qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

armv7m.c (22311B)


      1 /*
      2  * ARMV7M System emulation.
      3  *
      4  * Copyright (c) 2006-2007 CodeSourcery.
      5  * Written by Paul Brook
      6  *
      7  * This code is licensed under the GPL.
      8  */
      9 
     10 #include "qemu/osdep.h"
     11 #include "hw/arm/armv7m.h"
     12 #include "qapi/error.h"
     13 #include "hw/sysbus.h"
     14 #include "hw/arm/boot.h"
     15 #include "hw/loader.h"
     16 #include "hw/qdev-properties.h"
     17 #include "hw/qdev-clock.h"
     18 #include "elf.h"
     19 #include "sysemu/reset.h"
     20 #include "qemu/error-report.h"
     21 #include "qemu/module.h"
     22 #include "qemu/log.h"
     23 #include "target/arm/idau.h"
     24 #include "migration/vmstate.h"
     25 
     26 /* Bitbanded IO.  Each word corresponds to a single bit.  */
     27 
     28 /* Get the byte address of the real memory for a bitband access.  */
     29 static inline hwaddr bitband_addr(BitBandState *s, hwaddr offset)
     30 {
     31     return s->base | (offset & 0x1ffffff) >> 5;
     32 }
     33 
     34 static MemTxResult bitband_read(void *opaque, hwaddr offset,
     35                                 uint64_t *data, unsigned size, MemTxAttrs attrs)
     36 {
     37     BitBandState *s = opaque;
     38     uint8_t buf[4];
     39     MemTxResult res;
     40     int bitpos, bit;
     41     hwaddr addr;
     42 
     43     assert(size <= 4);
     44 
     45     /* Find address in underlying memory and round down to multiple of size */
     46     addr = bitband_addr(s, offset) & (-size);
     47     res = address_space_read(&s->source_as, addr, attrs, buf, size);
     48     if (res) {
     49         return res;
     50     }
     51     /* Bit position in the N bytes read... */
     52     bitpos = (offset >> 2) & ((size * 8) - 1);
     53     /* ...converted to byte in buffer and bit in byte */
     54     bit = (buf[bitpos >> 3] >> (bitpos & 7)) & 1;
     55     *data = bit;
     56     return MEMTX_OK;
     57 }
     58 
     59 static MemTxResult bitband_write(void *opaque, hwaddr offset, uint64_t value,
     60                                  unsigned size, MemTxAttrs attrs)
     61 {
     62     BitBandState *s = opaque;
     63     uint8_t buf[4];
     64     MemTxResult res;
     65     int bitpos, bit;
     66     hwaddr addr;
     67 
     68     assert(size <= 4);
     69 
     70     /* Find address in underlying memory and round down to multiple of size */
     71     addr = bitband_addr(s, offset) & (-size);
     72     res = address_space_read(&s->source_as, addr, attrs, buf, size);
     73     if (res) {
     74         return res;
     75     }
     76     /* Bit position in the N bytes read... */
     77     bitpos = (offset >> 2) & ((size * 8) - 1);
     78     /* ...converted to byte in buffer and bit in byte */
     79     bit = 1 << (bitpos & 7);
     80     if (value & 1) {
     81         buf[bitpos >> 3] |= bit;
     82     } else {
     83         buf[bitpos >> 3] &= ~bit;
     84     }
     85     return address_space_write(&s->source_as, addr, attrs, buf, size);
     86 }
     87 
     88 static const MemoryRegionOps bitband_ops = {
     89     .read_with_attrs = bitband_read,
     90     .write_with_attrs = bitband_write,
     91     .endianness = DEVICE_NATIVE_ENDIAN,
     92     .impl.min_access_size = 1,
     93     .impl.max_access_size = 4,
     94     .valid.min_access_size = 1,
     95     .valid.max_access_size = 4,
     96 };
     97 
     98 static void bitband_init(Object *obj)
     99 {
    100     BitBandState *s = BITBAND(obj);
    101     SysBusDevice *dev = SYS_BUS_DEVICE(obj);
    102 
    103     memory_region_init_io(&s->iomem, obj, &bitband_ops, s,
    104                           "bitband", 0x02000000);
    105     sysbus_init_mmio(dev, &s->iomem);
    106 }
    107 
    108 static void bitband_realize(DeviceState *dev, Error **errp)
    109 {
    110     BitBandState *s = BITBAND(dev);
    111 
    112     if (!s->source_memory) {
    113         error_setg(errp, "source-memory property not set");
    114         return;
    115     }
    116 
    117     address_space_init(&s->source_as, s->source_memory, "bitband-source");
    118 }
    119 
    120 /* Board init.  */
    121 
    122 static const hwaddr bitband_input_addr[ARMV7M_NUM_BITBANDS] = {
    123     0x20000000, 0x40000000
    124 };
    125 
    126 static const hwaddr bitband_output_addr[ARMV7M_NUM_BITBANDS] = {
    127     0x22000000, 0x42000000
    128 };
    129 
    130 static MemTxResult v7m_sysreg_ns_write(void *opaque, hwaddr addr,
    131                                        uint64_t value, unsigned size,
    132                                        MemTxAttrs attrs)
    133 {
    134     MemoryRegion *mr = opaque;
    135 
    136     if (attrs.secure) {
    137         /* S accesses to the alias act like NS accesses to the real region */
    138         attrs.secure = 0;
    139         return memory_region_dispatch_write(mr, addr, value,
    140                                             size_memop(size) | MO_TE, attrs);
    141     } else {
    142         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
    143         if (attrs.user) {
    144             return MEMTX_ERROR;
    145         }
    146         return MEMTX_OK;
    147     }
    148 }
    149 
    150 static MemTxResult v7m_sysreg_ns_read(void *opaque, hwaddr addr,
    151                                       uint64_t *data, unsigned size,
    152                                       MemTxAttrs attrs)
    153 {
    154     MemoryRegion *mr = opaque;
    155 
    156     if (attrs.secure) {
    157         /* S accesses to the alias act like NS accesses to the real region */
    158         attrs.secure = 0;
    159         return memory_region_dispatch_read(mr, addr, data,
    160                                            size_memop(size) | MO_TE, attrs);
    161     } else {
    162         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
    163         if (attrs.user) {
    164             return MEMTX_ERROR;
    165         }
    166         *data = 0;
    167         return MEMTX_OK;
    168     }
    169 }
    170 
    171 static const MemoryRegionOps v7m_sysreg_ns_ops = {
    172     .read_with_attrs = v7m_sysreg_ns_read,
    173     .write_with_attrs = v7m_sysreg_ns_write,
    174     .endianness = DEVICE_NATIVE_ENDIAN,
    175 };
    176 
    177 static MemTxResult v7m_systick_write(void *opaque, hwaddr addr,
    178                                      uint64_t value, unsigned size,
    179                                      MemTxAttrs attrs)
    180 {
    181     ARMv7MState *s = opaque;
    182     MemoryRegion *mr;
    183 
    184     /* Direct the access to the correct systick */
    185     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
    186     return memory_region_dispatch_write(mr, addr, value,
    187                                         size_memop(size) | MO_TE, attrs);
    188 }
    189 
    190 static MemTxResult v7m_systick_read(void *opaque, hwaddr addr,
    191                                     uint64_t *data, unsigned size,
    192                                     MemTxAttrs attrs)
    193 {
    194     ARMv7MState *s = opaque;
    195     MemoryRegion *mr;
    196 
    197     /* Direct the access to the correct systick */
    198     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
    199     return memory_region_dispatch_read(mr, addr, data, size_memop(size) | MO_TE,
    200                                        attrs);
    201 }
    202 
    203 static const MemoryRegionOps v7m_systick_ops = {
    204     .read_with_attrs = v7m_systick_read,
    205     .write_with_attrs = v7m_systick_write,
    206     .endianness = DEVICE_NATIVE_ENDIAN,
    207 };
    208 
    209 /*
    210  * Unassigned portions of the PPB space are RAZ/WI for privileged
    211  * accesses, and fault for non-privileged accesses.
    212  */
    213 static MemTxResult ppb_default_read(void *opaque, hwaddr addr,
    214                                     uint64_t *data, unsigned size,
    215                                     MemTxAttrs attrs)
    216 {
    217     qemu_log_mask(LOG_UNIMP, "Read of unassigned area of PPB: offset 0x%x\n",
    218                   (uint32_t)addr);
    219     if (attrs.user) {
    220         return MEMTX_ERROR;
    221     }
    222     *data = 0;
    223     return MEMTX_OK;
    224 }
    225 
    226 static MemTxResult ppb_default_write(void *opaque, hwaddr addr,
    227                                      uint64_t value, unsigned size,
    228                                      MemTxAttrs attrs)
    229 {
    230     qemu_log_mask(LOG_UNIMP, "Write of unassigned area of PPB: offset 0x%x\n",
    231                   (uint32_t)addr);
    232     if (attrs.user) {
    233         return MEMTX_ERROR;
    234     }
    235     return MEMTX_OK;
    236 }
    237 
    238 static const MemoryRegionOps ppb_default_ops = {
    239     .read_with_attrs = ppb_default_read,
    240     .write_with_attrs = ppb_default_write,
    241     .endianness = DEVICE_NATIVE_ENDIAN,
    242     .valid.min_access_size = 1,
    243     .valid.max_access_size = 8,
    244 };
    245 
    246 static void armv7m_instance_init(Object *obj)
    247 {
    248     ARMv7MState *s = ARMV7M(obj);
    249     int i;
    250 
    251     /* Can't init the cpu here, we don't yet know which model to use */
    252 
    253     memory_region_init(&s->container, obj, "armv7m-container", UINT64_MAX);
    254 
    255     object_initialize_child(obj, "nvic", &s->nvic, TYPE_NVIC);
    256     object_property_add_alias(obj, "num-irq",
    257                               OBJECT(&s->nvic), "num-irq");
    258 
    259     object_initialize_child(obj, "systick-reg-ns", &s->systick[M_REG_NS],
    260                             TYPE_SYSTICK);
    261     /*
    262      * We can't initialize the secure systick here, as we don't know
    263      * yet if we need it.
    264      */
    265 
    266     for (i = 0; i < ARRAY_SIZE(s->bitband); i++) {
    267         object_initialize_child(obj, "bitband[*]", &s->bitband[i],
    268                                 TYPE_BITBAND);
    269     }
    270 
    271     s->refclk = qdev_init_clock_in(DEVICE(obj), "refclk", NULL, NULL, 0);
    272     s->cpuclk = qdev_init_clock_in(DEVICE(obj), "cpuclk", NULL, NULL, 0);
    273 }
    274 
    275 static void armv7m_realize(DeviceState *dev, Error **errp)
    276 {
    277     ARMv7MState *s = ARMV7M(dev);
    278     SysBusDevice *sbd;
    279     Error *err = NULL;
    280     int i;
    281 
    282     if (!s->board_memory) {
    283         error_setg(errp, "memory property was not set");
    284         return;
    285     }
    286 
    287     /* cpuclk must be connected; refclk is optional */
    288     if (!clock_has_source(s->cpuclk)) {
    289         error_setg(errp, "armv7m: cpuclk must be connected");
    290         return;
    291     }
    292 
    293     memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -1);
    294 
    295     s->cpu = ARM_CPU(object_new_with_props(s->cpu_type, OBJECT(s), "cpu",
    296                                            &err, NULL));
    297     if (err != NULL) {
    298         error_propagate(errp, err);
    299         return;
    300     }
    301 
    302     object_property_set_link(OBJECT(s->cpu), "memory", OBJECT(&s->container),
    303                              &error_abort);
    304     if (object_property_find(OBJECT(s->cpu), "idau")) {
    305         object_property_set_link(OBJECT(s->cpu), "idau", s->idau,
    306                                  &error_abort);
    307     }
    308     if (object_property_find(OBJECT(s->cpu), "init-svtor")) {
    309         if (!object_property_set_uint(OBJECT(s->cpu), "init-svtor",
    310                                       s->init_svtor, errp)) {
    311             return;
    312         }
    313     }
    314     if (object_property_find(OBJECT(s->cpu), "init-nsvtor")) {
    315         if (!object_property_set_uint(OBJECT(s->cpu), "init-nsvtor",
    316                                       s->init_nsvtor, errp)) {
    317             return;
    318         }
    319     }
    320     if (object_property_find(OBJECT(s->cpu), "start-powered-off")) {
    321         if (!object_property_set_bool(OBJECT(s->cpu), "start-powered-off",
    322                                       s->start_powered_off, errp)) {
    323             return;
    324         }
    325     }
    326     if (object_property_find(OBJECT(s->cpu), "vfp")) {
    327         if (!object_property_set_bool(OBJECT(s->cpu), "vfp", s->vfp, errp)) {
    328             return;
    329         }
    330     }
    331     if (object_property_find(OBJECT(s->cpu), "dsp")) {
    332         if (!object_property_set_bool(OBJECT(s->cpu), "dsp", s->dsp, errp)) {
    333             return;
    334         }
    335     }
    336 
    337     /*
    338      * Tell the CPU where the NVIC is; it will fail realize if it doesn't
    339      * have one. Similarly, tell the NVIC where its CPU is.
    340      */
    341     s->cpu->env.nvic = &s->nvic;
    342     s->nvic.cpu = s->cpu;
    343 
    344     if (!qdev_realize(DEVICE(s->cpu), NULL, errp)) {
    345         return;
    346     }
    347 
    348     /* Note that we must realize the NVIC after the CPU */
    349     if (!sysbus_realize(SYS_BUS_DEVICE(&s->nvic), errp)) {
    350         return;
    351     }
    352 
    353     /* Alias the NVIC's input and output GPIOs as our own so the board
    354      * code can wire them up. (We do this in realize because the
    355      * NVIC doesn't create the input GPIO array until realize.)
    356      */
    357     qdev_pass_gpios(DEVICE(&s->nvic), dev, NULL);
    358     qdev_pass_gpios(DEVICE(&s->nvic), dev, "SYSRESETREQ");
    359     qdev_pass_gpios(DEVICE(&s->nvic), dev, "NMI");
    360 
    361     /*
    362      * We map various devices into the container MR at their architected
    363      * addresses. In particular, we map everything corresponding to the
    364      * "System PPB" space. This is the range from 0xe0000000 to 0xe00fffff
    365      * and includes the NVIC, the System Control Space (system registers),
    366      * the systick timer, and for CPUs with the Security extension an NS
    367      * banked version of all of these.
    368      *
    369      * The default behaviour for unimplemented registers/ranges
    370      * (for instance the Data Watchpoint and Trace unit at 0xe0001000)
    371      * is to RAZ/WI for privileged access and BusFault for non-privileged
    372      * access.
    373      *
    374      * The NVIC and System Control Space (SCS) starts at 0xe000e000
    375      * and looks like this:
    376      *  0x004 - ICTR
    377      *  0x010 - 0xff - systick
    378      *  0x100..0x7ec - NVIC
    379      *  0x7f0..0xcff - Reserved
    380      *  0xd00..0xd3c - SCS registers
    381      *  0xd40..0xeff - Reserved or Not implemented
    382      *  0xf00 - STIR
    383      *
    384      * Some registers within this space are banked between security states.
    385      * In v8M there is a second range 0xe002e000..0xe002efff which is the
    386      * NonSecure alias SCS; secure accesses to this behave like NS accesses
    387      * to the main SCS range, and non-secure accesses (including when
    388      * the security extension is not implemented) are RAZ/WI.
    389      * Note that both the main SCS range and the alias range are defined
    390      * to be exempt from memory attribution (R_BLJT) and so the memory
    391      * transaction attribute always matches the current CPU security
    392      * state (attrs.secure == env->v7m.secure). In the v7m_sysreg_ns_ops
    393      * wrappers we change attrs.secure to indicate the NS access; so
    394      * generally code determining which banked register to use should
    395      * use attrs.secure; code determining actual behaviour of the system
    396      * should use env->v7m.secure.
    397      *
    398      * Within the PPB space, some MRs overlap, and the priority
    399      * of overlapping regions is:
    400      *  - default region (for RAZ/WI and BusFault) : -1
    401      *  - system register regions (provided by the NVIC) : 0
    402      *  - systick : 1
    403      * This is because the systick device is a small block of registers
    404      * in the middle of the other system control registers.
    405      */
    406 
    407     memory_region_init_io(&s->defaultmem, OBJECT(s), &ppb_default_ops, s,
    408                           "nvic-default", 0x100000);
    409     memory_region_add_subregion_overlap(&s->container, 0xe0000000,
    410                                         &s->defaultmem, -1);
    411 
    412     /* Wire the NVIC up to the CPU */
    413     sbd = SYS_BUS_DEVICE(&s->nvic);
    414     sysbus_connect_irq(sbd, 0,
    415                        qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
    416 
    417     memory_region_add_subregion(&s->container, 0xe000e000,
    418                                 sysbus_mmio_get_region(sbd, 0));
    419     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
    420         /* Create the NS alias region for the NVIC sysregs */
    421         memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
    422                               &v7m_sysreg_ns_ops,
    423                               sysbus_mmio_get_region(sbd, 0),
    424                               "nvic_sysregs_ns", 0x1000);
    425         memory_region_add_subregion(&s->container, 0xe002e000,
    426                                     &s->sysreg_ns_mem);
    427     }
    428 
    429     /*
    430      * Create and map the systick devices. Note that we only connect
    431      * refclk if it has been connected to us; otherwise the systick
    432      * device gets the wrong answer for clock_has_source(refclk), because
    433      * it has an immediate source (the ARMv7M's clock object) but not
    434      * an ultimate source, and then it won't correctly auto-select the
    435      * CPU clock as its only possible clock source.
    436      */
    437     if (clock_has_source(s->refclk)) {
    438         qdev_connect_clock_in(DEVICE(&s->systick[M_REG_NS]), "refclk",
    439                               s->refclk);
    440     }
    441     qdev_connect_clock_in(DEVICE(&s->systick[M_REG_NS]), "cpuclk", s->cpuclk);
    442     if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), errp)) {
    443         return;
    444     }
    445     sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
    446                        qdev_get_gpio_in_named(DEVICE(&s->nvic),
    447                                               "systick-trigger", M_REG_NS));
    448 
    449     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
    450         /*
    451          * We couldn't init the secure systick device in instance_init
    452          * as we didn't know then if the CPU had the security extensions;
    453          * so we have to do it here.
    454          */
    455         object_initialize_child(OBJECT(dev), "systick-reg-s",
    456                                 &s->systick[M_REG_S], TYPE_SYSTICK);
    457         if (clock_has_source(s->refclk)) {
    458             qdev_connect_clock_in(DEVICE(&s->systick[M_REG_S]), "refclk",
    459                                   s->refclk);
    460         }
    461         qdev_connect_clock_in(DEVICE(&s->systick[M_REG_S]), "cpuclk",
    462                               s->cpuclk);
    463 
    464         if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_S]), errp)) {
    465             return;
    466         }
    467         sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
    468                            qdev_get_gpio_in_named(DEVICE(&s->nvic),
    469                                                   "systick-trigger", M_REG_S));
    470     }
    471 
    472     memory_region_init_io(&s->systickmem, OBJECT(s),
    473                           &v7m_systick_ops, s,
    474                           "v7m_systick", 0xe0);
    475 
    476     memory_region_add_subregion_overlap(&s->container, 0xe000e010,
    477                                         &s->systickmem, 1);
    478     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
    479         memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
    480                               &v7m_sysreg_ns_ops, &s->systickmem,
    481                               "v7m_systick_ns", 0xe0);
    482         memory_region_add_subregion_overlap(&s->container, 0xe002e010,
    483                                             &s->systick_ns_mem, 1);
    484     }
    485 
    486     /* If the CPU has RAS support, create the RAS register block */
    487     if (cpu_isar_feature(aa32_ras, s->cpu)) {
    488         object_initialize_child(OBJECT(dev), "armv7m-ras",
    489                                 &s->ras, TYPE_ARMV7M_RAS);
    490         sbd = SYS_BUS_DEVICE(&s->ras);
    491         if (!sysbus_realize(sbd, errp)) {
    492             return;
    493         }
    494         memory_region_add_subregion_overlap(&s->container, 0xe0005000,
    495                                             sysbus_mmio_get_region(sbd, 0), 1);
    496     }
    497 
    498     for (i = 0; i < ARRAY_SIZE(s->bitband); i++) {
    499         if (s->enable_bitband) {
    500             Object *obj = OBJECT(&s->bitband[i]);
    501             SysBusDevice *sbd = SYS_BUS_DEVICE(&s->bitband[i]);
    502 
    503             if (!object_property_set_int(obj, "base",
    504                                          bitband_input_addr[i], errp)) {
    505                 return;
    506             }
    507             object_property_set_link(obj, "source-memory",
    508                                      OBJECT(s->board_memory), &error_abort);
    509             if (!sysbus_realize(SYS_BUS_DEVICE(obj), errp)) {
    510                 return;
    511             }
    512 
    513             memory_region_add_subregion(&s->container, bitband_output_addr[i],
    514                                         sysbus_mmio_get_region(sbd, 0));
    515         } else {
    516             object_unparent(OBJECT(&s->bitband[i]));
    517         }
    518     }
    519 }
    520 
    521 static Property armv7m_properties[] = {
    522     DEFINE_PROP_STRING("cpu-type", ARMv7MState, cpu_type),
    523     DEFINE_PROP_LINK("memory", ARMv7MState, board_memory, TYPE_MEMORY_REGION,
    524                      MemoryRegion *),
    525     DEFINE_PROP_LINK("idau", ARMv7MState, idau, TYPE_IDAU_INTERFACE, Object *),
    526     DEFINE_PROP_UINT32("init-svtor", ARMv7MState, init_svtor, 0),
    527     DEFINE_PROP_UINT32("init-nsvtor", ARMv7MState, init_nsvtor, 0),
    528     DEFINE_PROP_BOOL("enable-bitband", ARMv7MState, enable_bitband, false),
    529     DEFINE_PROP_BOOL("start-powered-off", ARMv7MState, start_powered_off,
    530                      false),
    531     DEFINE_PROP_BOOL("vfp", ARMv7MState, vfp, true),
    532     DEFINE_PROP_BOOL("dsp", ARMv7MState, dsp, true),
    533     DEFINE_PROP_END_OF_LIST(),
    534 };
    535 
    536 static const VMStateDescription vmstate_armv7m = {
    537     .name = "armv7m",
    538     .version_id = 1,
    539     .minimum_version_id = 1,
    540     .fields = (VMStateField[]) {
    541         VMSTATE_CLOCK(refclk, ARMv7MState),
    542         VMSTATE_CLOCK(cpuclk, ARMv7MState),
    543         VMSTATE_END_OF_LIST()
    544     }
    545 };
    546 
    547 static void armv7m_class_init(ObjectClass *klass, void *data)
    548 {
    549     DeviceClass *dc = DEVICE_CLASS(klass);
    550 
    551     dc->realize = armv7m_realize;
    552     dc->vmsd = &vmstate_armv7m;
    553     device_class_set_props(dc, armv7m_properties);
    554 }
    555 
    556 static const TypeInfo armv7m_info = {
    557     .name = TYPE_ARMV7M,
    558     .parent = TYPE_SYS_BUS_DEVICE,
    559     .instance_size = sizeof(ARMv7MState),
    560     .instance_init = armv7m_instance_init,
    561     .class_init = armv7m_class_init,
    562 };
    563 
    564 static void armv7m_reset(void *opaque)
    565 {
    566     ARMCPU *cpu = opaque;
    567 
    568     cpu_reset(CPU(cpu));
    569 }
    570 
    571 void armv7m_load_kernel(ARMCPU *cpu, const char *kernel_filename,
    572                         hwaddr mem_base, int mem_size)
    573 {
    574     ssize_t image_size;
    575     uint64_t entry;
    576     AddressSpace *as;
    577     int asidx;
    578     CPUState *cs = CPU(cpu);
    579 
    580     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
    581         asidx = ARMASIdx_S;
    582     } else {
    583         asidx = ARMASIdx_NS;
    584     }
    585     as = cpu_get_address_space(cs, asidx);
    586 
    587     if (kernel_filename) {
    588         image_size = load_elf_as(kernel_filename, NULL, NULL, NULL,
    589                                  &entry, NULL, NULL,
    590                                  NULL, 0, EM_ARM, 1, 0, as);
    591         if (image_size < 0) {
    592             image_size = load_image_targphys_as(kernel_filename, mem_base,
    593                                                 mem_size, as);
    594         }
    595         if (image_size < 0) {
    596             error_report("Could not load kernel '%s'", kernel_filename);
    597             exit(1);
    598         }
    599     }
    600 
    601     /* CPU objects (unlike devices) are not automatically reset on system
    602      * reset, so we must always register a handler to do so. Unlike
    603      * A-profile CPUs, we don't need to do anything special in the
    604      * handler to arrange that it starts correctly.
    605      * This is arguably the wrong place to do this, but it matches the
    606      * way A-profile does it. Note that this means that every M profile
    607      * board must call this function!
    608      */
    609     qemu_register_reset(armv7m_reset, cpu);
    610 }
    611 
    612 static Property bitband_properties[] = {
    613     DEFINE_PROP_UINT32("base", BitBandState, base, 0),
    614     DEFINE_PROP_LINK("source-memory", BitBandState, source_memory,
    615                      TYPE_MEMORY_REGION, MemoryRegion *),
    616     DEFINE_PROP_END_OF_LIST(),
    617 };
    618 
    619 static void bitband_class_init(ObjectClass *klass, void *data)
    620 {
    621     DeviceClass *dc = DEVICE_CLASS(klass);
    622 
    623     dc->realize = bitband_realize;
    624     device_class_set_props(dc, bitband_properties);
    625 }
    626 
    627 static const TypeInfo bitband_info = {
    628     .name          = TYPE_BITBAND,
    629     .parent        = TYPE_SYS_BUS_DEVICE,
    630     .instance_size = sizeof(BitBandState),
    631     .instance_init = bitband_init,
    632     .class_init    = bitband_class_init,
    633 };
    634 
    635 static void armv7m_register_types(void)
    636 {
    637     type_register_static(&bitband_info);
    638     type_register_static(&armv7m_info);
    639 }
    640 
    641 type_init(armv7m_register_types)