qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

nvdimm.c (52060B)


      1 /*
      2  * NVDIMM ACPI Implementation
      3  *
      4  * Copyright(C) 2015 Intel Corporation.
      5  *
      6  * Author:
      7  *  Xiao Guangrong <guangrong.xiao@linux.intel.com>
      8  *
      9  * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
     10  * and the DSM specification can be found at:
     11  *       http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
     12  *
     13  * Currently, it only supports PMEM Virtualization.
     14  *
     15  * This library is free software; you can redistribute it and/or
     16  * modify it under the terms of the GNU Lesser General Public
     17  * License as published by the Free Software Foundation; either
     18  * version 2.1 of the License, or (at your option) any later version.
     19  *
     20  * This library is distributed in the hope that it will be useful,
     21  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     22  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     23  * Lesser General Public License for more details.
     24  *
     25  * You should have received a copy of the GNU Lesser General Public
     26  * License along with this library; if not, see <http://www.gnu.org/licenses/>
     27  */
     28 
     29 #include "qemu/osdep.h"
     30 #include "qemu/uuid.h"
     31 #include "qapi/error.h"
     32 #include "hw/acpi/acpi.h"
     33 #include "hw/acpi/aml-build.h"
     34 #include "hw/acpi/bios-linker-loader.h"
     35 #include "hw/nvram/fw_cfg.h"
     36 #include "hw/mem/nvdimm.h"
     37 #include "qemu/nvdimm-utils.h"
     38 #include "trace.h"
     39 
     40 /*
     41  * define Byte Addressable Persistent Memory (PM) Region according to
     42  * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure.
     43  */
     44 static const uint8_t nvdimm_nfit_spa_uuid[] =
     45       UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33,
     46               0x18, 0xb7, 0x8c, 0xdb);
     47 
     48 /*
     49  * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware
     50  * Interface Table (NFIT).
     51  */
     52 
     53 /*
     54  * System Physical Address Range Structure
     55  *
     56  * It describes the system physical address ranges occupied by NVDIMMs and
     57  * the types of the regions.
     58  */
     59 struct NvdimmNfitSpa {
     60     uint16_t type;
     61     uint16_t length;
     62     uint16_t spa_index;
     63     uint16_t flags;
     64     uint32_t reserved;
     65     uint32_t proximity_domain;
     66     uint8_t type_guid[16];
     67     uint64_t spa_base;
     68     uint64_t spa_length;
     69     uint64_t mem_attr;
     70 } QEMU_PACKED;
     71 typedef struct NvdimmNfitSpa NvdimmNfitSpa;
     72 
     73 /*
     74  * Memory Device to System Physical Address Range Mapping Structure
     75  *
     76  * It enables identifying each NVDIMM region and the corresponding SPA
     77  * describing the memory interleave
     78  */
     79 struct NvdimmNfitMemDev {
     80     uint16_t type;
     81     uint16_t length;
     82     uint32_t nfit_handle;
     83     uint16_t phys_id;
     84     uint16_t region_id;
     85     uint16_t spa_index;
     86     uint16_t dcr_index;
     87     uint64_t region_len;
     88     uint64_t region_offset;
     89     uint64_t region_dpa;
     90     uint16_t interleave_index;
     91     uint16_t interleave_ways;
     92     uint16_t flags;
     93     uint16_t reserved;
     94 } QEMU_PACKED;
     95 typedef struct NvdimmNfitMemDev NvdimmNfitMemDev;
     96 
     97 #define ACPI_NFIT_MEM_NOT_ARMED     (1 << 3)
     98 
     99 /*
    100  * NVDIMM Control Region Structure
    101  *
    102  * It describes the NVDIMM and if applicable, Block Control Window.
    103  */
    104 struct NvdimmNfitControlRegion {
    105     uint16_t type;
    106     uint16_t length;
    107     uint16_t dcr_index;
    108     uint16_t vendor_id;
    109     uint16_t device_id;
    110     uint16_t revision_id;
    111     uint16_t sub_vendor_id;
    112     uint16_t sub_device_id;
    113     uint16_t sub_revision_id;
    114     uint8_t reserved[6];
    115     uint32_t serial_number;
    116     uint16_t fic;
    117     uint16_t num_bcw;
    118     uint64_t bcw_size;
    119     uint64_t cmd_offset;
    120     uint64_t cmd_size;
    121     uint64_t status_offset;
    122     uint64_t status_size;
    123     uint16_t flags;
    124     uint8_t reserved2[6];
    125 } QEMU_PACKED;
    126 typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion;
    127 
    128 /*
    129  * NVDIMM Platform Capabilities Structure
    130  *
    131  * Defined in section 5.2.25.9 of ACPI 6.2 Errata A, September 2017
    132  */
    133 struct NvdimmNfitPlatformCaps {
    134     uint16_t type;
    135     uint16_t length;
    136     uint8_t highest_cap;
    137     uint8_t reserved[3];
    138     uint32_t capabilities;
    139     uint8_t reserved2[4];
    140 } QEMU_PACKED;
    141 typedef struct NvdimmNfitPlatformCaps NvdimmNfitPlatformCaps;
    142 
    143 /*
    144  * Module serial number is a unique number for each device. We use the
    145  * slot id of NVDIMM device to generate this number so that each device
    146  * associates with a different number.
    147  *
    148  * 0x123456 is a magic number we arbitrarily chose.
    149  */
    150 static uint32_t nvdimm_slot_to_sn(int slot)
    151 {
    152     return 0x123456 + slot;
    153 }
    154 
    155 /*
    156  * handle is used to uniquely associate nfit_memdev structure with NVDIMM
    157  * ACPI device - nfit_memdev.nfit_handle matches with the value returned
    158  * by ACPI device _ADR method.
    159  *
    160  * We generate the handle with the slot id of NVDIMM device and reserve
    161  * 0 for NVDIMM root device.
    162  */
    163 static uint32_t nvdimm_slot_to_handle(int slot)
    164 {
    165     return slot + 1;
    166 }
    167 
    168 /*
    169  * index uniquely identifies the structure, 0 is reserved which indicates
    170  * that the structure is not valid or the associated structure is not
    171  * present.
    172  *
    173  * Each NVDIMM device needs two indexes, one for nfit_spa and another for
    174  * nfit_dc which are generated by the slot id of NVDIMM device.
    175  */
    176 static uint16_t nvdimm_slot_to_spa_index(int slot)
    177 {
    178     return (slot + 1) << 1;
    179 }
    180 
    181 /* See the comments of nvdimm_slot_to_spa_index(). */
    182 static uint32_t nvdimm_slot_to_dcr_index(int slot)
    183 {
    184     return nvdimm_slot_to_spa_index(slot) + 1;
    185 }
    186 
    187 static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle)
    188 {
    189     NVDIMMDevice *nvdimm = NULL;
    190     GSList *list, *device_list = nvdimm_get_device_list();
    191 
    192     for (list = device_list; list; list = list->next) {
    193         NVDIMMDevice *nvd = list->data;
    194         int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP,
    195                                            NULL);
    196 
    197         if (nvdimm_slot_to_handle(slot) == handle) {
    198             nvdimm = nvd;
    199             break;
    200         }
    201     }
    202 
    203     g_slist_free(device_list);
    204     return nvdimm;
    205 }
    206 
    207 /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */
    208 static void
    209 nvdimm_build_structure_spa(GArray *structures, DeviceState *dev)
    210 {
    211     NvdimmNfitSpa *nfit_spa;
    212     uint64_t addr = object_property_get_uint(OBJECT(dev), PC_DIMM_ADDR_PROP,
    213                                              NULL);
    214     uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
    215                                              NULL);
    216     uint32_t node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
    217                                              NULL);
    218     int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
    219                                        NULL);
    220 
    221     nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa));
    222 
    223     nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range
    224                                       Structure */);
    225     nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa));
    226     nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
    227 
    228     /*
    229      * Control region is strict as all the device info, such as SN, index,
    230      * is associated with slot id.
    231      */
    232     nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for
    233                                        management during hot add/online
    234                                        operation */ |
    235                                   2 /* Data in Proximity Domain field is
    236                                        valid*/);
    237 
    238     /* NUMA node. */
    239     nfit_spa->proximity_domain = cpu_to_le32(node);
    240     /* the region reported as PMEM. */
    241     memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid,
    242            sizeof(nvdimm_nfit_spa_uuid));
    243 
    244     nfit_spa->spa_base = cpu_to_le64(addr);
    245     nfit_spa->spa_length = cpu_to_le64(size);
    246 
    247     /* It is the PMEM and can be cached as writeback. */
    248     nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ |
    249                                      0x8000ULL /* EFI_MEMORY_NV */);
    250 }
    251 
    252 /*
    253  * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping
    254  * Structure
    255  */
    256 static void
    257 nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev)
    258 {
    259     NvdimmNfitMemDev *nfit_memdev;
    260     NVDIMMDevice *nvdimm = NVDIMM(OBJECT(dev));
    261     uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
    262                                              NULL);
    263     int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
    264                                             NULL);
    265     uint32_t handle = nvdimm_slot_to_handle(slot);
    266 
    267     nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev));
    268 
    269     nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address
    270                                          Range Map Structure*/);
    271     nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev));
    272     nfit_memdev->nfit_handle = cpu_to_le32(handle);
    273 
    274     /*
    275      * associate memory device with System Physical Address Range
    276      * Structure.
    277      */
    278     nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
    279     /* associate memory device with Control Region Structure. */
    280     nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
    281 
    282     /* The memory region on the device. */
    283     nfit_memdev->region_len = cpu_to_le64(size);
    284     /* The device address starts from 0. */
    285     nfit_memdev->region_dpa = cpu_to_le64(0);
    286 
    287     /* Only one interleave for PMEM. */
    288     nfit_memdev->interleave_ways = cpu_to_le16(1);
    289 
    290     if (nvdimm->unarmed) {
    291         nfit_memdev->flags |= cpu_to_le16(ACPI_NFIT_MEM_NOT_ARMED);
    292     }
    293 }
    294 
    295 /*
    296  * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure.
    297  */
    298 static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev)
    299 {
    300     NvdimmNfitControlRegion *nfit_dcr;
    301     int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
    302                                        NULL);
    303     uint32_t sn = nvdimm_slot_to_sn(slot);
    304 
    305     nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr));
    306 
    307     nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */);
    308     nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr));
    309     nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
    310 
    311     /* vendor: Intel. */
    312     nfit_dcr->vendor_id = cpu_to_le16(0x8086);
    313     nfit_dcr->device_id = cpu_to_le16(1);
    314 
    315     /* The _DSM method is following Intel's DSM specification. */
    316     nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported
    317                                              in ACPI 6.0 is 1. */);
    318     nfit_dcr->serial_number = cpu_to_le32(sn);
    319     nfit_dcr->fic = cpu_to_le16(0x301 /* Format Interface Code:
    320                                          Byte addressable, no energy backed.
    321                                          See ACPI 6.2, sect 5.2.25.6 and
    322                                          JEDEC Annex L Release 3. */);
    323 }
    324 
    325 /*
    326  * ACPI 6.2 Errata A: 5.2.25.9 NVDIMM Platform Capabilities Structure
    327  */
    328 static void
    329 nvdimm_build_structure_caps(GArray *structures, uint32_t capabilities)
    330 {
    331     NvdimmNfitPlatformCaps *nfit_caps;
    332 
    333     nfit_caps = acpi_data_push(structures, sizeof(*nfit_caps));
    334 
    335     nfit_caps->type = cpu_to_le16(7 /* NVDIMM Platform Capabilities */);
    336     nfit_caps->length = cpu_to_le16(sizeof(*nfit_caps));
    337     nfit_caps->highest_cap = 31 - clz32(capabilities);
    338     nfit_caps->capabilities = cpu_to_le32(capabilities);
    339 }
    340 
    341 static GArray *nvdimm_build_device_structure(NVDIMMState *state)
    342 {
    343     GSList *device_list, *list = nvdimm_get_device_list();
    344     GArray *structures = g_array_new(false, true /* clear */, 1);
    345 
    346     for (device_list = list; device_list; device_list = device_list->next) {
    347         DeviceState *dev = device_list->data;
    348 
    349         /* build System Physical Address Range Structure. */
    350         nvdimm_build_structure_spa(structures, dev);
    351 
    352         /*
    353          * build Memory Device to System Physical Address Range Mapping
    354          * Structure.
    355          */
    356         nvdimm_build_structure_memdev(structures, dev);
    357 
    358         /* build NVDIMM Control Region Structure. */
    359         nvdimm_build_structure_dcr(structures, dev);
    360     }
    361     g_slist_free(list);
    362 
    363     if (state->persistence) {
    364         nvdimm_build_structure_caps(structures, state->persistence);
    365     }
    366 
    367     return structures;
    368 }
    369 
    370 static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf)
    371 {
    372     fit_buf->fit = g_array_new(false, true /* clear */, 1);
    373 }
    374 
    375 static void nvdimm_build_fit_buffer(NVDIMMState *state)
    376 {
    377     NvdimmFitBuffer *fit_buf = &state->fit_buf;
    378 
    379     g_array_free(fit_buf->fit, true);
    380     fit_buf->fit = nvdimm_build_device_structure(state);
    381     fit_buf->dirty = true;
    382 }
    383 
    384 void nvdimm_plug(NVDIMMState *state)
    385 {
    386     nvdimm_build_fit_buffer(state);
    387 }
    388 
    389 /*
    390  * NVDIMM Firmware Interface Table
    391  * @signature: "NFIT"
    392  *
    393  * It provides information that allows OSPM to enumerate NVDIMM present in
    394  * the platform and associate system physical address ranges created by the
    395  * NVDIMMs.
    396  *
    397  * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
    398  */
    399 
    400 static void nvdimm_build_nfit(NVDIMMState *state, GArray *table_offsets,
    401                               GArray *table_data, BIOSLinker *linker,
    402                               const char *oem_id, const char *oem_table_id)
    403 {
    404     NvdimmFitBuffer *fit_buf = &state->fit_buf;
    405     AcpiTable table = { .sig = "NFIT", .rev = 1,
    406                         .oem_id = oem_id, .oem_table_id = oem_table_id };
    407 
    408     acpi_add_table(table_offsets, table_data);
    409 
    410     acpi_table_begin(&table, table_data);
    411     /* Reserved */
    412     build_append_int_noprefix(table_data, 0, 4);
    413     /* NVDIMM device structures. */
    414     g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len);
    415     acpi_table_end(linker, &table);
    416 }
    417 
    418 #define NVDIMM_DSM_MEMORY_SIZE      4096
    419 
    420 struct NvdimmDsmIn {
    421     uint32_t handle;
    422     uint32_t revision;
    423     uint32_t function;
    424     /* the remaining size in the page is used by arg3. */
    425     union {
    426         uint8_t arg3[4084];
    427     };
    428 } QEMU_PACKED;
    429 typedef struct NvdimmDsmIn NvdimmDsmIn;
    430 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != NVDIMM_DSM_MEMORY_SIZE);
    431 
    432 struct NvdimmDsmOut {
    433     /* the size of buffer filled by QEMU. */
    434     uint32_t len;
    435     uint8_t data[4092];
    436 } QEMU_PACKED;
    437 typedef struct NvdimmDsmOut NvdimmDsmOut;
    438 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != NVDIMM_DSM_MEMORY_SIZE);
    439 
    440 struct NvdimmDsmFunc0Out {
    441     /* the size of buffer filled by QEMU. */
    442      uint32_t len;
    443      uint32_t supported_func;
    444 } QEMU_PACKED;
    445 typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out;
    446 
    447 struct NvdimmDsmFuncNoPayloadOut {
    448     /* the size of buffer filled by QEMU. */
    449      uint32_t len;
    450      uint32_t func_ret_status;
    451 } QEMU_PACKED;
    452 typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut;
    453 
    454 struct NvdimmFuncGetLabelSizeOut {
    455     /* the size of buffer filled by QEMU. */
    456     uint32_t len;
    457     uint32_t func_ret_status; /* return status code. */
    458     uint32_t label_size; /* the size of label data area. */
    459     /*
    460      * Maximum size of the namespace label data length supported by
    461      * the platform in Get/Set Namespace Label Data functions.
    462      */
    463     uint32_t max_xfer;
    464 } QEMU_PACKED;
    465 typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut;
    466 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > NVDIMM_DSM_MEMORY_SIZE);
    467 
    468 struct NvdimmFuncGetLabelDataIn {
    469     uint32_t offset; /* the offset in the namespace label data area. */
    470     uint32_t length; /* the size of data is to be read via the function. */
    471 } QEMU_PACKED;
    472 typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn;
    473 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) +
    474                   offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
    475 
    476 struct NvdimmFuncGetLabelDataOut {
    477     /* the size of buffer filled by QEMU. */
    478     uint32_t len;
    479     uint32_t func_ret_status; /* return status code. */
    480     uint8_t out_buf[]; /* the data got via Get Namespace Label function. */
    481 } QEMU_PACKED;
    482 typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut;
    483 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > NVDIMM_DSM_MEMORY_SIZE);
    484 
    485 struct NvdimmFuncSetLabelDataIn {
    486     uint32_t offset; /* the offset in the namespace label data area. */
    487     uint32_t length; /* the size of data is to be written via the function. */
    488     uint8_t in_buf[]; /* the data written to label data area. */
    489 } QEMU_PACKED;
    490 typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn;
    491 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) +
    492                   offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
    493 
    494 struct NvdimmFuncReadFITIn {
    495     uint32_t offset; /* the offset into FIT buffer. */
    496 } QEMU_PACKED;
    497 typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn;
    498 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) +
    499                   offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
    500 
    501 struct NvdimmFuncReadFITOut {
    502     /* the size of buffer filled by QEMU. */
    503     uint32_t len;
    504     uint32_t func_ret_status; /* return status code. */
    505     uint8_t fit[]; /* the FIT data. */
    506 } QEMU_PACKED;
    507 typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut;
    508 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > NVDIMM_DSM_MEMORY_SIZE);
    509 
    510 static void
    511 nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr)
    512 {
    513     NvdimmDsmFunc0Out func0 = {
    514         .len = cpu_to_le32(sizeof(func0)),
    515         .supported_func = cpu_to_le32(supported_func),
    516     };
    517     cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0));
    518 }
    519 
    520 static void
    521 nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr)
    522 {
    523     NvdimmDsmFuncNoPayloadOut out = {
    524         .len = cpu_to_le32(sizeof(out)),
    525         .func_ret_status = cpu_to_le32(func_ret_status),
    526     };
    527     cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out));
    528 }
    529 
    530 #define NVDIMM_DSM_RET_STATUS_SUCCESS        0 /* Success */
    531 #define NVDIMM_DSM_RET_STATUS_UNSUPPORT      1 /* Not Supported */
    532 #define NVDIMM_DSM_RET_STATUS_NOMEMDEV       2 /* Non-Existing Memory Device */
    533 #define NVDIMM_DSM_RET_STATUS_INVALID        3 /* Invalid Input Parameters */
    534 #define NVDIMM_DSM_RET_STATUS_FIT_CHANGED    0x100 /* FIT Changed */
    535 
    536 #define NVDIMM_QEMU_RSVD_HANDLE_ROOT         0x10000
    537 
    538 /* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */
    539 static void nvdimm_dsm_func_read_fit(NVDIMMState *state, NvdimmDsmIn *in,
    540                                      hwaddr dsm_mem_addr)
    541 {
    542     NvdimmFitBuffer *fit_buf = &state->fit_buf;
    543     NvdimmFuncReadFITIn *read_fit;
    544     NvdimmFuncReadFITOut *read_fit_out;
    545     GArray *fit;
    546     uint32_t read_len = 0, func_ret_status;
    547     int size;
    548 
    549     read_fit = (NvdimmFuncReadFITIn *)in->arg3;
    550     read_fit->offset = le32_to_cpu(read_fit->offset);
    551 
    552     fit = fit_buf->fit;
    553 
    554     trace_acpi_nvdimm_read_fit(read_fit->offset, fit->len,
    555                                fit_buf->dirty ? "Yes" : "No");
    556 
    557     if (read_fit->offset > fit->len) {
    558         func_ret_status = NVDIMM_DSM_RET_STATUS_INVALID;
    559         goto exit;
    560     }
    561 
    562     /* It is the first time to read FIT. */
    563     if (!read_fit->offset) {
    564         fit_buf->dirty = false;
    565     } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */
    566         func_ret_status = NVDIMM_DSM_RET_STATUS_FIT_CHANGED;
    567         goto exit;
    568     }
    569 
    570     func_ret_status = NVDIMM_DSM_RET_STATUS_SUCCESS;
    571     read_len = MIN(fit->len - read_fit->offset,
    572                    NVDIMM_DSM_MEMORY_SIZE - sizeof(NvdimmFuncReadFITOut));
    573 
    574 exit:
    575     size = sizeof(NvdimmFuncReadFITOut) + read_len;
    576     read_fit_out = g_malloc(size);
    577 
    578     read_fit_out->len = cpu_to_le32(size);
    579     read_fit_out->func_ret_status = cpu_to_le32(func_ret_status);
    580     memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len);
    581 
    582     cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size);
    583 
    584     g_free(read_fit_out);
    585 }
    586 
    587 static void
    588 nvdimm_dsm_handle_reserved_root_method(NVDIMMState *state,
    589                                        NvdimmDsmIn *in, hwaddr dsm_mem_addr)
    590 {
    591     switch (in->function) {
    592     case 0x0:
    593         nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr);
    594         return;
    595     case 0x1 /* Read FIT */:
    596         nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr);
    597         return;
    598     }
    599 
    600     nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
    601 }
    602 
    603 static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
    604 {
    605     /*
    606      * function 0 is called to inquire which functions are supported by
    607      * OSPM
    608      */
    609     if (!in->function) {
    610         nvdimm_dsm_function0(0 /* No function supported other than
    611                                   function 0 */, dsm_mem_addr);
    612         return;
    613     }
    614 
    615     /* No function except function 0 is supported yet. */
    616     nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
    617 }
    618 
    619 /*
    620  * the max transfer size is the max size transferred by both a
    621  * 'Get Namespace Label Data' function and a 'Set Namespace Label Data'
    622  * function.
    623  */
    624 static uint32_t nvdimm_get_max_xfer_label_size(void)
    625 {
    626     uint32_t max_get_size, max_set_size, dsm_memory_size;
    627 
    628     dsm_memory_size = NVDIMM_DSM_MEMORY_SIZE;
    629 
    630     /*
    631      * the max data ACPI can read one time which is transferred by
    632      * the response of 'Get Namespace Label Data' function.
    633      */
    634     max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut);
    635 
    636     /*
    637      * the max data ACPI can write one time which is transferred by
    638      * 'Set Namespace Label Data' function.
    639      */
    640     max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) -
    641                    sizeof(NvdimmFuncSetLabelDataIn);
    642 
    643     return MIN(max_get_size, max_set_size);
    644 }
    645 
    646 /*
    647  * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4).
    648  *
    649  * It gets the size of Namespace Label data area and the max data size
    650  * that Get/Set Namespace Label Data functions can transfer.
    651  */
    652 static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr)
    653 {
    654     NvdimmFuncGetLabelSizeOut label_size_out = {
    655         .len = cpu_to_le32(sizeof(label_size_out)),
    656     };
    657     uint32_t label_size, mxfer;
    658 
    659     label_size = nvdimm->label_size;
    660     mxfer = nvdimm_get_max_xfer_label_size();
    661 
    662     trace_acpi_nvdimm_label_info(label_size, mxfer);
    663 
    664     label_size_out.func_ret_status = cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
    665     label_size_out.label_size = cpu_to_le32(label_size);
    666     label_size_out.max_xfer = cpu_to_le32(mxfer);
    667 
    668     cpu_physical_memory_write(dsm_mem_addr, &label_size_out,
    669                               sizeof(label_size_out));
    670 }
    671 
    672 static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm,
    673                                            uint32_t offset, uint32_t length)
    674 {
    675     uint32_t ret = NVDIMM_DSM_RET_STATUS_INVALID;
    676 
    677     if (offset + length < offset) {
    678         trace_acpi_nvdimm_label_overflow(offset, length);
    679         return ret;
    680     }
    681 
    682     if (nvdimm->label_size < offset + length) {
    683         trace_acpi_nvdimm_label_oversize(offset + length, nvdimm->label_size);
    684         return ret;
    685     }
    686 
    687     if (length > nvdimm_get_max_xfer_label_size()) {
    688         trace_acpi_nvdimm_label_xfer_exceed(length,
    689                                             nvdimm_get_max_xfer_label_size());
    690         return ret;
    691     }
    692 
    693     return NVDIMM_DSM_RET_STATUS_SUCCESS;
    694 }
    695 
    696 /*
    697  * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5).
    698  */
    699 static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
    700                                       hwaddr dsm_mem_addr)
    701 {
    702     NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
    703     NvdimmFuncGetLabelDataIn *get_label_data;
    704     NvdimmFuncGetLabelDataOut *get_label_data_out;
    705     uint32_t status;
    706     int size;
    707 
    708     get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3;
    709     get_label_data->offset = le32_to_cpu(get_label_data->offset);
    710     get_label_data->length = le32_to_cpu(get_label_data->length);
    711 
    712     trace_acpi_nvdimm_read_label(get_label_data->offset,
    713                                  get_label_data->length);
    714 
    715     status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset,
    716                                         get_label_data->length);
    717     if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
    718         nvdimm_dsm_no_payload(status, dsm_mem_addr);
    719         return;
    720     }
    721 
    722     size = sizeof(*get_label_data_out) + get_label_data->length;
    723     assert(size <= NVDIMM_DSM_MEMORY_SIZE);
    724     get_label_data_out = g_malloc(size);
    725 
    726     get_label_data_out->len = cpu_to_le32(size);
    727     get_label_data_out->func_ret_status =
    728                             cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
    729     nvc->read_label_data(nvdimm, get_label_data_out->out_buf,
    730                          get_label_data->length, get_label_data->offset);
    731 
    732     cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size);
    733     g_free(get_label_data_out);
    734 }
    735 
    736 /*
    737  * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6).
    738  */
    739 static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
    740                                       hwaddr dsm_mem_addr)
    741 {
    742     NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
    743     NvdimmFuncSetLabelDataIn *set_label_data;
    744     uint32_t status;
    745 
    746     set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3;
    747 
    748     set_label_data->offset = le32_to_cpu(set_label_data->offset);
    749     set_label_data->length = le32_to_cpu(set_label_data->length);
    750 
    751     trace_acpi_nvdimm_write_label(set_label_data->offset,
    752                                   set_label_data->length);
    753 
    754     status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset,
    755                                         set_label_data->length);
    756     if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
    757         nvdimm_dsm_no_payload(status, dsm_mem_addr);
    758         return;
    759     }
    760 
    761     assert(offsetof(NvdimmDsmIn, arg3) + sizeof(*set_label_data) +
    762                     set_label_data->length <= NVDIMM_DSM_MEMORY_SIZE);
    763 
    764     nvc->write_label_data(nvdimm, set_label_data->in_buf,
    765                           set_label_data->length, set_label_data->offset);
    766     nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_SUCCESS, dsm_mem_addr);
    767 }
    768 
    769 static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
    770 {
    771     NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle);
    772 
    773     /* See the comments in nvdimm_dsm_root(). */
    774     if (!in->function) {
    775         uint32_t supported_func = 0;
    776 
    777         if (nvdimm && nvdimm->label_size) {
    778             supported_func |= 0x1 /* Bit 0 indicates whether there is
    779                                      support for any functions other
    780                                      than function 0. */ |
    781                               1 << 4 /* Get Namespace Label Size */ |
    782                               1 << 5 /* Get Namespace Label Data */ |
    783                               1 << 6 /* Set Namespace Label Data */;
    784         }
    785         nvdimm_dsm_function0(supported_func, dsm_mem_addr);
    786         return;
    787     }
    788 
    789     if (!nvdimm) {
    790         nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_NOMEMDEV,
    791                               dsm_mem_addr);
    792         return;
    793     }
    794 
    795     /* Encode DSM function according to DSM Spec Rev1. */
    796     switch (in->function) {
    797     case 4 /* Get Namespace Label Size */:
    798         if (nvdimm->label_size) {
    799             nvdimm_dsm_label_size(nvdimm, dsm_mem_addr);
    800             return;
    801         }
    802         break;
    803     case 5 /* Get Namespace Label Data */:
    804         if (nvdimm->label_size) {
    805             nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr);
    806             return;
    807         }
    808         break;
    809     case 0x6 /* Set Namespace Label Data */:
    810         if (nvdimm->label_size) {
    811             nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr);
    812             return;
    813         }
    814         break;
    815     }
    816 
    817     nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
    818 }
    819 
    820 static uint64_t
    821 nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size)
    822 {
    823     trace_acpi_nvdimm_read_io_port();
    824     return 0;
    825 }
    826 
    827 static void
    828 nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
    829 {
    830     NVDIMMState *state = opaque;
    831     NvdimmDsmIn *in;
    832     hwaddr dsm_mem_addr = val;
    833 
    834     trace_acpi_nvdimm_dsm_mem_addr(dsm_mem_addr);
    835 
    836     /*
    837      * The DSM memory is mapped to guest address space so an evil guest
    838      * can change its content while we are doing DSM emulation. Avoid
    839      * this by copying DSM memory to QEMU local memory.
    840      */
    841     in = g_new(NvdimmDsmIn, 1);
    842     cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in));
    843 
    844     in->revision = le32_to_cpu(in->revision);
    845     in->function = le32_to_cpu(in->function);
    846     in->handle = le32_to_cpu(in->handle);
    847 
    848     trace_acpi_nvdimm_dsm_info(in->revision, in->handle, in->function);
    849 
    850     if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) {
    851         trace_acpi_nvdimm_invalid_revision(in->revision);
    852         nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
    853         goto exit;
    854     }
    855 
    856     if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) {
    857         nvdimm_dsm_handle_reserved_root_method(state, in, dsm_mem_addr);
    858         goto exit;
    859     }
    860 
    861      /* Handle 0 is reserved for NVDIMM Root Device. */
    862     if (!in->handle) {
    863         nvdimm_dsm_root(in, dsm_mem_addr);
    864         goto exit;
    865     }
    866 
    867     nvdimm_dsm_device(in, dsm_mem_addr);
    868 
    869 exit:
    870     g_free(in);
    871 }
    872 
    873 static const MemoryRegionOps nvdimm_dsm_ops = {
    874     .read = nvdimm_dsm_read,
    875     .write = nvdimm_dsm_write,
    876     .endianness = DEVICE_LITTLE_ENDIAN,
    877     .valid = {
    878         .min_access_size = 4,
    879         .max_access_size = 4,
    880     },
    881 };
    882 
    883 void nvdimm_acpi_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev)
    884 {
    885     if (dev->hotplugged) {
    886         acpi_send_event(DEVICE(hotplug_dev), ACPI_NVDIMM_HOTPLUG_STATUS);
    887     }
    888 }
    889 
    890 void nvdimm_init_acpi_state(NVDIMMState *state, MemoryRegion *io,
    891                             struct AcpiGenericAddress dsm_io,
    892                             FWCfgState *fw_cfg, Object *owner)
    893 {
    894     state->dsm_io = dsm_io;
    895     memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state,
    896                           "nvdimm-acpi-io", dsm_io.bit_width >> 3);
    897     memory_region_add_subregion(io, dsm_io.address, &state->io_mr);
    898 
    899     state->dsm_mem = g_array_new(false, true /* clear */, 1);
    900     acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn));
    901     fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data,
    902                     state->dsm_mem->len);
    903 
    904     nvdimm_init_fit_buffer(&state->fit_buf);
    905 }
    906 
    907 #define NVDIMM_COMMON_DSM       "NCAL"
    908 #define NVDIMM_ACPI_MEM_ADDR    "MEMA"
    909 
    910 #define NVDIMM_DSM_MEMORY       "NRAM"
    911 #define NVDIMM_DSM_IOPORT       "NPIO"
    912 
    913 #define NVDIMM_DSM_NOTIFY       "NTFI"
    914 #define NVDIMM_DSM_HANDLE       "HDLE"
    915 #define NVDIMM_DSM_REVISION     "REVS"
    916 #define NVDIMM_DSM_FUNCTION     "FUNC"
    917 #define NVDIMM_DSM_ARG3         "FARG"
    918 
    919 #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN"
    920 #define NVDIMM_DSM_OUT_BUF      "ODAT"
    921 
    922 #define NVDIMM_DSM_RFIT_STATUS  "RSTA"
    923 
    924 #define NVDIMM_QEMU_RSVD_UUID   "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62"
    925 #define NVDIMM_DEVICE_DSM_UUID  "4309AC30-0D11-11E4-9191-0800200C9A66"
    926 
    927 static void nvdimm_build_common_dsm(Aml *dev,
    928                                     NVDIMMState *nvdimm_state)
    929 {
    930     Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2;
    931     Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid;
    932     Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size;
    933     Aml *whilectx, *offset;
    934     uint8_t byte_list[1];
    935     AmlRegionSpace rs;
    936 
    937     method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED);
    938     uuid = aml_arg(0);
    939     function = aml_arg(2);
    940     handle = aml_arg(4);
    941     dsm_mem = aml_local(6);
    942     dsm_out_buf = aml_local(7);
    943 
    944     aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem));
    945 
    946     if (nvdimm_state->dsm_io.space_id == AML_AS_SYSTEM_IO) {
    947         rs = AML_SYSTEM_IO;
    948     } else {
    949         rs = AML_SYSTEM_MEMORY;
    950     }
    951 
    952     /* map DSM memory and IO into ACPI namespace. */
    953     aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, rs,
    954                aml_int(nvdimm_state->dsm_io.address),
    955                nvdimm_state->dsm_io.bit_width >> 3));
    956     aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY,
    957                AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn)));
    958 
    959     /*
    960      * DSM notifier:
    961      * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to
    962      *                    emulate the access.
    963      *
    964      * It is the IO port so that accessing them will cause VM-exit, the
    965      * control will be transferred to QEMU.
    966      */
    967     field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK,
    968                       AML_PRESERVE);
    969     aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY,
    970                nvdimm_state->dsm_io.bit_width));
    971     aml_append(method, field);
    972 
    973     /*
    974      * DSM input:
    975      * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call
    976      *                    happens on NVDIMM Root Device.
    977      * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call.
    978      * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call.
    979      * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package
    980      *                  containing function-specific arguments.
    981      *
    982      * They are RAM mapping on host so that these accesses never cause
    983      * VM-EXIT.
    984      */
    985     field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
    986                       AML_PRESERVE);
    987     aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE,
    988                sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE));
    989     aml_append(field, aml_named_field(NVDIMM_DSM_REVISION,
    990                sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE));
    991     aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION,
    992                sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE));
    993     aml_append(field, aml_named_field(NVDIMM_DSM_ARG3,
    994          (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE));
    995     aml_append(method, field);
    996 
    997     /*
    998      * DSM output:
    999      * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU.
   1000      * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result.
   1001      *
   1002      * Since the page is reused by both input and out, the input data
   1003      * will be lost after storing new result into ODAT so we should fetch
   1004      * all the input data before writing the result.
   1005      */
   1006     field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
   1007                       AML_PRESERVE);
   1008     aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE,
   1009                sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE));
   1010     aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF,
   1011        (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE));
   1012     aml_append(method, field);
   1013 
   1014     /*
   1015      * do not support any method if DSM memory address has not been
   1016      * patched.
   1017      */
   1018     unpatched = aml_equal(dsm_mem, aml_int(0x0));
   1019 
   1020     expected_uuid = aml_local(0);
   1021 
   1022     ifctx = aml_if(aml_equal(handle, aml_int(0x0)));
   1023     aml_append(ifctx, aml_store(
   1024                aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA")
   1025                /* UUID for NVDIMM Root Device */, expected_uuid));
   1026     aml_append(method, ifctx);
   1027     elsectx = aml_else();
   1028     ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)));
   1029     aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID
   1030                /* UUID for QEMU internal use */), expected_uuid));
   1031     aml_append(elsectx, ifctx);
   1032     elsectx2 = aml_else();
   1033     aml_append(elsectx2, aml_store(aml_touuid(NVDIMM_DEVICE_DSM_UUID)
   1034                /* UUID for NVDIMM Devices */, expected_uuid));
   1035     aml_append(elsectx, elsectx2);
   1036     aml_append(method, elsectx);
   1037 
   1038     uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid));
   1039 
   1040     unsupport = aml_if(aml_lor(unpatched, uuid_invalid));
   1041 
   1042     /*
   1043      * function 0 is called to inquire what functions are supported by
   1044      * OSPM
   1045      */
   1046     ifctx = aml_if(aml_equal(function, aml_int(0)));
   1047     byte_list[0] = 0 /* No function Supported */;
   1048     aml_append(ifctx, aml_return(aml_buffer(1, byte_list)));
   1049     aml_append(unsupport, ifctx);
   1050 
   1051     /* No function is supported yet. */
   1052     byte_list[0] = NVDIMM_DSM_RET_STATUS_UNSUPPORT;
   1053     aml_append(unsupport, aml_return(aml_buffer(1, byte_list)));
   1054     aml_append(method, unsupport);
   1055 
   1056     /*
   1057      * The HDLE indicates the DSM function is issued from which device,
   1058      * it reserves 0 for root device and is the handle for NVDIMM devices.
   1059      * See the comments in nvdimm_slot_to_handle().
   1060      */
   1061     aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE)));
   1062     aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION)));
   1063     aml_append(method, aml_store(function, aml_name(NVDIMM_DSM_FUNCTION)));
   1064 
   1065     /*
   1066      * The fourth parameter (Arg3) of _DSM is a package which contains
   1067      * a buffer, the layout of the buffer is specified by UUID (Arg0),
   1068      * Revision ID (Arg1) and Function Index (Arg2) which are documented
   1069      * in the DSM Spec.
   1070      */
   1071     pckg = aml_arg(3);
   1072     ifctx = aml_if(aml_land(aml_equal(aml_object_type(pckg),
   1073                    aml_int(4 /* Package */)) /* It is a Package? */,
   1074                    aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */));
   1075 
   1076     pckg_index = aml_local(2);
   1077     pckg_buf = aml_local(3);
   1078     aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index));
   1079     aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf));
   1080     aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3)));
   1081     aml_append(method, ifctx);
   1082 
   1083     /*
   1084      * tell QEMU about the real address of DSM memory, then QEMU
   1085      * gets the control and fills the result in DSM memory.
   1086      */
   1087     aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY)));
   1088 
   1089     dsm_out_buf_size = aml_local(1);
   1090     /* RLEN is not included in the payload returned to guest. */
   1091     aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE),
   1092                aml_int(4), dsm_out_buf_size));
   1093 
   1094     /*
   1095      * As per ACPI spec 6.3, Table 19-419 Object Conversion Rules, if
   1096      * the Buffer Field <= to the size of an Integer (in bits), it will
   1097      * be treated as an integer. Moreover, the integer size depends on
   1098      * DSDT tables revision number. If revision number is < 2, integer
   1099      * size is 32 bits, otherwise it is 64 bits.
   1100      * Because of this CreateField() canot be used if RLEN < Integer Size.
   1101      *
   1102      * Also please note that APCI ASL operator SizeOf() doesn't support
   1103      * Integer and there isn't any other way to figure out the Integer
   1104      * size. Hence we assume 8 byte as Integer size and if RLEN < 8 bytes,
   1105      * build dsm_out_buf byte by byte.
   1106      */
   1107     ifctx = aml_if(aml_lless(dsm_out_buf_size, aml_int(8)));
   1108     offset = aml_local(2);
   1109     aml_append(ifctx, aml_store(aml_int(0), offset));
   1110     aml_append(ifctx, aml_name_decl("TBUF", aml_buffer(1, NULL)));
   1111     aml_append(ifctx, aml_store(aml_buffer(0, NULL), dsm_out_buf));
   1112 
   1113     whilectx = aml_while(aml_lless(offset, dsm_out_buf_size));
   1114     /* Copy 1 byte at offset from ODAT to temporary buffer(TBUF). */
   1115     aml_append(whilectx, aml_store(aml_derefof(aml_index(
   1116                                    aml_name(NVDIMM_DSM_OUT_BUF), offset)),
   1117                                    aml_index(aml_name("TBUF"), aml_int(0))));
   1118     aml_append(whilectx, aml_concatenate(dsm_out_buf, aml_name("TBUF"),
   1119                                          dsm_out_buf));
   1120     aml_append(whilectx, aml_increment(offset));
   1121     aml_append(ifctx, whilectx);
   1122 
   1123     aml_append(ifctx, aml_return(dsm_out_buf));
   1124     aml_append(method, ifctx);
   1125 
   1126     /* If RLEN >= Integer size, just use CreateField() operator */
   1127     aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)),
   1128                                  dsm_out_buf_size));
   1129     aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF),
   1130                aml_int(0), dsm_out_buf_size, "OBUF"));
   1131     aml_append(method, aml_return(aml_name("OBUF")));
   1132 
   1133     aml_append(dev, method);
   1134 }
   1135 
   1136 static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle)
   1137 {
   1138     Aml *method;
   1139 
   1140     method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
   1141     aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0),
   1142                                   aml_arg(1), aml_arg(2), aml_arg(3),
   1143                                   aml_int(handle))));
   1144     aml_append(dev, method);
   1145 }
   1146 
   1147 static void nvdimm_build_fit(Aml *dev)
   1148 {
   1149     Aml *method, *pkg, *buf, *buf_size, *offset, *call_result;
   1150     Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit;
   1151 
   1152     buf = aml_local(0);
   1153     buf_size = aml_local(1);
   1154     fit = aml_local(2);
   1155 
   1156     aml_append(dev, aml_name_decl(NVDIMM_DSM_RFIT_STATUS, aml_int(0)));
   1157 
   1158     /* build helper function, RFIT. */
   1159     method = aml_method("RFIT", 1, AML_SERIALIZED);
   1160     aml_append(method, aml_name_decl("OFST", aml_int(0)));
   1161 
   1162     /* prepare input package. */
   1163     pkg = aml_package(1);
   1164     aml_append(method, aml_store(aml_arg(0), aml_name("OFST")));
   1165     aml_append(pkg, aml_name("OFST"));
   1166 
   1167     /* call Read_FIT function. */
   1168     call_result = aml_call5(NVDIMM_COMMON_DSM,
   1169                             aml_touuid(NVDIMM_QEMU_RSVD_UUID),
   1170                             aml_int(1) /* Revision 1 */,
   1171                             aml_int(0x1) /* Read FIT */,
   1172                             pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT));
   1173     aml_append(method, aml_store(call_result, buf));
   1174 
   1175     /* handle _DSM result. */
   1176     aml_append(method, aml_create_dword_field(buf,
   1177                aml_int(0) /* offset at byte 0 */, "STAU"));
   1178 
   1179     aml_append(method, aml_store(aml_name("STAU"),
   1180                                  aml_name(NVDIMM_DSM_RFIT_STATUS)));
   1181 
   1182      /* if something is wrong during _DSM. */
   1183     ifcond = aml_equal(aml_int(NVDIMM_DSM_RET_STATUS_SUCCESS),
   1184                        aml_name("STAU"));
   1185     ifctx = aml_if(aml_lnot(ifcond));
   1186     aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
   1187     aml_append(method, ifctx);
   1188 
   1189     aml_append(method, aml_store(aml_sizeof(buf), buf_size));
   1190     aml_append(method, aml_subtract(buf_size,
   1191                                     aml_int(4) /* the size of "STAU" */,
   1192                                     buf_size));
   1193 
   1194     /* if we read the end of fit. */
   1195     ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
   1196     aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
   1197     aml_append(method, ifctx);
   1198 
   1199     aml_append(method, aml_create_field(buf,
   1200                             aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/
   1201                             aml_shiftleft(buf_size, aml_int(3)), "BUFF"));
   1202     aml_append(method, aml_return(aml_name("BUFF")));
   1203     aml_append(dev, method);
   1204 
   1205     /* build _FIT. */
   1206     method = aml_method("_FIT", 0, AML_SERIALIZED);
   1207     offset = aml_local(3);
   1208 
   1209     aml_append(method, aml_store(aml_buffer(0, NULL), fit));
   1210     aml_append(method, aml_store(aml_int(0), offset));
   1211 
   1212     whilectx = aml_while(aml_int(1));
   1213     aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf));
   1214     aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size));
   1215 
   1216     /*
   1217      * if fit buffer was changed during RFIT, read from the beginning
   1218      * again.
   1219      */
   1220     ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS),
   1221                              aml_int(NVDIMM_DSM_RET_STATUS_FIT_CHANGED)));
   1222     aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit));
   1223     aml_append(ifctx, aml_store(aml_int(0), offset));
   1224     aml_append(whilectx, ifctx);
   1225 
   1226     elsectx = aml_else();
   1227 
   1228     /* finish fit read if no data is read out. */
   1229     ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
   1230     aml_append(ifctx, aml_return(fit));
   1231     aml_append(elsectx, ifctx);
   1232 
   1233     /* update the offset. */
   1234     aml_append(elsectx, aml_add(offset, buf_size, offset));
   1235     /* append the data we read out to the fit buffer. */
   1236     aml_append(elsectx, aml_concatenate(fit, buf, fit));
   1237     aml_append(whilectx, elsectx);
   1238     aml_append(method, whilectx);
   1239 
   1240     aml_append(dev, method);
   1241 }
   1242 
   1243 static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots)
   1244 {
   1245     uint32_t slot;
   1246     Aml *method, *pkg, *field, *com_call;
   1247 
   1248     for (slot = 0; slot < ram_slots; slot++) {
   1249         uint32_t handle = nvdimm_slot_to_handle(slot);
   1250         Aml *nvdimm_dev;
   1251 
   1252         nvdimm_dev = aml_device("NV%02X", slot);
   1253 
   1254         /*
   1255          * ACPI 6.0: 9.20 NVDIMM Devices:
   1256          *
   1257          * _ADR object that is used to supply OSPM with unique address
   1258          * of the NVDIMM device. This is done by returning the NFIT Device
   1259          * handle that is used to identify the associated entries in ACPI
   1260          * table NFIT or _FIT.
   1261          */
   1262         aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle)));
   1263 
   1264         /*
   1265          * ACPI v6.4: Section 6.5.10 NVDIMM Label Methods
   1266          */
   1267         /* _LSI */
   1268         method = aml_method("_LSI", 0, AML_SERIALIZED);
   1269         com_call = aml_call5(NVDIMM_COMMON_DSM,
   1270                             aml_touuid(NVDIMM_DEVICE_DSM_UUID),
   1271                             aml_int(1), aml_int(4), aml_int(0),
   1272                             aml_int(handle));
   1273         aml_append(method, aml_store(com_call, aml_local(0)));
   1274 
   1275         aml_append(method, aml_create_dword_field(aml_local(0),
   1276                                                   aml_int(0), "STTS"));
   1277         aml_append(method, aml_create_dword_field(aml_local(0), aml_int(4),
   1278                                                   "SLSA"));
   1279         aml_append(method, aml_create_dword_field(aml_local(0), aml_int(8),
   1280                                                   "MAXT"));
   1281 
   1282         pkg = aml_package(3);
   1283         aml_append(pkg, aml_name("STTS"));
   1284         aml_append(pkg, aml_name("SLSA"));
   1285         aml_append(pkg, aml_name("MAXT"));
   1286         aml_append(method, aml_store(pkg, aml_local(1)));
   1287         aml_append(method, aml_return(aml_local(1)));
   1288 
   1289         aml_append(nvdimm_dev, method);
   1290 
   1291         /* _LSR */
   1292         method = aml_method("_LSR", 2, AML_SERIALIZED);
   1293         aml_append(method, aml_name_decl("INPT", aml_buffer(8, NULL)));
   1294 
   1295         aml_append(method, aml_create_dword_field(aml_name("INPT"),
   1296                                                   aml_int(0), "OFST"));
   1297         aml_append(method, aml_create_dword_field(aml_name("INPT"),
   1298                                                   aml_int(4), "LEN"));
   1299         aml_append(method, aml_store(aml_arg(0), aml_name("OFST")));
   1300         aml_append(method, aml_store(aml_arg(1), aml_name("LEN")));
   1301 
   1302         pkg = aml_package(1);
   1303         aml_append(pkg, aml_name("INPT"));
   1304         aml_append(method, aml_store(pkg, aml_local(0)));
   1305 
   1306         com_call = aml_call5(NVDIMM_COMMON_DSM,
   1307                             aml_touuid(NVDIMM_DEVICE_DSM_UUID),
   1308                             aml_int(1), aml_int(5), aml_local(0),
   1309                             aml_int(handle));
   1310         aml_append(method, aml_store(com_call, aml_local(3)));
   1311         field = aml_create_dword_field(aml_local(3), aml_int(0), "STTS");
   1312         aml_append(method, field);
   1313         field = aml_create_field(aml_local(3), aml_int(32),
   1314                                  aml_shiftleft(aml_name("LEN"), aml_int(3)),
   1315                                  "LDAT");
   1316         aml_append(method, field);
   1317         aml_append(method, aml_name_decl("LSA", aml_buffer(0, NULL)));
   1318         aml_append(method, aml_to_buffer(aml_name("LDAT"), aml_name("LSA")));
   1319 
   1320         pkg = aml_package(2);
   1321         aml_append(pkg, aml_name("STTS"));
   1322         aml_append(pkg, aml_name("LSA"));
   1323 
   1324         aml_append(method, aml_store(pkg, aml_local(1)));
   1325         aml_append(method, aml_return(aml_local(1)));
   1326 
   1327         aml_append(nvdimm_dev, method);
   1328 
   1329         /* _LSW */
   1330         method = aml_method("_LSW", 3, AML_SERIALIZED);
   1331         aml_append(method, aml_store(aml_arg(2), aml_local(2)));
   1332         aml_append(method, aml_name_decl("INPT", aml_buffer(8, NULL)));
   1333         field = aml_create_dword_field(aml_name("INPT"),
   1334                                                   aml_int(0), "OFST");
   1335         aml_append(method, field);
   1336         field = aml_create_dword_field(aml_name("INPT"),
   1337                                                   aml_int(4), "TLEN");
   1338         aml_append(method, field);
   1339         aml_append(method, aml_store(aml_arg(0), aml_name("OFST")));
   1340         aml_append(method, aml_store(aml_arg(1), aml_name("TLEN")));
   1341 
   1342         aml_append(method, aml_concatenate(aml_name("INPT"), aml_local(2),
   1343                                             aml_name("INPT")));
   1344         pkg = aml_package(1);
   1345         aml_append(pkg, aml_name("INPT"));
   1346         aml_append(method, aml_store(pkg, aml_local(0)));
   1347         com_call = aml_call5(NVDIMM_COMMON_DSM,
   1348                             aml_touuid(NVDIMM_DEVICE_DSM_UUID),
   1349                             aml_int(1), aml_int(6), aml_local(0),
   1350                             aml_int(handle));
   1351         aml_append(method, aml_store(com_call, aml_local(3)));
   1352         field = aml_create_dword_field(aml_local(3), aml_int(0), "STTS");
   1353         aml_append(method, field);
   1354         aml_append(method, aml_return(aml_name("STTS")));
   1355 
   1356         aml_append(nvdimm_dev, method);
   1357 
   1358         nvdimm_build_device_dsm(nvdimm_dev, handle);
   1359         aml_append(root_dev, nvdimm_dev);
   1360     }
   1361 }
   1362 
   1363 static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data,
   1364                               BIOSLinker *linker,
   1365                               NVDIMMState *nvdimm_state,
   1366                               uint32_t ram_slots, const char *oem_id)
   1367 {
   1368     int mem_addr_offset;
   1369     Aml *ssdt, *sb_scope, *dev;
   1370     AcpiTable table = { .sig = "SSDT", .rev = 1,
   1371                         .oem_id = oem_id, .oem_table_id = "NVDIMM" };
   1372 
   1373     acpi_add_table(table_offsets, table_data);
   1374 
   1375     acpi_table_begin(&table, table_data);
   1376     ssdt = init_aml_allocator();
   1377     sb_scope = aml_scope("\\_SB");
   1378 
   1379     dev = aml_device("NVDR");
   1380 
   1381     /*
   1382      * ACPI 6.0: 9.20 NVDIMM Devices:
   1383      *
   1384      * The ACPI Name Space device uses _HID of ACPI0012 to identify the root
   1385      * NVDIMM interface device. Platform firmware is required to contain one
   1386      * such device in _SB scope if NVDIMMs support is exposed by platform to
   1387      * OSPM.
   1388      * For each NVDIMM present or intended to be supported by platform,
   1389      * platform firmware also exposes an ACPI Namespace Device under the
   1390      * root device.
   1391      */
   1392     aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012")));
   1393 
   1394     nvdimm_build_common_dsm(dev, nvdimm_state);
   1395 
   1396     /* 0 is reserved for root device. */
   1397     nvdimm_build_device_dsm(dev, 0);
   1398     nvdimm_build_fit(dev);
   1399 
   1400     nvdimm_build_nvdimm_devices(dev, ram_slots);
   1401 
   1402     aml_append(sb_scope, dev);
   1403     aml_append(ssdt, sb_scope);
   1404 
   1405     /* copy AML table into ACPI tables blob and patch header there */
   1406     g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len);
   1407     mem_addr_offset = build_append_named_dword(table_data,
   1408                                                NVDIMM_ACPI_MEM_ADDR);
   1409 
   1410     bios_linker_loader_alloc(linker,
   1411                              NVDIMM_DSM_MEM_FILE, nvdimm_state->dsm_mem,
   1412                              sizeof(NvdimmDsmIn), false /* high memory */);
   1413     bios_linker_loader_add_pointer(linker,
   1414         ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t),
   1415         NVDIMM_DSM_MEM_FILE, 0);
   1416     free_aml_allocator();
   1417     /*
   1418      * must be executed as the last so that pointer patching command above
   1419      * would be executed by guest before it recalculated checksum which were
   1420      * scheduled by acpi_table_end()
   1421      */
   1422     acpi_table_end(linker, &table);
   1423 }
   1424 
   1425 void nvdimm_build_srat(GArray *table_data)
   1426 {
   1427     GSList *device_list, *list = nvdimm_get_device_list();
   1428 
   1429     for (device_list = list; device_list; device_list = device_list->next) {
   1430         DeviceState *dev = device_list->data;
   1431         Object *obj = OBJECT(dev);
   1432         uint64_t addr, size;
   1433         int node;
   1434 
   1435         node = object_property_get_int(obj, PC_DIMM_NODE_PROP, &error_abort);
   1436         addr = object_property_get_uint(obj, PC_DIMM_ADDR_PROP, &error_abort);
   1437         size = object_property_get_uint(obj, PC_DIMM_SIZE_PROP, &error_abort);
   1438 
   1439         build_srat_memory(table_data, addr, size, node,
   1440                           MEM_AFFINITY_ENABLED | MEM_AFFINITY_NON_VOLATILE);
   1441     }
   1442     g_slist_free(list);
   1443 }
   1444 
   1445 void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data,
   1446                        BIOSLinker *linker, NVDIMMState *state,
   1447                        uint32_t ram_slots, const char *oem_id,
   1448                        const char *oem_table_id)
   1449 {
   1450     GSList *device_list;
   1451 
   1452     /* no nvdimm device can be plugged. */
   1453     if (!ram_slots) {
   1454         return;
   1455     }
   1456 
   1457     nvdimm_build_ssdt(table_offsets, table_data, linker, state,
   1458                       ram_slots, oem_id);
   1459 
   1460     device_list = nvdimm_get_device_list();
   1461     /* no NVDIMM device is plugged. */
   1462     if (!device_list) {
   1463         return;
   1464     }
   1465 
   1466     nvdimm_build_nfit(state, table_offsets, table_data, linker,
   1467                       oem_id, oem_table_id);
   1468     g_slist_free(device_list);
   1469 }