXUP_DSB,          /* overwrite with correct DSB insn for cpu */
     74     FIXUP_MAX,
     75 } FixupType;
     76 
     77 typedef struct ARMInsnFixup {
     78     uint32_t insn;
     79     FixupType fixup;
     80 } ARMInsnFixup;
     81 
     82 static const ARMInsnFixup bootloader_aarch64[] = {
     83     { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
     84     { 0xaa1f03e1 }, /* mov x1, xzr */
     85     { 0xaa1f03e2 }, /* mov x2, xzr */
     86     { 0xaa1f03e3 }, /* mov x3, xzr */
     87     { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
     88     { 0xd61f0080 }, /* br x4      ; Jump to the kernel entry point */
     89     { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */
     90     { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */
     91     { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */
     92     { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */
     93     { 0, FIXUP_TERMINATOR }
     94 };
     95 
     96 /* A very small bootloader: call the board-setup code (if needed),
     97  * set r0-r2, then jump to the kernel.
     98  * If we're not calling boot setup code then we don't copy across
     99  * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
    100  */
    101 
    102 static const ARMInsnFixup bootloader[] = {
    103     { 0xe28fe004 }, /* add     lr, pc, #4 */
    104     { 0xe51ff004 }, /* ldr     pc, [pc, #-4] */
    105     { 0, FIXUP_BOARD_SETUP },
    106 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
    107     { 0xe3a00000 }, /* mov     r0, #0 */
    108     { 0xe59f1004 }, /* ldr     r1, [pc, #4] */
    109     { 0xe59f2004 }, /* ldr     r2, [pc, #4] */
    110     { 0xe59ff004 }, /* ldr     pc, [pc, #4] */
    111     { 0, FIXUP_BOARDID },
    112     { 0, FIXUP_ARGPTR_LO },
    113     { 0, FIXUP_ENTRYPOINT_LO },
    114     { 0, FIXUP_TERMINATOR }
    115 };
    116 
    117 /* Handling for secondary CPU boot in a multicore system.
    118  * Unlike the uniprocessor/primary CPU boot, this is platform
    119  * dependent. The default code here is based on the secondary
    120  * CPU boot protocol used on realview/vexpress boards, with
    121  * some parameterisation to increase its flexibility.
    122  * QEMU platform models for which this code is not appropriate
    123  * should override write_secondary_boot and secondary_cpu_reset_hook
    124  * instead.
    125  *
    126  * This code enables the interrupt controllers for the secondary
    127  * CPUs and then puts all the secondary CPUs into a loop waiting
    128  * for an interprocessor interrupt and polling a configurable
    129  * location for the kernel secondary CPU entry point.
    130  */
    131 #define DSB_INSN 0xf57ff04f
    132 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
    133 
    134 static const ARMInsnFixup smpboot[] = {
    135     { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
    136     { 0xe59f0028 }, /* ldr r0, bootreg_addr */
    137     { 0xe3a01001 }, /* mov r1, #1 */
    138     { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
    139     { 0xe3a010ff }, /* mov r1, #0xff */
    140     { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
    141     { 0, FIXUP_DSB },   /* dsb */
    142     { 0xe320f003 }, /* wfi */
    143     { 0xe5901000 }, /* ldr     r1, [r0] */
    144     { 0xe1110001 }, /* tst     r1, r1 */
    145     { 0x0afffffb }, /* beq     <wfi> */
    146     { 0xe12fff11 }, /* bx      r1 */
    147     { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
    148     { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
    149     { 0, FIXUP_TERMINATOR }
    150 };
    151 
    152 static void write_bootloader(const char *name, hwaddr addr,
    153                              const ARMInsnFixup *insns, uint32_t *fixupcontext,
    154                              AddressSpace *as)
    155 {
    156     /* Fix up the specified bootloader fragment and write it into
    157      * guest memory using rom_add_blob_fixed(). fixupcontext is
    158      * an array giving the values to write in for the fixup types
    159      * which write a value into the code array.
    160      */
    161     int i, len;
    162     uint32_t *code;
    163 
    164     len = 0;
    165     while (insns[len].fixup != FIXUP_TERMINATOR) {
    166         len++;
    167     }
    168 
    169     code = g_new0(uint32_t, len);
    170 
    171     for (i = 0; i < len; i++) {
    172         uint32_t insn = insns[i].insn;
    173         FixupType fixup = insns[i].fixup;
    174 
    175         switch (fixup) {
    176         case FIXUP_NONE:
    177             break;
    178         case FIXUP_BOARDID:
    179         case FIXUP_BOARD_SETUP:
    180         case FIXUP_ARGPTR_LO:
    181         case FIXUP_ARGPTR_HI:
    182         case FIXUP_ENTRYPOINT_LO:
    183         case FIXUP_ENTRYPOINT_HI:
    184         case FIXUP_GIC_CPU_IF:
    185         case FIXUP_BOOTREG:
    186         case FIXUP_DSB:
    187             insn = fixupcontext[fixup];
    188             break;
    189         default:
    190             abort();
    191         }
    192         code[i] = tswap32(insn);
    193     }
    194 
    195     assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE);
    196 
    197     rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
    198 
    199     g_free(code);
    200 }
    201 
    202 static void default_write_secondary(ARMCPU *cpu,
    203                                     const struct arm_boot_info *info)
    204 {
    205     uint32_t fixupcontext[FIXUP_MAX];
    206     AddressSpace *as = arm_boot_address_space(cpu, info);
    207 
    208     fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
    209     fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
    210     if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
    211         fixupcontext[FIXUP_DSB] = DSB_INSN;
    212     } else {
    213         fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
    214     }
    215 
    216     write_bootloader("smpboot", info->smp_loader_start,
    217                      smpboot, fixupcontext, as);
    218 }
    219 
    220 void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
    221                                             const struct arm_boot_info *info,
    222                                             hwaddr mvbar_addr)
    223 {
    224     AddressSpace *as = arm_boot_address_space(cpu, info);
    225     int n;
    226     uint32_t mvbar_blob[] = {
    227         /* mvbar_addr: secure monitor vectors
    228          * Default unimplemented and unused vectors to spin. Makes it
    229          * easier to debug (as opposed to the CPU running away).
    230          */
    231         0xeafffffe, /* (spin) */
    232         0xeafffffe, /* (spin) */
    233         0xe1b0f00e, /* movs pc, lr ;SMC exception return */
    234         0xeafffffe, /* (spin) */
    235         0xeafffffe, /* (spin) */
    236         0xeafffffe, /* (spin) */
    237         0xeafffffe, /* (spin) */
    238         0xeafffffe, /* (spin) */
    239     };
    240     uint32_t board_setup_blob[] = {
    241         /* board setup addr */
    242         0xee110f51, /* mrc     p15, 0, r0, c1, c1, 2  ;read NSACR */
    243         0xe3800b03, /* orr     r0, #0xc00             ;set CP11, CP10 */
    244         0xee010f51, /* mcr     p15, 0, r0, c1, c1, 2  ;write NSACR */
    245         0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
    246         0xee0c0f30, /* mcr     p15, 0, r0, c12, c0, 1 ;set MVBAR */
    247         0xee110f11, /* mrc     p15, 0, r0, c1 , c1, 0 ;read SCR */
    248         0xe3800031, /* orr     r0, #0x31              ;enable AW, FW, NS */
    249         0xee010f11, /* mcr     p15, 0, r0, c1, c1, 0  ;write SCR */
    250         0xe1a0100e, /* mov     r1, lr                 ;save LR across SMC */
    251         0xe1600070, /* smc     #0                     ;call monitor to flush SCR */
    252         0xe1a0f001, /* mov     pc, r1                 ;return */
    253     };
    254 
    255     /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
    256     assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
    257 
    258     /* check that these blobs don't overlap */
    259     assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
    260           || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
    261 
    262     for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
    263         mvbar_blob[n] = tswap32(mvbar_blob[n]);
    264     }
    265     rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
    266                           mvbar_addr, as);
    267 
    268     for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
    269         board_setup_blob[n] = tswap32(board_setup_blob[n]);
    270     }
    271     rom_add_blob_fixed_as("board-setup", board_setup_blob,
    272                           sizeof(board_setup_blob), info->board_setup_addr, as);
    273 }
    274 
    275 static void default_reset_secondary(ARMCPU *cpu,
    276                                     const struct arm_boot_info *info)
    277 {
    278     AddressSpace *as = arm_boot_address_space(cpu, info);
    279     CPUState *cs = CPU(cpu);
    280 
    281     address_space_stl_notdirty(as, info->smp_bootreg_addr,
    282                                0, MEMTXATTRS_UNSPECIFIED, NULL);
    283     cpu_set_pc(cs, info->smp_loader_start);
    284 }
    285 
    286 static inline bool have_dtb(const struct arm_boot_info *info)
    287 {
    288     return info->dtb_filename || info->get_dtb;
    289 }
    290 
    291 #define WRITE_WORD(p, value) do { \
    292     address_space_stl_notdirty(as, p, value, \
    293                                MEMTXATTRS_UNSPECIFIED, NULL);  \
    294     p += 4;                       \
    295 } while (0)
    296 
    297 static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
    298 {
    299     int initrd_size = info->initrd_size;
    300     hwaddr base = info->loader_start;
    301     hwaddr p;
    302 
    303     p = base + KERNEL_ARGS_ADDR;
    304     /* ATAG_CORE */
    305     WRITE_WORD(p, 5);
    306     WRITE_WORD(p, 0x54410001);
    307     WRITE_WORD(p, 1);
    308     WRITE_WORD(p, 0x1000);
    309     WRITE_WORD(p, 0);
    310     /* ATAG_MEM */
    311     /* TODO: handle multiple chips on one ATAG list */
    312     WRITE_WORD(p, 4);
    313     WRITE_WORD(p, 0x54410002);
    314     WRITE_WORD(p, info->ram_size);
    315     WRITE_WORD(p, info->loader_start);
    316     if (initrd_size) {
    317         /* ATAG_INITRD2 */
    318         WRITE_WORD(p, 4);
    319         WRITE_WORD(p, 0x54420005);
    320         WRITE_WORD(p, info->initrd_start);
    321         WRITE_WORD(p, initrd_size);
    322     }
    323     if (info->kernel_cmdline && *info->kernel_cmdline) {
    324         /* ATAG_CMDLINE */
    325         int cmdline_size;
    326 
    327         cmdline_size = strlen(info->kernel_cmdline);
    328         address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
    329                             info->kernel_cmdline, cmdline_size + 1);
    330         cmdline_size = (cmdline_size >> 2) + 1;
    331         WRITE_WORD(p, cmdline_size + 2);
    332         WRITE_WORD(p, 0x54410009);
    333         p += cmdline_size * 4;
    334     }
    335     if (info->atag_board) {
    336         /* ATAG_BOARD */
    337         int atag_board_len;
    338         uint8_t atag_board_buf[0x1000];
    339 
    340         atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
    341         WRITE_WORD(p, (atag_board_len + 8) >> 2);
    342         WRITE_WORD(p, 0x414f4d50);
    343         address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
    344                             atag_board_buf, atag_board_len);
    345         p += atag_board_len;
    346     }
    347     /* ATAG_END */
    348     WRITE_WORD(p, 0);
    349     WRITE_WORD(p, 0);
    350 }
    351 
    352 static void set_kernel_args_old(const struct arm_boot_info *info,
    353                                 AddressSpace *as)
    354 {
    355     hwaddr p;
    356     const char *s;
    357     int initrd_size = info->initrd_size;
    358     hwaddr base = info->loader_start;
    359 
    360     /* see linux/include/asm-arm/setup.h */
    361     p = base + KERNEL_ARGS_ADDR;
    362     /* page_size */
    363     WRITE_WORD(p, 4096);
    364     /* nr_pages */
    365     WRITE_WORD(p, info->ram_size / 4096);
    366     /* ramdisk_size */
    367     WRITE_WORD(p, 0);
    368 #define FLAG_READONLY	1
    369 #define FLAG_RDLOAD	4
    370 #define FLAG_RDPROMPT	8
    371     /* flags */
    372     WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
    373     /* rootdev */
    374     WRITE_WORD(p, (31 << 8) | 0);	/* /dev/mtdblock0 */
    375     /* video_num_cols */
    376     WRITE_WORD(p, 0);
    377     /* video_num_rows */
    378     WRITE_WORD(p, 0);
    379     /* video_x */
    380     WRITE_WORD(p, 0);
    381     /* video_y */
    382     WRITE_WORD(p, 0);
    383     /* memc_control_reg */
    384     WRITE_WORD(p, 0);
    385     /* unsigned char sounddefault */
    386     /* unsigned char adfsdrives */
    387     /* unsigned char bytes_per_char_h */
    388     /* unsigned char bytes_per_char_v */
    389     WRITE_WORD(p, 0);
    390     /* pages_in_bank[4] */
    391     WRITE_WORD(p, 0);
    392     WRITE_WORD(p, 0);
    393     WRITE_WORD(p, 0);
    394     WRITE_WORD(p, 0);
    395     /* pages_in_vram */
    396     WRITE_WORD(p, 0);
    397     /* initrd_start */
    398     if (initrd_size) {
    399         WRITE_WORD(p, info->initrd_start);
    400     } else {
    401         WRITE_WORD(p, 0);
    402     }
    403     /* initrd_size */
    404     WRITE_WORD(p, initrd_size);
    405     /* rd_start */
    406     WRITE_WORD(p, 0);
    407     /* system_rev */
    408     WRITE_WORD(p, 0);
    409     /* system_serial_low */
    410     WRITE_WORD(p, 0);
    411     /* system_serial_high */
    412     WRITE_WORD(p, 0);
    413     /* mem_fclk_21285 */
    414     WRITE_WORD(p, 0);
    415     /* zero unused fields */
    416     while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
    417         WRITE_WORD(p, 0);
    418     }
    419     s = info->kernel_cmdline;
    420     if (s) {
    421         address_space_write(as, p, MEMTXATTRS_UNSPECIFIED, s, strlen(s) + 1);
    422     } else {
    423         WRITE_WORD(p, 0);
    424     }
    425 }
    426 
    427 static int fdt_add_memory_node(void *fdt, uint32_t acells, hwaddr mem_base,
    428                                uint32_t scells, hwaddr mem_len,
    429                                int numa_node_id)
    430 {
    431     char *nodename;
    432     int ret;
    433 
    434     nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
    435     qemu_fdt_add_subnode(fdt, nodename);
    436     qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
    437     ret = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", acells, mem_base,
    438                                        scells, mem_len);
    439     if (ret < 0) {
    440         goto out;
    441     }
    442 
    443     /* only set the NUMA ID if it is specified */
    444     if (numa_node_id >= 0) {
    445         ret = qemu_fdt_setprop_cell(fdt, nodename,
    446                                     "numa-node-id", numa_node_id);
    447     }
    448 out:
    449     g_free(nodename);
    450     return ret;
    451 }
    452 
    453 static void fdt_add_psci_node(void *fdt)
    454 {
    455     uint32_t cpu_suspend_fn;
    456     uint32_t cpu_off_fn;
    457     uint32_t cpu_on_fn;
    458     uint32_t migrate_fn;
    459     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
    460     const char *psci_method;
    461     int64_t psci_conduit;
    462     int rc;
    463 
    464     psci_conduit = object_property_get_int(OBJECT(armcpu),
    465                                            "psci-conduit",
    466                                            &error_abort);
    467     switch (psci_conduit) {
    468     case QEMU_PSCI_CONDUIT_DISABLED:
    469         return;
    470     case QEMU_PSCI_CONDUIT_HVC:
    471         psci_method = "hvc";
    472         break;
    473     case QEMU_PSCI_CONDUIT_SMC:
    474         psci_method = "smc";
    475         break;
    476     default:
    477         g_assert_not_reached();
    478     }
    479 
    480     /*
    481      * A pre-existing /psci node might specify function ID values
    482      * that don't match QEMU's PSCI implementation. Delete the whole
    483      * node and put our own in instead.
    484      */
    485     rc = fdt_path_offset(fdt, "/psci");
    486     if (rc >= 0) {
    487         qemu_fdt_nop_node(fdt, "/psci");
    488     }
    489 
    490     qemu_fdt_add_subnode(fdt, "/psci");
    491     if (armcpu->psci_version >= QEMU_PSCI_VERSION_0_2) {
    492         if (armcpu->psci_version < QEMU_PSCI_VERSION_1_0) {
    493             const char comp[] = "arm,psci-0.2\0arm,psci";
    494             qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
    495         } else {
    496             const char comp[] = "arm,psci-1.0\0arm,psci-0.2\0arm,psci";
    497             qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
    498         }
    499 
    500         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
    501         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
    502             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
    503             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
    504             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
    505         } else {
    506             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
    507             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
    508             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
    509         }
    510     } else {
    511         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
    512 
    513         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
    514         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
    515         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
    516         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
    517     }
    518 
    519     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
    520      * to the instruction that should be used to invoke PSCI functions.
    521      * However, the device tree binding uses 'method' instead, so that is
    522      * what we should use here.
    523      */
    524     qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
    525 
    526     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
    527     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
    528     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
    529     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
    530 }
    531 
    532 int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
    533                  hwaddr addr_limit, AddressSpace *as, MachineState *ms)
    534 {
    535     void *fdt = NULL;
    536     int size, rc, n = 0;
    537     uint32_t acells, scells;
    538     unsigned int i;
    539     hwaddr mem_base, mem_len;
    540     char **node_path;
    541     Error *err = NULL;
    542 
    543     if (binfo->dtb_filename) {
    544         char *filename;
    545         filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
    546         if (!filename) {
    547             fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
    548             goto fail;
    549         }
    550 
    551         fdt = load_device_tree(filename, &size);
    552         if (!fdt) {
    553             fprintf(stderr, "Couldn't open dtb file %s\n", filename);
    554             g_free(filename);
    555             goto fail;
    556         }
    557         g_free(filename);
    558     } else {
    559         fdt = binfo->get_dtb(binfo, &size);
    560         if (!fdt) {
    561             fprintf(stderr, "Board was unable to create a dtb blob\n");
    562             goto fail;
    563         }
    564     }
    565 
    566     if (addr_limit > addr && size > (addr_limit - addr)) {
    567         /* Installing the device tree blob at addr would exceed addr_limit.
    568          * Whether this constitutes failure is up to the caller to decide,
    569          * so just return 0 as size, i.e., no error.
    570          */
    571         g_free(fdt);
    572         return 0;
    573     }
    574 
    575     acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
    576                                    NULL, &error_fatal);
    577     scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
    578                                    NULL, &error_fatal);
    579     if (acells == 0 || scells == 0) {
    580         fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
    581         goto fail;
    582     }
    583 
    584     if (scells < 2 && binfo->ram_size >= 4 * GiB) {
    585         /* This is user error so deserves a friendlier error message
    586          * than the failure of setprop_sized_cells would provide
    587          */
    588         fprintf(stderr, "qemu: dtb file not compatible with "
    589                 "RAM size > 4GB\n");
    590         goto fail;
    591     }
    592 
    593     /* nop all root nodes matching /memory or /memory@unit-address */
    594     node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
    595     if (err) {
    596         error_report_err(err);
    597         goto fail;
    598     }
    599     while (node_path[n]) {
    600         if (g_str_has_prefix(node_path[n], "/memory")) {
    601             qemu_fdt_nop_node(fdt, node_path[n]);
    602         }
    603         n++;
    604     }
    605     g_strfreev(node_path);
    606 
    607     /*
    608      * We drop all the memory nodes which correspond to empty NUMA nodes
    609      * from the device tree, because the Linux NUMA binding document
    610      * states they should not be generated. Linux will get the NUMA node
    611      * IDs of the empty NUMA nodes from the distance map if they are needed.
    612      * This means QEMU users may be obliged to provide command lines which
    613      * configure distance maps when the empty NUMA node IDs are needed and
    614      * Linux's default distance map isn't sufficient.
    615      */
    616     if (ms->numa_state != NULL && ms->numa_state->num_nodes > 0) {
    617         mem_base = binfo->loader_start;
    618         for (i = 0; i < ms->numa_state->num_nodes; i++) {
    619             mem_len = ms->numa_state->nodes[i].node_mem;
    620             if (!mem_len) {
    621                 continue;
    622             }
    623 
    624             rc = fdt_add_memory_node(fdt, acells, mem_base,
    625                                      scells, mem_len, i);
    626             if (rc < 0) {
    627                 fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
    628                         mem_base);
    629                 goto fail;
    630             }
    631 
    632             mem_base += mem_len;
    633         }
    634     } else {
    635         rc = fdt_add_memory_node(fdt, acells, binfo->loader_start,
    636                                  scells, binfo->ram_size, -1);
    637         if (rc < 0) {
    638             fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
    639                     binfo->loader_start);
    640             goto fail;
    641         }
    642     }
    643 
    644     rc = fdt_path_offset(fdt, "/chosen");
    645     if (rc < 0) {
    646         qemu_fdt_add_subnode(fdt, "/chosen");
    647     }
    648 
    649     if (ms->kernel_cmdline && *ms->kernel_cmdline) {
    650         rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
    651                                      ms->kernel_cmdline);
    652         if (rc < 0) {
    653             fprintf(stderr, "couldn't set /chosen/bootargs\n");
    654             goto fail;
    655         }
    656     }
    657 
    658     if (binfo->initrd_size) {
    659         rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
    660                                    binfo->initrd_start);
    661         if (rc < 0) {
    662             fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
    663             goto fail;
    664         }
    665 
    666         rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
    667                                    binfo->initrd_start + binfo->initrd_size);
    668         if (rc < 0) {
    669             fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
    670             goto fail;
    671         }
    672     }
    673 
    674     fdt_add_psci_node(fdt);
    675 
    676     if (binfo->modify_dtb) {
    677         binfo->modify_dtb(binfo, fdt);
    678     }
    679 
    680     qemu_fdt_dumpdtb(fdt, size);
    681 
    682     /* Put the DTB into the memory map as a ROM image: this will ensure
    683      * the DTB is copied again upon reset, even if addr points into RAM.
    684      */
    685     rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
    686     qemu_register_reset_nosnapshotload(qemu_fdt_randomize_seeds,
    687                                        rom_ptr_for_as(as, addr, size));
    688 
    689     g_free(fdt);
    690 
    691     return size;
    692 
    693 fail:
    694     g_free(fdt);
    695     return -1;
    696 }
    697 
    698 static void do_cpu_reset(void *opaque)
    699 {
    700     ARMCPU *cpu = opaque;
    701     CPUState *cs = CPU(cpu);
    702     CPUARMState *env = &cpu->env;
    703     const struct arm_boot_info *info = env->boot_info;
    704 
    705     cpu_reset(cs);
    706     if (info) {
    707         if (!info->is_linux) {
    708             int i;
    709             /* Jump to the entry point.  */
    710             uint64_t entry = info->entry;
    711 
    712             switch (info->endianness) {
    713             case ARM_ENDIANNESS_LE:
    714                 env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
    715                 for (i = 1; i < 4; ++i) {
    716                     env->cp15.sctlr_el[i] &= ~SCTLR_EE;
    717                 }
    718                 env->uncached_cpsr &= ~CPSR_E;
    719                 break;
    720             case ARM_ENDIANNESS_BE8:
    721                 env->cp15.sctlr_el[1] |= SCTLR_E0E;
    722                 for (i = 1; i < 4; ++i) {
    723                     env->cp15.sctlr_el[i] |= SCTLR_EE;
    724                 }
    725                 env->uncached_cpsr |= CPSR_E;
    726                 break;
    727             case ARM_ENDIANNESS_BE32:
    728                 env->cp15.sctlr_el[1] |= SCTLR_B;
    729                 break;
    730             case ARM_ENDIANNESS_UNKNOWN:
    731                 break; /* Board's decision */
    732             default:
    733                 g_assert_not_reached();
    734             }
    735 
    736             cpu_set_pc(cs, entry);
    737         } else {
    738             /* If we are booting Linux then we need to check whether we are
    739              * booting into secure or non-secure state and adjust the state
    740              * accordingly.  Out of reset, ARM is defined to be in secure state
    741              * (SCR.NS = 0), we change that here if non-secure boot has been
    742              * requested.
    743              */
    744             if (arm_feature(env, ARM_FEATURE_EL3)) {
    745                 /* AArch64 is defined to come out of reset into EL3 if enabled.
    746                  * If we are booting Linux then we need to adjust our EL as
    747                  * Linux expects us to be in EL2 or EL1.  AArch32 resets into
    748                  * SVC, which Linux expects, so no privilege/exception level to
    749                  * adjust.
    750                  */
    751                 if (env->aarch64) {
    752                     env->cp15.scr_el3 |= SCR_RW;
    753                     if (arm_feature(env, ARM_FEATURE_EL2)) {
    754                         env->cp15.hcr_el2 |= HCR_RW;
    755                         env->pstate = PSTATE_MODE_EL2h;
    756                     } else {
    757                         env->pstate = PSTATE_MODE_EL1h;
    758                     }
    759                     if (cpu_isar_feature(aa64_pauth, cpu)) {
    760                         env->cp15.scr_el3 |= SCR_API | SCR_APK;
    761                     }
    762                     if (cpu_isar_feature(aa64_mte, cpu)) {
    763                         env->cp15.scr_el3 |= SCR_ATA;
    764                     }
    765                     if (cpu_isar_feature(aa64_sve, cpu)) {
    766                         env->cp15.cptr_el[3] |= R_CPTR_EL3_EZ_MASK;
    767                         env->vfp.zcr_el[3] = 0xf;
    768                     }
    769                     if (cpu_isar_feature(aa64_sme, cpu)) {
    770                         env->cp15.cptr_el[3] |= R_CPTR_EL3_ESM_MASK;
    771                         env->cp15.scr_el3 |= SCR_ENTP2;
    772                         env->vfp.smcr_el[3] = 0xf;
    773                     }
    774                     if (cpu_isar_feature(aa64_hcx, cpu)) {
    775                         env->cp15.scr_el3 |= SCR_HXEN;
    776                     }
    777                     /* AArch64 kernels never boot in secure mode */
    778                     assert(!info->secure_boot);
    779                     /* This hook is only supported for AArch32 currently:
    780                      * bootloader_aarch64[] will not call the hook, and
    781                      * the code above has already dropped us into EL2 or EL1.
    782                      */
    783                     assert(!info->secure_board_setup);
    784                 }
    785 
    786                 if (arm_feature(env, ARM_FEATURE_EL2)) {
    787                     /* If we have EL2 then Linux expects the HVC insn to work */
    788                     env->cp15.scr_el3 |= SCR_HCE;
    789                 }
    790 
    791                 /* Set to non-secure if not a secure boot */
    792                 if (!info->secure_boot &&
    793                     (cs != first_cpu || !info->secure_board_setup)) {
    794                     /* Linux expects non-secure state */
    795                     env->cp15.scr_el3 |= SCR_NS;
    796                     /* Set NSACR.{CP11,CP10} so NS can access the FPU */
    797                     env->cp15.nsacr |= 3 << 10;
    798                 }
    799             }
    800 
    801             if (!env->aarch64 && !info->secure_boot &&
    802                 arm_feature(env, ARM_FEATURE_EL2)) {
    803                 /*
    804                  * This is an AArch32 boot not to Secure state, and
    805                  * we have Hyp mode available, so boot the kernel into
    806                  * Hyp mode. This is not how the CPU comes out of reset,
    807                  * so we need to manually put it there.
    808                  */
    809                 cpsr_write(env, ARM_CPU_MODE_HYP, CPSR_M, CPSRWriteRaw);
    810             }
    811 
    812             if (cs == first_cpu) {
    813                 AddressSpace *as = arm_boot_address_space(cpu, info);
    814 
    815                 cpu_set_pc(cs, info->loader_start);
    816 
    817                 if (!have_dtb(info)) {
    818                     if (old_param) {
    819                         set_kernel_args_old(info, as);
    820                     } else {
    821                         set_kernel_args(info, as);
    822                     }
    823                 }
    824             } else if (info->secondary_cpu_reset_hook) {
    825                 info->secondary_cpu_reset_hook(cpu, info);
    826             }
    827         }
    828         arm_rebuild_hflags(env);
    829     }
    830 }
    831 
    832 static int do_arm_linux_init(Object *obj, void *opaque)
    833 {
    834     if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
    835         ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
    836         ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
    837         struct arm_boot_info *info = opaque;
    838 
    839         if (albifc->arm_linux_init) {
    840             albifc->arm_linux_init(albif, info->secure_boot);
    841         }
    842     }
    843     return 0;
    844 }
    845 
    846 static ssize_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
    847                             uint64_t *lowaddr, uint64_t *highaddr,
    848                             int elf_machine, AddressSpace *as)
    849 {
    850     bool elf_is64;
    851     union {
    852         Elf32_Ehdr h32;
    853         Elf64_Ehdr h64;
    854     } elf_header;
    855     int data_swab = 0;
    856     bool big_endian;
    857     ssize_t ret = -1;
    858     Error *err = NULL;
    859 
    860 
    861     load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
    862     if (err) {
    863         error_free(err);
    864         return ret;
    865     }
    866 
    867     if (elf_is64) {
    868         big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
    869         info->endianness = big_endian ? ARM_ENDIANNESS_BE8
    870                                       : ARM_ENDIANNESS_LE;
    871     } else {
    872         big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
    873         if (big_endian) {
    874             if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
    875                 info->endianness = ARM_ENDIANNESS_BE8;
    876             } else {
    877                 info->endianness = ARM_ENDIANNESS_BE32;
    878                 /* In BE32, the CPU has a different view of the per-byte
    879                  * address map than the rest of the system. BE32 ELF files
    880                  * are organised such that they can be programmed through
    881                  * the CPU's per-word byte-reversed view of the world. QEMU
    882                  * however loads ELF files independently of the CPU. So
    883                  * tell the ELF loader to byte reverse the data for us.
    884                  */
    885                 data_swab = 2;
    886             }
    887         } else {
    888             info->endianness = ARM_ENDIANNESS_LE;
    889         }
    890     }
    891 
    892     ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL,
    893                       pentry, lowaddr, highaddr, NULL, big_endian, elf_machine,
    894                       1, data_swab, as);
    895     if (ret <= 0) {
    896         /* The header loaded but the image didn't */
    897         exit(1);
    898     }
    899 
    900     return ret;
    901 }
    902 
    903 static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
    904                                    hwaddr *entry, AddressSpace *as)
    905 {
    906     hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
    907     uint64_t kernel_size = 0;
    908     uint8_t *buffer;
    909     int size;
    910 
    911     /* On aarch64, it's the bootloader's job to uncompress the kernel. */
    912     size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
    913                                      &buffer);
    914 
    915     if (size < 0) {
    916         gsize len;
    917 
    918         /* Load as raw file otherwise */
    919         if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
    920             return -1;
    921         }
    922         size = len;
    923     }
    924 
    925     /* check the arm64 magic header value -- very old kernels may not have it */
    926     if (size > ARM64_MAGIC_OFFSET + 4 &&
    927         memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
    928         uint64_t hdrvals[2];
    929 
    930         /* The arm64 Image header has text_offset and image_size fields at 8 and
    931          * 16 bytes into the Image header, respectively. The text_offset field
    932          * is only valid if the image_size is non-zero.
    933          */
    934         memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
    935 
    936         kernel_size = le64_to_cpu(hdrvals[1]);
    937 
    938         if (kernel_size != 0) {
    939             kernel_load_offset = le64_to_cpu(hdrvals[0]);
    940 
    941             /*
    942              * We write our startup "bootloader" at the very bottom of RAM,
    943              * so that bit can't be used for the image. Luckily the Image
    944              * format specification is that the image requests only an offset
    945              * from a 2MB boundary, not an absolute load address. So if the
    946              * image requests an offset that might mean it overlaps with the
    947              * bootloader, we can just load it starting at 2MB+offset rather
    948              * than 0MB + offset.
    949              */
    950             if (kernel_load_offset < BOOTLOADER_MAX_SIZE) {
    951                 kernel_load_offset += 2 * MiB;
    952             }
    953         }
    954     }
    955 
    956     /*
    957      * Kernels before v3.17 don't populate the image_size field, and
    958      * raw images have no header. For those our best guess at the size
    959      * is the size of the Image file itself.
    960      */
    961     if (kernel_size == 0) {
    962         kernel_size = size;
    963     }
    964 
    965     *entry = mem_base + kernel_load_offset;
    966     rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
    967 
    968     g_free(buffer);
    969 
    970     return kernel_size;
    971 }
    972 
    973 static void arm_setup_direct_kernel_boot(ARMCPU *cpu,
    974                                          struct arm_boot_info *info)
    975 {
    976     /* Set up for a direct boot of a kernel image file. */
    977     CPUState *cs;
    978     AddressSpace *as = arm_boot_address_space(cpu, info);
    979     ssize_t kernel_size;
    980     int initrd_size;
    981     int is_linux = 0;
    982     uint64_t elf_entry;
    983     /* Addresses of first byte used and first byte not used by the image */
    984     uint64_t image_low_addr = 0, image_high_addr = 0;
    985     int elf_machine;
    986     hwaddr entry;
    987     static const ARMInsnFixup *primary_loader;
    988     uint64_t ram_end = info->loader_start + info->ram_size;
    989 
    990     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
    991         primary_loader = bootloader_aarch64;
    992         elf_machine = EM_AARCH64;
    993     } else {
    994         primary_loader = bootloader;
    995         if (!info->write_board_setup) {
    996             primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
    997         }
    998         elf_machine = EM_ARM;
    999     }
   1000 
   1001     /* Assume that raw images are linux kernels, and ELF images are not.  */
   1002     kernel_size = arm_load_elf(info, &elf_entry, &image_low_addr,
   1003                                &image_high_addr, elf_machine, as);
   1004     if (kernel_size > 0 && have_dtb(info)) {
   1005         /*
   1006          * If there is still some room left at the base of RAM, try and put
   1007          * the DTB there like we do for images loaded with -bios or -pflash.
   1008          */
   1009         if (image_low_addr > info->loader_start
   1010             || image_high_addr < info->loader_start) {
   1011             /*
   1012              * Set image_low_addr as address limit for arm_load_dtb if it may be
   1013              * pointing into RAM, otherwise pass '0' (no limit)
   1014              */
   1015             if (image_low_addr < info->loader_start) {
   1016                 image_low_addr = 0;
   1017             }
   1018             info->dtb_start = info->loader_start;
   1019             info->dtb_limit = image_low_addr;
   1020         }
   1021     }
   1022     entry = elf_entry;
   1023     if (kernel_size < 0) {
   1024         uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR;
   1025         kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr,
   1026                                      &is_linux, NULL, NULL, as);
   1027         if (kernel_size >= 0) {
   1028             image_low_addr = loadaddr;
   1029             image_high_addr = image_low_addr + kernel_size;
   1030         }
   1031     }
   1032     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
   1033         kernel_size = load_aarch64_image(info->kernel_filename,
   1034                                          info->loader_start, &entry, as);
   1035         is_linux = 1;
   1036         if (kernel_size >= 0) {
   1037             image_low_addr = entry;
   1038             image_high_addr = image_low_addr + kernel_size;
   1039         }
   1040     } else if (kernel_size < 0) {
   1041         /* 32-bit ARM */
   1042         entry = info->loader_start + KERNEL_LOAD_ADDR;
   1043         kernel_size = load_image_targphys_as(info->kernel_filename, entry,
   1044                                              ram_end - KERNEL_LOAD_ADDR, as);
   1045         is_linux = 1;
   1046         if (kernel_size >= 0) {
   1047             image_low_addr = entry;
   1048             image_high_addr = image_low_addr + kernel_size;
   1049         }
   1050     }
   1051     if (kernel_size < 0) {
   1052         error_report("could not load kernel '%s'", info->kernel_filename);
   1053         exit(1);
   1054     }
   1055 
   1056     if (kernel_size > info->ram_size) {
   1057         error_report("kernel '%s' is too large to fit in RAM "
   1058                      "(kernel size %zd, RAM size %" PRId64 ")",
   1059                      info->kernel_filename, kernel_size, info->ram_size);
   1060         exit(1);
   1061     }
   1062 
   1063     info->entry = entry;
   1064 
   1065     /*
   1066      * We want to put the initrd far enough into RAM that when the
   1067      * kernel is uncompressed it will not clobber the initrd. However
   1068      * on boards without much RAM we must ensure that we still leave
   1069      * enough room for a decent sized initrd, and on boards with large
   1070      * amounts of RAM we must avoid the initrd being so far up in RAM
   1071      * that it is outside lowmem and inaccessible to the kernel.
   1072      * So for boards with less  than 256MB of RAM we put the initrd
   1073      * halfway into RAM, and for boards with 256MB of RAM or more we put
   1074      * the initrd at 128MB.
   1075      * We also refuse to put the initrd somewhere that will definitely
   1076      * overlay the kernel we just loaded, though for kernel formats which
   1077      * don't tell us their exact size (eg self-decompressing 32-bit kernels)
   1078      * we might still make a bad choice here.
   1079      */
   1080     info->initrd_start = info->loader_start +
   1081         MIN(info->ram_size / 2, 128 * MiB);
   1082     if (image_high_addr) {
   1083         info->initrd_start = MAX(info->initrd_start, image_high_addr);
   1084     }
   1085     info->initrd_start = TARGET_PAGE_ALIGN(info->initrd_start);
   1086 
   1087     if (is_linux) {
   1088         uint32_t fixupcontext[FIXUP_MAX];
   1089 
   1090         if (info->initrd_filename) {
   1091 
   1092             if (info->initrd_start >= ram_end) {
   1093                 error_report("not enough space after kernel to load initrd");
   1094                 exit(1);
   1095             }
   1096 
   1097             initrd_size = load_ramdisk_as(info->initrd_filename,
   1098                                           info->initrd_start,
   1099                                           ram_end - info->initrd_start, as);
   1100             if (initrd_size < 0) {
   1101                 initrd_size = load_image_targphys_as(info->initrd_filename,
   1102                                                      info->initrd_start,
   1103                                                      ram_end -
   1104                                                      info->initrd_start,
   1105                                                      as);
   1106             }
   1107             if (initrd_size < 0) {
   1108                 error_report("could not load initrd '%s'",
   1109                              info->initrd_filename);
   1110                 exit(1);
   1111             }
   1112             if (info->initrd_start + initrd_size > ram_end) {
   1113                 error_report("could not load initrd '%s': "
   1114                              "too big to fit into RAM after the kernel",
   1115                              info->initrd_filename);
   1116                 exit(1);
   1117             }
   1118         } else {
   1119             initrd_size = 0;
   1120         }
   1121         info->initrd_size = initrd_size;
   1122 
   1123         fixupcontext[FIXUP_BOARDID] = info->board_id;
   1124         fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
   1125 
   1126         /*
   1127          * for device tree boot, we pass the DTB directly in r2. Otherwise
   1128          * we point to the kernel args.
   1129          */
   1130         if (have_dtb(info)) {
   1131             hwaddr align;
   1132 
   1133             if (elf_machine == EM_AARCH64) {
   1134                 /*
   1135                  * Some AArch64 kernels on early bootup map the fdt region as
   1136                  *
   1137                  *   [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
   1138                  *
   1139                  * Let's play safe and prealign it to 2MB to give us some space.
   1140                  */
   1141                 align = 2 * MiB;
   1142             } else {
   1143                 /*
   1144                  * Some 32bit kernels will trash anything in the 4K page the
   1145                  * initrd ends in, so make sure the DTB isn't caught up in that.
   1146                  */
   1147                 align = 4 * KiB;
   1148             }
   1149 
   1150             /* Place the DTB after the initrd in memory with alignment. */
   1151             info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
   1152                                            align);
   1153             if (info->dtb_start >= ram_end) {
   1154                 error_report("Not enough space for DTB after kernel/initrd");
   1155                 exit(1);
   1156             }
   1157             fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start;
   1158             fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32;
   1159         } else {
   1160             fixupcontext[FIXUP_ARGPTR_LO] =
   1161                 info->loader_start + KERNEL_ARGS_ADDR;
   1162             fixupcontext[FIXUP_ARGPTR_HI] =
   1163                 (info->loader_start + KERNEL_ARGS_ADDR) >> 32;
   1164             if (info->ram_size >= 4 * GiB) {
   1165                 error_report("RAM size must be less than 4GB to boot"
   1166                              " Linux kernel using ATAGS (try passing a device tree"
   1167                              " using -dtb)");
   1168                 exit(1);
   1169             }
   1170         }
   1171         fixupcontext[FIXUP_ENTRYPOINT_LO] = entry;
   1172         fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32;
   1173 
   1174         write_bootloader("bootloader", info->loader_start,
   1175                          primary_loader, fixupcontext, as);
   1176 
   1177         if (info->write_board_setup) {
   1178             info->write_board_setup(cpu, info);
   1179         }
   1180 
   1181         /*
   1182          * Notify devices which need to fake up firmware initialization
   1183          * that we're doing a direct kernel boot.
   1184          */
   1185         object_child_foreach_recursive(object_get_root(),
   1186                                        do_arm_linux_init, info);
   1187     }
   1188     info->is_linux = is_linux;
   1189 
   1190     for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
   1191         ARM_CPU(cs)->env.boot_info = info;
   1192     }
   1193 }
   1194 
   1195 static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info)
   1196 {
   1197     /* Set up for booting firmware (which might load a kernel via fw_cfg) */
   1198 
   1199     if (have_dtb(info)) {
   1200         /*
   1201          * If we have a device tree blob, but no kernel to supply it to (or
   1202          * the kernel is supposed to be loaded by the bootloader), copy the
   1203          * DTB to the base of RAM for the bootloader to pick up.
   1204          */
   1205         info->dtb_start = info->loader_start;
   1206     }
   1207 
   1208     if (info->kernel_filename) {
   1209         FWCfgState *fw_cfg;
   1210         bool try_decompressing_kernel;
   1211 
   1212         fw_cfg = fw_cfg_find();
   1213 
   1214         if (!fw_cfg) {
   1215             error_report("This machine type does not support loading both "
   1216                          "a guest firmware/BIOS image and a guest kernel at "
   1217                          "the same time. You should change your QEMU command "
   1218                          "line to specify one or the other, but not both.");
   1219             exit(1);
   1220         }
   1221 
   1222         try_decompressing_kernel = arm_feature(&cpu->env,
   1223                                                ARM_FEATURE_AARCH64);
   1224 
   1225         /*
   1226          * Expose the kernel, the command line, and the initrd in fw_cfg.
   1227          * We don't process them here at all, it's all left to the
   1228          * firmware.
   1229          */
   1230         load_image_to_fw_cfg(fw_cfg,
   1231                              FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
   1232                              info->kernel_filename,
   1233                              try_decompressing_kernel);
   1234         load_image_to_fw_cfg(fw_cfg,
   1235                              FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
   1236                              info->initrd_filename, false);
   1237 
   1238         if (info->kernel_cmdline) {
   1239             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
   1240                            strlen(info->kernel_cmdline) + 1);
   1241             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
   1242                               info->kernel_cmdline);
   1243         }
   1244     }
   1245 
   1246     /*
   1247      * We will start from address 0 (typically a boot ROM image) in the
   1248      * same way as hardware. Leave env->boot_info NULL, so that
   1249      * do_cpu_reset() knows it does not need to alter the PC on reset.
   1250      */
   1251 }
   1252 
   1253 void arm_load_kernel(ARMCPU *cpu, MachineState *ms, struct arm_boot_info *info)
   1254 {
   1255     CPUState *cs;
   1256     AddressSpace *as = arm_boot_address_space(cpu, info);
   1257     int boot_el;
   1258     CPUARMState *env = &cpu->env;
   1259     int nb_cpus = 0;
   1260 
   1261     /*
   1262      * CPU objects (unlike devices) are not automatically reset on system
   1263      * reset, so we must always register a handler to do so. If we're
   1264      * actually loading a kernel, the handler is also responsible for
   1265      * arranging that we start it correctly.
   1266      */
   1267     for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
   1268         qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
   1269         nb_cpus++;
   1270     }
   1271 
   1272     /*
   1273      * The board code is not supposed to set secure_board_setup unless
   1274      * running its code in secure mode is actually possible, and KVM
   1275      * doesn't support secure.
   1276      */
   1277     assert(!(info->secure_board_setup && kvm_enabled()));
   1278     info->kernel_filename = ms->kernel_filename;
   1279     info->kernel_cmdline = ms->kernel_cmdline;
   1280     info->initrd_filename = ms->initrd_filename;
   1281     info->dtb_filename = ms->dtb;
   1282     info->dtb_limit = 0;
   1283 
   1284     /* Load the kernel.  */
   1285     if (!info->kernel_filename || info->firmware_loaded) {
   1286         arm_setup_firmware_boot(cpu, info);
   1287     } else {
   1288         arm_setup_direct_kernel_boot(cpu, info);
   1289     }
   1290 
   1291     /*
   1292      * Disable the PSCI conduit if it is set up to target the same
   1293      * or a lower EL than the one we're going to start the guest code in.
   1294      * This logic needs to agree with the code in do_cpu_reset() which
   1295      * decides whether we're going to boot the guest in the highest
   1296      * supported exception level or in a lower one.
   1297      */
   1298 
   1299     /*
   1300      * If PSCI is enabled, then SMC calls all go to the PSCI handler and
   1301      * are never emulated to trap into guest code. It therefore does not
   1302      * make sense for the board to have a setup code fragment that runs
   1303      * in Secure, because this will probably need to itself issue an SMC of some
   1304      * kind as part of its operation.
   1305      */
   1306     assert(info->psci_conduit == QEMU_PSCI_CONDUIT_DISABLED ||
   1307            !info->secure_board_setup);
   1308 
   1309     /* Boot into highest supported EL ... */
   1310     if (arm_feature(env, ARM_FEATURE_EL3)) {
   1311         boot_el = 3;
   1312     } else if (arm_feature(env, ARM_FEATURE_EL2)) {
   1313         boot_el = 2;
   1314     } else {
   1315         boot_el = 1;
   1316     }
   1317     /* ...except that if we're booting Linux we adjust the EL we boot into */
   1318     if (info->is_linux && !info->secure_boot) {
   1319         boot_el = arm_feature(env, ARM_FEATURE_EL2) ? 2 : 1;
   1320     }
   1321 
   1322     if ((info->psci_conduit == QEMU_PSCI_CONDUIT_HVC && boot_el >= 2) ||
   1323         (info->psci_conduit == QEMU_PSCI_CONDUIT_SMC && boot_el == 3)) {
   1324         info->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
   1325     }
   1326 
   1327     if (info->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
   1328         for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
   1329             Object *cpuobj = OBJECT(cs);
   1330 
   1331             object_property_set_int(cpuobj, "psci-conduit", info->psci_conduit,
   1332                                     &error_abort);
   1333             /*
   1334              * Secondary CPUs start in PSCI powered-down state. Like the
   1335              * code in do_cpu_reset(), we assume first_cpu is the primary
   1336              * CPU.
   1337              */
   1338             if (cs != first_cpu) {
   1339                 object_property_set_bool(cpuobj, "start-powered-off", true,
   1340                                          &error_abort);
   1341             }
   1342         }
   1343     }
   1344 
   1345     if (info->psci_conduit == QEMU_PSCI_CONDUIT_DISABLED &&
   1346         info->is_linux && nb_cpus > 1) {
   1347         /*
   1348          * We're booting Linux but not using PSCI, so for SMP we need
   1349          * to write a custom secondary CPU boot loader stub, and arrange
   1350          * for the secondary CPU reset to make the accompanying initialization.
   1351          */
   1352         if (!info->secondary_cpu_reset_hook) {
   1353             info->secondary_cpu_reset_hook = default_reset_secondary;
   1354         }
   1355         if (!info->write_secondary_boot) {
   1356             info->write_secondary_boot = default_write_secondary;
   1357         }
   1358         info->write_secondary_boot(cpu, info);
   1359     } else {
   1360         /*
   1361          * No secondary boot stub; don't use the reset hook that would
   1362          * have set the CPU up to call it
   1363          */
   1364         info->write_secondary_boot = NULL;
   1365         info->secondary_cpu_reset_hook = NULL;
   1366     }
   1367 
   1368     /*
   1369      * arm_load_dtb() may add a PSCI node so it must be called after we have
   1370      * decided whether to enable PSCI and set the psci-conduit CPU properties.
   1371      */
   1372     if (!info->skip_dtb_autoload && have_dtb(info)) {
   1373         if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
   1374             exit(1);
   1375         }
   1376     }
   1377 }
   1378 
   1379 static const TypeInfo arm_linux_boot_if_info = {
   1380     .name = TYPE_ARM_LINUX_BOOT_IF,
   1381     .parent = TYPE_INTERFACE,
   1382     .class_size = sizeof(ARMLinuxBootIfClass),
   1383 };
   1384 
   1385 static void arm_linux_boot_register_types(void)
   1386 {
   1387     type_register_static(&arm_linux_boot_if_info);
   1388 }
   1389 
   1390 type_init(arm_linux_boot_register_types)