qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

dump.c (66675B)


      1 /*
      2  * QEMU dump
      3  *
      4  * Copyright Fujitsu, Corp. 2011, 2012
      5  *
      6  * Authors:
      7  *     Wen Congyang <wency@cn.fujitsu.com>
      8  *
      9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
     10  * See the COPYING file in the top-level directory.
     11  *
     12  */
     13 
     14 #include "qemu/osdep.h"
     15 #include "qemu/cutils.h"
     16 #include "elf.h"
     17 #include "exec/hwaddr.h"
     18 #include "monitor/monitor.h"
     19 #include "sysemu/kvm.h"
     20 #include "sysemu/dump.h"
     21 #include "sysemu/memory_mapping.h"
     22 #include "sysemu/runstate.h"
     23 #include "sysemu/cpus.h"
     24 #include "qapi/error.h"
     25 #include "qapi/qapi-commands-dump.h"
     26 #include "qapi/qapi-events-dump.h"
     27 #include "qapi/qmp/qerror.h"
     28 #include "qemu/error-report.h"
     29 #include "qemu/main-loop.h"
     30 #include "hw/misc/vmcoreinfo.h"
     31 #include "migration/blocker.h"
     32 
     33 #ifdef TARGET_X86_64
     34 #include "win_dump.h"
     35 #endif
     36 
     37 #include <zlib.h>
     38 #ifdef CONFIG_LZO
     39 #include <lzo/lzo1x.h>
     40 #endif
     41 #ifdef CONFIG_SNAPPY
     42 #include <snappy-c.h>
     43 #endif
     44 #ifndef ELF_MACHINE_UNAME
     45 #define ELF_MACHINE_UNAME "Unknown"
     46 #endif
     47 
     48 #define MAX_GUEST_NOTE_SIZE (1 << 20) /* 1MB should be enough */
     49 
     50 static Error *dump_migration_blocker;
     51 
     52 #define ELF_NOTE_SIZE(hdr_size, name_size, desc_size)   \
     53     ((DIV_ROUND_UP((hdr_size), 4) +                     \
     54       DIV_ROUND_UP((name_size), 4) +                    \
     55       DIV_ROUND_UP((desc_size), 4)) * 4)
     56 
     57 static inline bool dump_is_64bit(DumpState *s)
     58 {
     59     return s->dump_info.d_class == ELFCLASS64;
     60 }
     61 
     62 static inline bool dump_has_filter(DumpState *s)
     63 {
     64     return s->filter_area_length > 0;
     65 }
     66 
     67 uint16_t cpu_to_dump16(DumpState *s, uint16_t val)
     68 {
     69     if (s->dump_info.d_endian == ELFDATA2LSB) {
     70         val = cpu_to_le16(val);
     71     } else {
     72         val = cpu_to_be16(val);
     73     }
     74 
     75     return val;
     76 }
     77 
     78 uint32_t cpu_to_dump32(DumpState *s, uint32_t val)
     79 {
     80     if (s->dump_info.d_endian == ELFDATA2LSB) {
     81         val = cpu_to_le32(val);
     82     } else {
     83         val = cpu_to_be32(val);
     84     }
     85 
     86     return val;
     87 }
     88 
     89 uint64_t cpu_to_dump64(DumpState *s, uint64_t val)
     90 {
     91     if (s->dump_info.d_endian == ELFDATA2LSB) {
     92         val = cpu_to_le64(val);
     93     } else {
     94         val = cpu_to_be64(val);
     95     }
     96 
     97     return val;
     98 }
     99 
    100 static int dump_cleanup(DumpState *s)
    101 {
    102     guest_phys_blocks_free(&s->guest_phys_blocks);
    103     memory_mapping_list_free(&s->list);
    104     close(s->fd);
    105     g_free(s->guest_note);
    106     g_array_unref(s->string_table_buf);
    107     s->guest_note = NULL;
    108     if (s->resume) {
    109         if (s->detached) {
    110             qemu_mutex_lock_iothread();
    111         }
    112         vm_start();
    113         if (s->detached) {
    114             qemu_mutex_unlock_iothread();
    115         }
    116     }
    117     migrate_del_blocker(dump_migration_blocker);
    118 
    119     return 0;
    120 }
    121 
    122 static int fd_write_vmcore(const void *buf, size_t size, void *opaque)
    123 {
    124     DumpState *s = opaque;
    125     size_t written_size;
    126 
    127     written_size = qemu_write_full(s->fd, buf, size);
    128     if (written_size != size) {
    129         return -errno;
    130     }
    131 
    132     return 0;
    133 }
    134 
    135 static void prepare_elf64_header(DumpState *s, Elf64_Ehdr *elf_header)
    136 {
    137     /*
    138      * phnum in the elf header is 16 bit, if we have more segments we
    139      * set phnum to PN_XNUM and write the real number of segments to a
    140      * special section.
    141      */
    142     uint16_t phnum = MIN(s->phdr_num, PN_XNUM);
    143 
    144     memset(elf_header, 0, sizeof(Elf64_Ehdr));
    145     memcpy(elf_header, ELFMAG, SELFMAG);
    146     elf_header->e_ident[EI_CLASS] = ELFCLASS64;
    147     elf_header->e_ident[EI_DATA] = s->dump_info.d_endian;
    148     elf_header->e_ident[EI_VERSION] = EV_CURRENT;
    149     elf_header->e_type = cpu_to_dump16(s, ET_CORE);
    150     elf_header->e_machine = cpu_to_dump16(s, s->dump_info.d_machine);
    151     elf_header->e_version = cpu_to_dump32(s, EV_CURRENT);
    152     elf_header->e_ehsize = cpu_to_dump16(s, sizeof(elf_header));
    153     elf_header->e_phoff = cpu_to_dump64(s, s->phdr_offset);
    154     elf_header->e_phentsize = cpu_to_dump16(s, sizeof(Elf64_Phdr));
    155     elf_header->e_phnum = cpu_to_dump16(s, phnum);
    156     elf_header->e_shoff = cpu_to_dump64(s, s->shdr_offset);
    157     elf_header->e_shentsize = cpu_to_dump16(s, sizeof(Elf64_Shdr));
    158     elf_header->e_shnum = cpu_to_dump16(s, s->shdr_num);
    159     elf_header->e_shstrndx = cpu_to_dump16(s, s->shdr_num - 1);
    160 }
    161 
    162 static void prepare_elf32_header(DumpState *s, Elf32_Ehdr *elf_header)
    163 {
    164     /*
    165      * phnum in the elf header is 16 bit, if we have more segments we
    166      * set phnum to PN_XNUM and write the real number of segments to a
    167      * special section.
    168      */
    169     uint16_t phnum = MIN(s->phdr_num, PN_XNUM);
    170 
    171     memset(elf_header, 0, sizeof(Elf32_Ehdr));
    172     memcpy(elf_header, ELFMAG, SELFMAG);
    173     elf_header->e_ident[EI_CLASS] = ELFCLASS32;
    174     elf_header->e_ident[EI_DATA] = s->dump_info.d_endian;
    175     elf_header->e_ident[EI_VERSION] = EV_CURRENT;
    176     elf_header->e_type = cpu_to_dump16(s, ET_CORE);
    177     elf_header->e_machine = cpu_to_dump16(s, s->dump_info.d_machine);
    178     elf_header->e_version = cpu_to_dump32(s, EV_CURRENT);
    179     elf_header->e_ehsize = cpu_to_dump16(s, sizeof(elf_header));
    180     elf_header->e_phoff = cpu_to_dump32(s, s->phdr_offset);
    181     elf_header->e_phentsize = cpu_to_dump16(s, sizeof(Elf32_Phdr));
    182     elf_header->e_phnum = cpu_to_dump16(s, phnum);
    183     elf_header->e_shoff = cpu_to_dump32(s, s->shdr_offset);
    184     elf_header->e_shentsize = cpu_to_dump16(s, sizeof(Elf32_Shdr));
    185     elf_header->e_shnum = cpu_to_dump16(s, s->shdr_num);
    186     elf_header->e_shstrndx = cpu_to_dump16(s, s->shdr_num - 1);
    187 }
    188 
    189 static void write_elf_header(DumpState *s, Error **errp)
    190 {
    191     Elf32_Ehdr elf32_header;
    192     Elf64_Ehdr elf64_header;
    193     size_t header_size;
    194     void *header_ptr;
    195     int ret;
    196 
    197     /* The NULL header and the shstrtab are always defined */
    198     assert(s->shdr_num >= 2);
    199     if (dump_is_64bit(s)) {
    200         prepare_elf64_header(s, &elf64_header);
    201         header_size = sizeof(elf64_header);
    202         header_ptr = &elf64_header;
    203     } else {
    204         prepare_elf32_header(s, &elf32_header);
    205         header_size = sizeof(elf32_header);
    206         header_ptr = &elf32_header;
    207     }
    208 
    209     ret = fd_write_vmcore(header_ptr, header_size, s);
    210     if (ret < 0) {
    211         error_setg_errno(errp, -ret, "dump: failed to write elf header");
    212     }
    213 }
    214 
    215 static void write_elf64_load(DumpState *s, MemoryMapping *memory_mapping,
    216                              int phdr_index, hwaddr offset,
    217                              hwaddr filesz, Error **errp)
    218 {
    219     Elf64_Phdr phdr;
    220     int ret;
    221 
    222     memset(&phdr, 0, sizeof(Elf64_Phdr));
    223     phdr.p_type = cpu_to_dump32(s, PT_LOAD);
    224     phdr.p_offset = cpu_to_dump64(s, offset);
    225     phdr.p_paddr = cpu_to_dump64(s, memory_mapping->phys_addr);
    226     phdr.p_filesz = cpu_to_dump64(s, filesz);
    227     phdr.p_memsz = cpu_to_dump64(s, memory_mapping->length);
    228     phdr.p_vaddr = cpu_to_dump64(s, memory_mapping->virt_addr) ?: phdr.p_paddr;
    229 
    230     assert(memory_mapping->length >= filesz);
    231 
    232     ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s);
    233     if (ret < 0) {
    234         error_setg_errno(errp, -ret,
    235                          "dump: failed to write program header table");
    236     }
    237 }
    238 
    239 static void write_elf32_load(DumpState *s, MemoryMapping *memory_mapping,
    240                              int phdr_index, hwaddr offset,
    241                              hwaddr filesz, Error **errp)
    242 {
    243     Elf32_Phdr phdr;
    244     int ret;
    245 
    246     memset(&phdr, 0, sizeof(Elf32_Phdr));
    247     phdr.p_type = cpu_to_dump32(s, PT_LOAD);
    248     phdr.p_offset = cpu_to_dump32(s, offset);
    249     phdr.p_paddr = cpu_to_dump32(s, memory_mapping->phys_addr);
    250     phdr.p_filesz = cpu_to_dump32(s, filesz);
    251     phdr.p_memsz = cpu_to_dump32(s, memory_mapping->length);
    252     phdr.p_vaddr =
    253         cpu_to_dump32(s, memory_mapping->virt_addr) ?: phdr.p_paddr;
    254 
    255     assert(memory_mapping->length >= filesz);
    256 
    257     ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s);
    258     if (ret < 0) {
    259         error_setg_errno(errp, -ret,
    260                          "dump: failed to write program header table");
    261     }
    262 }
    263 
    264 static void prepare_elf64_phdr_note(DumpState *s, Elf64_Phdr *phdr)
    265 {
    266     memset(phdr, 0, sizeof(*phdr));
    267     phdr->p_type = cpu_to_dump32(s, PT_NOTE);
    268     phdr->p_offset = cpu_to_dump64(s, s->note_offset);
    269     phdr->p_paddr = 0;
    270     phdr->p_filesz = cpu_to_dump64(s, s->note_size);
    271     phdr->p_memsz = cpu_to_dump64(s, s->note_size);
    272     phdr->p_vaddr = 0;
    273 }
    274 
    275 static inline int cpu_index(CPUState *cpu)
    276 {
    277     return cpu->cpu_index + 1;
    278 }
    279 
    280 static void write_guest_note(WriteCoreDumpFunction f, DumpState *s,
    281                              Error **errp)
    282 {
    283     int ret;
    284 
    285     if (s->guest_note) {
    286         ret = f(s->guest_note, s->guest_note_size, s);
    287         if (ret < 0) {
    288             error_setg(errp, "dump: failed to write guest note");
    289         }
    290     }
    291 }
    292 
    293 static void write_elf64_notes(WriteCoreDumpFunction f, DumpState *s,
    294                               Error **errp)
    295 {
    296     CPUState *cpu;
    297     int ret;
    298     int id;
    299 
    300     CPU_FOREACH(cpu) {
    301         id = cpu_index(cpu);
    302         ret = cpu_write_elf64_note(f, cpu, id, s);
    303         if (ret < 0) {
    304             error_setg(errp, "dump: failed to write elf notes");
    305             return;
    306         }
    307     }
    308 
    309     CPU_FOREACH(cpu) {
    310         ret = cpu_write_elf64_qemunote(f, cpu, s);
    311         if (ret < 0) {
    312             error_setg(errp, "dump: failed to write CPU status");
    313             return;
    314         }
    315     }
    316 
    317     write_guest_note(f, s, errp);
    318 }
    319 
    320 static void prepare_elf32_phdr_note(DumpState *s, Elf32_Phdr *phdr)
    321 {
    322     memset(phdr, 0, sizeof(*phdr));
    323     phdr->p_type = cpu_to_dump32(s, PT_NOTE);
    324     phdr->p_offset = cpu_to_dump32(s, s->note_offset);
    325     phdr->p_paddr = 0;
    326     phdr->p_filesz = cpu_to_dump32(s, s->note_size);
    327     phdr->p_memsz = cpu_to_dump32(s, s->note_size);
    328     phdr->p_vaddr = 0;
    329 }
    330 
    331 static void write_elf32_notes(WriteCoreDumpFunction f, DumpState *s,
    332                               Error **errp)
    333 {
    334     CPUState *cpu;
    335     int ret;
    336     int id;
    337 
    338     CPU_FOREACH(cpu) {
    339         id = cpu_index(cpu);
    340         ret = cpu_write_elf32_note(f, cpu, id, s);
    341         if (ret < 0) {
    342             error_setg(errp, "dump: failed to write elf notes");
    343             return;
    344         }
    345     }
    346 
    347     CPU_FOREACH(cpu) {
    348         ret = cpu_write_elf32_qemunote(f, cpu, s);
    349         if (ret < 0) {
    350             error_setg(errp, "dump: failed to write CPU status");
    351             return;
    352         }
    353     }
    354 
    355     write_guest_note(f, s, errp);
    356 }
    357 
    358 static void write_elf_phdr_note(DumpState *s, Error **errp)
    359 {
    360     ERRP_GUARD();
    361     Elf32_Phdr phdr32;
    362     Elf64_Phdr phdr64;
    363     void *phdr;
    364     size_t size;
    365     int ret;
    366 
    367     if (dump_is_64bit(s)) {
    368         prepare_elf64_phdr_note(s, &phdr64);
    369         size = sizeof(phdr64);
    370         phdr = &phdr64;
    371     } else {
    372         prepare_elf32_phdr_note(s, &phdr32);
    373         size = sizeof(phdr32);
    374         phdr = &phdr32;
    375     }
    376 
    377     ret = fd_write_vmcore(phdr, size, s);
    378     if (ret < 0) {
    379         error_setg_errno(errp, -ret,
    380                          "dump: failed to write program header table");
    381     }
    382 }
    383 
    384 static void prepare_elf_section_hdr_zero(DumpState *s)
    385 {
    386     if (dump_is_64bit(s)) {
    387         Elf64_Shdr *shdr64 = s->elf_section_hdrs;
    388 
    389         shdr64->sh_info = cpu_to_dump32(s, s->phdr_num);
    390     } else {
    391         Elf32_Shdr *shdr32 = s->elf_section_hdrs;
    392 
    393         shdr32->sh_info = cpu_to_dump32(s, s->phdr_num);
    394     }
    395 }
    396 
    397 static void prepare_elf_section_hdr_string(DumpState *s, void *buff)
    398 {
    399     uint64_t index = s->string_table_buf->len;
    400     const char strtab[] = ".shstrtab";
    401     Elf32_Shdr shdr32 = {};
    402     Elf64_Shdr shdr64 = {};
    403     int shdr_size;
    404     void *shdr;
    405 
    406     g_array_append_vals(s->string_table_buf, strtab, sizeof(strtab));
    407     if (dump_is_64bit(s)) {
    408         shdr_size = sizeof(Elf64_Shdr);
    409         shdr64.sh_type = SHT_STRTAB;
    410         shdr64.sh_offset = s->section_offset + s->elf_section_data_size;
    411         shdr64.sh_name = index;
    412         shdr64.sh_size = s->string_table_buf->len;
    413         shdr = &shdr64;
    414     } else {
    415         shdr_size = sizeof(Elf32_Shdr);
    416         shdr32.sh_type = SHT_STRTAB;
    417         shdr32.sh_offset = s->section_offset + s->elf_section_data_size;
    418         shdr32.sh_name = index;
    419         shdr32.sh_size = s->string_table_buf->len;
    420         shdr = &shdr32;
    421     }
    422     memcpy(buff, shdr, shdr_size);
    423 }
    424 
    425 static bool prepare_elf_section_hdrs(DumpState *s, Error **errp)
    426 {
    427     size_t len, sizeof_shdr;
    428     void *buff_hdr;
    429 
    430     /*
    431      * Section ordering:
    432      * - HDR zero
    433      * - Arch section hdrs
    434      * - String table hdr
    435      */
    436     sizeof_shdr = dump_is_64bit(s) ? sizeof(Elf64_Shdr) : sizeof(Elf32_Shdr);
    437     len = sizeof_shdr * s->shdr_num;
    438     s->elf_section_hdrs = g_malloc0(len);
    439     buff_hdr = s->elf_section_hdrs;
    440 
    441     /*
    442      * The first section header is ALWAYS a special initial section
    443      * header.
    444      *
    445      * The header should be 0 with one exception being that if
    446      * phdr_num is PN_XNUM then the sh_info field contains the real
    447      * number of segment entries.
    448      *
    449      * As we zero allocate the buffer we will only need to modify
    450      * sh_info for the PN_XNUM case.
    451      */
    452     if (s->phdr_num >= PN_XNUM) {
    453         prepare_elf_section_hdr_zero(s);
    454     }
    455     buff_hdr += sizeof_shdr;
    456 
    457     /* Add architecture defined section headers */
    458     if (s->dump_info.arch_sections_write_hdr_fn
    459         && s->shdr_num > 2) {
    460         buff_hdr += s->dump_info.arch_sections_write_hdr_fn(s, buff_hdr);
    461 
    462         if (s->shdr_num >= SHN_LORESERVE) {
    463             error_setg_errno(errp, EINVAL,
    464                              "dump: too many architecture defined sections");
    465             return false;
    466         }
    467     }
    468 
    469     /*
    470      * String table is the last section since strings are added via
    471      * arch_sections_write_hdr().
    472      */
    473     prepare_elf_section_hdr_string(s, buff_hdr);
    474     return true;
    475 }
    476 
    477 static void write_elf_section_headers(DumpState *s, Error **errp)
    478 {
    479     size_t sizeof_shdr = dump_is_64bit(s) ? sizeof(Elf64_Shdr) : sizeof(Elf32_Shdr);
    480     int ret;
    481 
    482     if (!prepare_elf_section_hdrs(s, errp)) {
    483         return;
    484     }
    485 
    486     ret = fd_write_vmcore(s->elf_section_hdrs, s->shdr_num * sizeof_shdr, s);
    487     if (ret < 0) {
    488         error_setg_errno(errp, -ret, "dump: failed to write section headers");
    489     }
    490 
    491     g_free(s->elf_section_hdrs);
    492 }
    493 
    494 static void write_elf_sections(DumpState *s, Error **errp)
    495 {
    496     int ret;
    497 
    498     if (s->elf_section_data_size) {
    499         /* Write architecture section data */
    500         ret = fd_write_vmcore(s->elf_section_data,
    501                               s->elf_section_data_size, s);
    502         if (ret < 0) {
    503             error_setg_errno(errp, -ret,
    504                              "dump: failed to write architecture section data");
    505             return;
    506         }
    507     }
    508 
    509     /* Write string table */
    510     ret = fd_write_vmcore(s->string_table_buf->data,
    511                           s->string_table_buf->len, s);
    512     if (ret < 0) {
    513         error_setg_errno(errp, -ret, "dump: failed to write string table data");
    514     }
    515 }
    516 
    517 static void write_data(DumpState *s, void *buf, int length, Error **errp)
    518 {
    519     int ret;
    520 
    521     ret = fd_write_vmcore(buf, length, s);
    522     if (ret < 0) {
    523         error_setg_errno(errp, -ret, "dump: failed to save memory");
    524     } else {
    525         s->written_size += length;
    526     }
    527 }
    528 
    529 /* write the memory to vmcore. 1 page per I/O. */
    530 static void write_memory(DumpState *s, GuestPhysBlock *block, ram_addr_t start,
    531                          int64_t size, Error **errp)
    532 {
    533     ERRP_GUARD();
    534     int64_t i;
    535 
    536     for (i = 0; i < size / s->dump_info.page_size; i++) {
    537         write_data(s, block->host_addr + start + i * s->dump_info.page_size,
    538                    s->dump_info.page_size, errp);
    539         if (*errp) {
    540             return;
    541         }
    542     }
    543 
    544     if ((size % s->dump_info.page_size) != 0) {
    545         write_data(s, block->host_addr + start + i * s->dump_info.page_size,
    546                    size % s->dump_info.page_size, errp);
    547         if (*errp) {
    548             return;
    549         }
    550     }
    551 }
    552 
    553 /* get the memory's offset and size in the vmcore */
    554 static void get_offset_range(hwaddr phys_addr,
    555                              ram_addr_t mapping_length,
    556                              DumpState *s,
    557                              hwaddr *p_offset,
    558                              hwaddr *p_filesz)
    559 {
    560     GuestPhysBlock *block;
    561     hwaddr offset = s->memory_offset;
    562     int64_t size_in_block, start;
    563 
    564     /* When the memory is not stored into vmcore, offset will be -1 */
    565     *p_offset = -1;
    566     *p_filesz = 0;
    567 
    568     if (dump_has_filter(s)) {
    569         if (phys_addr < s->filter_area_begin ||
    570             phys_addr >= s->filter_area_begin + s->filter_area_length) {
    571             return;
    572         }
    573     }
    574 
    575     QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
    576         if (dump_has_filter(s)) {
    577             if (block->target_start >= s->filter_area_begin + s->filter_area_length ||
    578                 block->target_end <= s->filter_area_begin) {
    579                 /* This block is out of the range */
    580                 continue;
    581             }
    582 
    583             if (s->filter_area_begin <= block->target_start) {
    584                 start = block->target_start;
    585             } else {
    586                 start = s->filter_area_begin;
    587             }
    588 
    589             size_in_block = block->target_end - start;
    590             if (s->filter_area_begin + s->filter_area_length < block->target_end) {
    591                 size_in_block -= block->target_end - (s->filter_area_begin + s->filter_area_length);
    592             }
    593         } else {
    594             start = block->target_start;
    595             size_in_block = block->target_end - block->target_start;
    596         }
    597 
    598         if (phys_addr >= start && phys_addr < start + size_in_block) {
    599             *p_offset = phys_addr - start + offset;
    600 
    601             /* The offset range mapped from the vmcore file must not spill over
    602              * the GuestPhysBlock, clamp it. The rest of the mapping will be
    603              * zero-filled in memory at load time; see
    604              * <http://refspecs.linuxbase.org/elf/gabi4+/ch5.pheader.html>.
    605              */
    606             *p_filesz = phys_addr + mapping_length <= start + size_in_block ?
    607                         mapping_length :
    608                         size_in_block - (phys_addr - start);
    609             return;
    610         }
    611 
    612         offset += size_in_block;
    613     }
    614 }
    615 
    616 static void write_elf_phdr_loads(DumpState *s, Error **errp)
    617 {
    618     ERRP_GUARD();
    619     hwaddr offset, filesz;
    620     MemoryMapping *memory_mapping;
    621     uint32_t phdr_index = 1;
    622 
    623     QTAILQ_FOREACH(memory_mapping, &s->list.head, next) {
    624         get_offset_range(memory_mapping->phys_addr,
    625                          memory_mapping->length,
    626                          s, &offset, &filesz);
    627         if (dump_is_64bit(s)) {
    628             write_elf64_load(s, memory_mapping, phdr_index++, offset,
    629                              filesz, errp);
    630         } else {
    631             write_elf32_load(s, memory_mapping, phdr_index++, offset,
    632                              filesz, errp);
    633         }
    634 
    635         if (*errp) {
    636             return;
    637         }
    638 
    639         if (phdr_index >= s->phdr_num) {
    640             break;
    641         }
    642     }
    643 }
    644 
    645 static void write_elf_notes(DumpState *s, Error **errp)
    646 {
    647     if (dump_is_64bit(s)) {
    648         write_elf64_notes(fd_write_vmcore, s, errp);
    649     } else {
    650         write_elf32_notes(fd_write_vmcore, s, errp);
    651     }
    652 }
    653 
    654 /* write elf header, PT_NOTE and elf note to vmcore. */
    655 static void dump_begin(DumpState *s, Error **errp)
    656 {
    657     ERRP_GUARD();
    658 
    659     /*
    660      * the vmcore's format is:
    661      *   --------------
    662      *   |  elf header |
    663      *   --------------
    664      *   |  sctn_hdr   |
    665      *   --------------
    666      *   |  PT_NOTE    |
    667      *   --------------
    668      *   |  PT_LOAD    |
    669      *   --------------
    670      *   |  ......     |
    671      *   --------------
    672      *   |  PT_LOAD    |
    673      *   --------------
    674      *   |  elf note   |
    675      *   --------------
    676      *   |  memory     |
    677      *   --------------
    678      *
    679      * we only know where the memory is saved after we write elf note into
    680      * vmcore.
    681      */
    682 
    683     /* write elf header to vmcore */
    684     write_elf_header(s, errp);
    685     if (*errp) {
    686         return;
    687     }
    688 
    689     /* write section headers to vmcore */
    690     write_elf_section_headers(s, errp);
    691     if (*errp) {
    692         return;
    693     }
    694 
    695     /* write PT_NOTE to vmcore */
    696     write_elf_phdr_note(s, errp);
    697     if (*errp) {
    698         return;
    699     }
    700 
    701     /* write all PT_LOADs to vmcore */
    702     write_elf_phdr_loads(s, errp);
    703     if (*errp) {
    704         return;
    705     }
    706 
    707     /* write notes to vmcore */
    708     write_elf_notes(s, errp);
    709 }
    710 
    711 int64_t dump_filtered_memblock_size(GuestPhysBlock *block,
    712                                     int64_t filter_area_start,
    713                                     int64_t filter_area_length)
    714 {
    715     int64_t size, left, right;
    716 
    717     /* No filter, return full size */
    718     if (!filter_area_length) {
    719         return block->target_end - block->target_start;
    720     }
    721 
    722     /* calculate the overlapped region. */
    723     left = MAX(filter_area_start, block->target_start);
    724     right = MIN(filter_area_start + filter_area_length, block->target_end);
    725     size = right - left;
    726     size = size > 0 ? size : 0;
    727 
    728     return size;
    729 }
    730 
    731 int64_t dump_filtered_memblock_start(GuestPhysBlock *block,
    732                                      int64_t filter_area_start,
    733                                      int64_t filter_area_length)
    734 {
    735     if (filter_area_length) {
    736         /* return -1 if the block is not within filter area */
    737         if (block->target_start >= filter_area_start + filter_area_length ||
    738             block->target_end <= filter_area_start) {
    739             return -1;
    740         }
    741 
    742         if (filter_area_start > block->target_start) {
    743             return filter_area_start - block->target_start;
    744         }
    745     }
    746 
    747     return 0;
    748 }
    749 
    750 /* write all memory to vmcore */
    751 static void dump_iterate(DumpState *s, Error **errp)
    752 {
    753     ERRP_GUARD();
    754     GuestPhysBlock *block;
    755     int64_t memblock_size, memblock_start;
    756 
    757     QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
    758         memblock_start = dump_filtered_memblock_start(block, s->filter_area_begin, s->filter_area_length);
    759         if (memblock_start == -1) {
    760             continue;
    761         }
    762 
    763         memblock_size = dump_filtered_memblock_size(block, s->filter_area_begin, s->filter_area_length);
    764 
    765         /* Write the memory to file */
    766         write_memory(s, block, memblock_start, memblock_size, errp);
    767         if (*errp) {
    768             return;
    769         }
    770     }
    771 }
    772 
    773 static void dump_end(DumpState *s, Error **errp)
    774 {
    775     int rc;
    776     ERRP_GUARD();
    777 
    778     if (s->elf_section_data_size) {
    779         s->elf_section_data = g_malloc0(s->elf_section_data_size);
    780     }
    781 
    782     /* Adds the architecture defined section data to s->elf_section_data  */
    783     if (s->dump_info.arch_sections_write_fn &&
    784         s->elf_section_data_size) {
    785         rc = s->dump_info.arch_sections_write_fn(s, s->elf_section_data);
    786         if (rc) {
    787             error_setg_errno(errp, rc,
    788                              "dump: failed to get arch section data");
    789             g_free(s->elf_section_data);
    790             return;
    791         }
    792     }
    793 
    794     /* write sections to vmcore */
    795     write_elf_sections(s, errp);
    796 }
    797 
    798 static void create_vmcore(DumpState *s, Error **errp)
    799 {
    800     ERRP_GUARD();
    801 
    802     dump_begin(s, errp);
    803     if (*errp) {
    804         return;
    805     }
    806 
    807     /* Iterate over memory and dump it to file */
    808     dump_iterate(s, errp);
    809     if (*errp) {
    810         return;
    811     }
    812 
    813     /* Write the section data */
    814     dump_end(s, errp);
    815 }
    816 
    817 static int write_start_flat_header(int fd)
    818 {
    819     MakedumpfileHeader *mh;
    820     int ret = 0;
    821 
    822     QEMU_BUILD_BUG_ON(sizeof *mh > MAX_SIZE_MDF_HEADER);
    823     mh = g_malloc0(MAX_SIZE_MDF_HEADER);
    824 
    825     memcpy(mh->signature, MAKEDUMPFILE_SIGNATURE,
    826            MIN(sizeof mh->signature, sizeof MAKEDUMPFILE_SIGNATURE));
    827 
    828     mh->type = cpu_to_be64(TYPE_FLAT_HEADER);
    829     mh->version = cpu_to_be64(VERSION_FLAT_HEADER);
    830 
    831     size_t written_size;
    832     written_size = qemu_write_full(fd, mh, MAX_SIZE_MDF_HEADER);
    833     if (written_size != MAX_SIZE_MDF_HEADER) {
    834         ret = -1;
    835     }
    836 
    837     g_free(mh);
    838     return ret;
    839 }
    840 
    841 static int write_end_flat_header(int fd)
    842 {
    843     MakedumpfileDataHeader mdh;
    844 
    845     mdh.offset = END_FLAG_FLAT_HEADER;
    846     mdh.buf_size = END_FLAG_FLAT_HEADER;
    847 
    848     size_t written_size;
    849     written_size = qemu_write_full(fd, &mdh, sizeof(mdh));
    850     if (written_size != sizeof(mdh)) {
    851         return -1;
    852     }
    853 
    854     return 0;
    855 }
    856 
    857 static int write_buffer(int fd, off_t offset, const void *buf, size_t size)
    858 {
    859     size_t written_size;
    860     MakedumpfileDataHeader mdh;
    861 
    862     mdh.offset = cpu_to_be64(offset);
    863     mdh.buf_size = cpu_to_be64(size);
    864 
    865     written_size = qemu_write_full(fd, &mdh, sizeof(mdh));
    866     if (written_size != sizeof(mdh)) {
    867         return -1;
    868     }
    869 
    870     written_size = qemu_write_full(fd, buf, size);
    871     if (written_size != size) {
    872         return -1;
    873     }
    874 
    875     return 0;
    876 }
    877 
    878 static int buf_write_note(const void *buf, size_t size, void *opaque)
    879 {
    880     DumpState *s = opaque;
    881 
    882     /* note_buf is not enough */
    883     if (s->note_buf_offset + size > s->note_size) {
    884         return -1;
    885     }
    886 
    887     memcpy(s->note_buf + s->note_buf_offset, buf, size);
    888 
    889     s->note_buf_offset += size;
    890 
    891     return 0;
    892 }
    893 
    894 /*
    895  * This function retrieves various sizes from an elf header.
    896  *
    897  * @note has to be a valid ELF note. The return sizes are unmodified
    898  * (not padded or rounded up to be multiple of 4).
    899  */
    900 static void get_note_sizes(DumpState *s, const void *note,
    901                            uint64_t *note_head_size,
    902                            uint64_t *name_size,
    903                            uint64_t *desc_size)
    904 {
    905     uint64_t note_head_sz;
    906     uint64_t name_sz;
    907     uint64_t desc_sz;
    908 
    909     if (dump_is_64bit(s)) {
    910         const Elf64_Nhdr *hdr = note;
    911         note_head_sz = sizeof(Elf64_Nhdr);
    912         name_sz = tswap64(hdr->n_namesz);
    913         desc_sz = tswap64(hdr->n_descsz);
    914     } else {
    915         const Elf32_Nhdr *hdr = note;
    916         note_head_sz = sizeof(Elf32_Nhdr);
    917         name_sz = tswap32(hdr->n_namesz);
    918         desc_sz = tswap32(hdr->n_descsz);
    919     }
    920 
    921     if (note_head_size) {
    922         *note_head_size = note_head_sz;
    923     }
    924     if (name_size) {
    925         *name_size = name_sz;
    926     }
    927     if (desc_size) {
    928         *desc_size = desc_sz;
    929     }
    930 }
    931 
    932 static bool note_name_equal(DumpState *s,
    933                             const uint8_t *note, const char *name)
    934 {
    935     int len = strlen(name) + 1;
    936     uint64_t head_size, name_size;
    937 
    938     get_note_sizes(s, note, &head_size, &name_size, NULL);
    939     head_size = ROUND_UP(head_size, 4);
    940 
    941     return name_size == len && memcmp(note + head_size, name, len) == 0;
    942 }
    943 
    944 /* write common header, sub header and elf note to vmcore */
    945 static void create_header32(DumpState *s, Error **errp)
    946 {
    947     ERRP_GUARD();
    948     DiskDumpHeader32 *dh = NULL;
    949     KdumpSubHeader32 *kh = NULL;
    950     size_t size;
    951     uint32_t block_size;
    952     uint32_t sub_hdr_size;
    953     uint32_t bitmap_blocks;
    954     uint32_t status = 0;
    955     uint64_t offset_note;
    956 
    957     /* write common header, the version of kdump-compressed format is 6th */
    958     size = sizeof(DiskDumpHeader32);
    959     dh = g_malloc0(size);
    960 
    961     memcpy(dh->signature, KDUMP_SIGNATURE, SIG_LEN);
    962     dh->header_version = cpu_to_dump32(s, 6);
    963     block_size = s->dump_info.page_size;
    964     dh->block_size = cpu_to_dump32(s, block_size);
    965     sub_hdr_size = sizeof(struct KdumpSubHeader32) + s->note_size;
    966     sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size);
    967     dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size);
    968     /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */
    969     dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX));
    970     dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus);
    971     bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2;
    972     dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks);
    973     strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine));
    974 
    975     if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) {
    976         status |= DUMP_DH_COMPRESSED_ZLIB;
    977     }
    978 #ifdef CONFIG_LZO
    979     if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) {
    980         status |= DUMP_DH_COMPRESSED_LZO;
    981     }
    982 #endif
    983 #ifdef CONFIG_SNAPPY
    984     if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) {
    985         status |= DUMP_DH_COMPRESSED_SNAPPY;
    986     }
    987 #endif
    988     dh->status = cpu_to_dump32(s, status);
    989 
    990     if (write_buffer(s->fd, 0, dh, size) < 0) {
    991         error_setg(errp, "dump: failed to write disk dump header");
    992         goto out;
    993     }
    994 
    995     /* write sub header */
    996     size = sizeof(KdumpSubHeader32);
    997     kh = g_malloc0(size);
    998 
    999     /* 64bit max_mapnr_64 */
   1000     kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr);
   1001     kh->phys_base = cpu_to_dump32(s, s->dump_info.phys_base);
   1002     kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL);
   1003 
   1004     offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size;
   1005     if (s->guest_note &&
   1006         note_name_equal(s, s->guest_note, "VMCOREINFO")) {
   1007         uint64_t hsize, name_size, size_vmcoreinfo_desc, offset_vmcoreinfo;
   1008 
   1009         get_note_sizes(s, s->guest_note,
   1010                        &hsize, &name_size, &size_vmcoreinfo_desc);
   1011         offset_vmcoreinfo = offset_note + s->note_size - s->guest_note_size +
   1012             (DIV_ROUND_UP(hsize, 4) + DIV_ROUND_UP(name_size, 4)) * 4;
   1013         kh->offset_vmcoreinfo = cpu_to_dump64(s, offset_vmcoreinfo);
   1014         kh->size_vmcoreinfo = cpu_to_dump32(s, size_vmcoreinfo_desc);
   1015     }
   1016 
   1017     kh->offset_note = cpu_to_dump64(s, offset_note);
   1018     kh->note_size = cpu_to_dump32(s, s->note_size);
   1019 
   1020     if (write_buffer(s->fd, DISKDUMP_HEADER_BLOCKS *
   1021                      block_size, kh, size) < 0) {
   1022         error_setg(errp, "dump: failed to write kdump sub header");
   1023         goto out;
   1024     }
   1025 
   1026     /* write note */
   1027     s->note_buf = g_malloc0(s->note_size);
   1028     s->note_buf_offset = 0;
   1029 
   1030     /* use s->note_buf to store notes temporarily */
   1031     write_elf32_notes(buf_write_note, s, errp);
   1032     if (*errp) {
   1033         goto out;
   1034     }
   1035     if (write_buffer(s->fd, offset_note, s->note_buf,
   1036                      s->note_size) < 0) {
   1037         error_setg(errp, "dump: failed to write notes");
   1038         goto out;
   1039     }
   1040 
   1041     /* get offset of dump_bitmap */
   1042     s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) *
   1043                              block_size;
   1044 
   1045     /* get offset of page */
   1046     s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) *
   1047                      block_size;
   1048 
   1049 out:
   1050     g_free(dh);
   1051     g_free(kh);
   1052     g_free(s->note_buf);
   1053 }
   1054 
   1055 /* write common header, sub header and elf note to vmcore */
   1056 static void create_header64(DumpState *s, Error **errp)
   1057 {
   1058     ERRP_GUARD();
   1059     DiskDumpHeader64 *dh = NULL;
   1060     KdumpSubHeader64 *kh = NULL;
   1061     size_t size;
   1062     uint32_t block_size;
   1063     uint32_t sub_hdr_size;
   1064     uint32_t bitmap_blocks;
   1065     uint32_t status = 0;
   1066     uint64_t offset_note;
   1067 
   1068     /* write common header, the version of kdump-compressed format is 6th */
   1069     size = sizeof(DiskDumpHeader64);
   1070     dh = g_malloc0(size);
   1071 
   1072     memcpy(dh->signature, KDUMP_SIGNATURE, SIG_LEN);
   1073     dh->header_version = cpu_to_dump32(s, 6);
   1074     block_size = s->dump_info.page_size;
   1075     dh->block_size = cpu_to_dump32(s, block_size);
   1076     sub_hdr_size = sizeof(struct KdumpSubHeader64) + s->note_size;
   1077     sub_hdr_size = DIV_ROUND_UP(sub_hdr_size, block_size);
   1078     dh->sub_hdr_size = cpu_to_dump32(s, sub_hdr_size);
   1079     /* dh->max_mapnr may be truncated, full 64bit is in kh.max_mapnr_64 */
   1080     dh->max_mapnr = cpu_to_dump32(s, MIN(s->max_mapnr, UINT_MAX));
   1081     dh->nr_cpus = cpu_to_dump32(s, s->nr_cpus);
   1082     bitmap_blocks = DIV_ROUND_UP(s->len_dump_bitmap, block_size) * 2;
   1083     dh->bitmap_blocks = cpu_to_dump32(s, bitmap_blocks);
   1084     strncpy(dh->utsname.machine, ELF_MACHINE_UNAME, sizeof(dh->utsname.machine));
   1085 
   1086     if (s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) {
   1087         status |= DUMP_DH_COMPRESSED_ZLIB;
   1088     }
   1089 #ifdef CONFIG_LZO
   1090     if (s->flag_compress & DUMP_DH_COMPRESSED_LZO) {
   1091         status |= DUMP_DH_COMPRESSED_LZO;
   1092     }
   1093 #endif
   1094 #ifdef CONFIG_SNAPPY
   1095     if (s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) {
   1096         status |= DUMP_DH_COMPRESSED_SNAPPY;
   1097     }
   1098 #endif
   1099     dh->status = cpu_to_dump32(s, status);
   1100 
   1101     if (write_buffer(s->fd, 0, dh, size) < 0) {
   1102         error_setg(errp, "dump: failed to write disk dump header");
   1103         goto out;
   1104     }
   1105 
   1106     /* write sub header */
   1107     size = sizeof(KdumpSubHeader64);
   1108     kh = g_malloc0(size);
   1109 
   1110     /* 64bit max_mapnr_64 */
   1111     kh->max_mapnr_64 = cpu_to_dump64(s, s->max_mapnr);
   1112     kh->phys_base = cpu_to_dump64(s, s->dump_info.phys_base);
   1113     kh->dump_level = cpu_to_dump32(s, DUMP_LEVEL);
   1114 
   1115     offset_note = DISKDUMP_HEADER_BLOCKS * block_size + size;
   1116     if (s->guest_note &&
   1117         note_name_equal(s, s->guest_note, "VMCOREINFO")) {
   1118         uint64_t hsize, name_size, size_vmcoreinfo_desc, offset_vmcoreinfo;
   1119 
   1120         get_note_sizes(s, s->guest_note,
   1121                        &hsize, &name_size, &size_vmcoreinfo_desc);
   1122         offset_vmcoreinfo = offset_note + s->note_size - s->guest_note_size +
   1123             (DIV_ROUND_UP(hsize, 4) + DIV_ROUND_UP(name_size, 4)) * 4;
   1124         kh->offset_vmcoreinfo = cpu_to_dump64(s, offset_vmcoreinfo);
   1125         kh->size_vmcoreinfo = cpu_to_dump64(s, size_vmcoreinfo_desc);
   1126     }
   1127 
   1128     kh->offset_note = cpu_to_dump64(s, offset_note);
   1129     kh->note_size = cpu_to_dump64(s, s->note_size);
   1130 
   1131     if (write_buffer(s->fd, DISKDUMP_HEADER_BLOCKS *
   1132                      block_size, kh, size) < 0) {
   1133         error_setg(errp, "dump: failed to write kdump sub header");
   1134         goto out;
   1135     }
   1136 
   1137     /* write note */
   1138     s->note_buf = g_malloc0(s->note_size);
   1139     s->note_buf_offset = 0;
   1140 
   1141     /* use s->note_buf to store notes temporarily */
   1142     write_elf64_notes(buf_write_note, s, errp);
   1143     if (*errp) {
   1144         goto out;
   1145     }
   1146 
   1147     if (write_buffer(s->fd, offset_note, s->note_buf,
   1148                      s->note_size) < 0) {
   1149         error_setg(errp, "dump: failed to write notes");
   1150         goto out;
   1151     }
   1152 
   1153     /* get offset of dump_bitmap */
   1154     s->offset_dump_bitmap = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size) *
   1155                              block_size;
   1156 
   1157     /* get offset of page */
   1158     s->offset_page = (DISKDUMP_HEADER_BLOCKS + sub_hdr_size + bitmap_blocks) *
   1159                      block_size;
   1160 
   1161 out:
   1162     g_free(dh);
   1163     g_free(kh);
   1164     g_free(s->note_buf);
   1165 }
   1166 
   1167 static void write_dump_header(DumpState *s, Error **errp)
   1168 {
   1169     if (dump_is_64bit(s)) {
   1170         create_header64(s, errp);
   1171     } else {
   1172         create_header32(s, errp);
   1173     }
   1174 }
   1175 
   1176 static size_t dump_bitmap_get_bufsize(DumpState *s)
   1177 {
   1178     return s->dump_info.page_size;
   1179 }
   1180 
   1181 /*
   1182  * set dump_bitmap sequencely. the bit before last_pfn is not allowed to be
   1183  * rewritten, so if need to set the first bit, set last_pfn and pfn to 0.
   1184  * set_dump_bitmap will always leave the recently set bit un-sync. And setting
   1185  * (last bit + sizeof(buf) * 8) to 0 will do flushing the content in buf into
   1186  * vmcore, ie. synchronizing un-sync bit into vmcore.
   1187  */
   1188 static int set_dump_bitmap(uint64_t last_pfn, uint64_t pfn, bool value,
   1189                            uint8_t *buf, DumpState *s)
   1190 {
   1191     off_t old_offset, new_offset;
   1192     off_t offset_bitmap1, offset_bitmap2;
   1193     uint32_t byte, bit;
   1194     size_t bitmap_bufsize = dump_bitmap_get_bufsize(s);
   1195     size_t bits_per_buf = bitmap_bufsize * CHAR_BIT;
   1196 
   1197     /* should not set the previous place */
   1198     assert(last_pfn <= pfn);
   1199 
   1200     /*
   1201      * if the bit needed to be set is not cached in buf, flush the data in buf
   1202      * to vmcore firstly.
   1203      * making new_offset be bigger than old_offset can also sync remained data
   1204      * into vmcore.
   1205      */
   1206     old_offset = bitmap_bufsize * (last_pfn / bits_per_buf);
   1207     new_offset = bitmap_bufsize * (pfn / bits_per_buf);
   1208 
   1209     while (old_offset < new_offset) {
   1210         /* calculate the offset and write dump_bitmap */
   1211         offset_bitmap1 = s->offset_dump_bitmap + old_offset;
   1212         if (write_buffer(s->fd, offset_bitmap1, buf,
   1213                          bitmap_bufsize) < 0) {
   1214             return -1;
   1215         }
   1216 
   1217         /* dump level 1 is chosen, so 1st and 2nd bitmap are same */
   1218         offset_bitmap2 = s->offset_dump_bitmap + s->len_dump_bitmap +
   1219                          old_offset;
   1220         if (write_buffer(s->fd, offset_bitmap2, buf,
   1221                          bitmap_bufsize) < 0) {
   1222             return -1;
   1223         }
   1224 
   1225         memset(buf, 0, bitmap_bufsize);
   1226         old_offset += bitmap_bufsize;
   1227     }
   1228 
   1229     /* get the exact place of the bit in the buf, and set it */
   1230     byte = (pfn % bits_per_buf) / CHAR_BIT;
   1231     bit = (pfn % bits_per_buf) % CHAR_BIT;
   1232     if (value) {
   1233         buf[byte] |= 1u << bit;
   1234     } else {
   1235         buf[byte] &= ~(1u << bit);
   1236     }
   1237 
   1238     return 0;
   1239 }
   1240 
   1241 static uint64_t dump_paddr_to_pfn(DumpState *s, uint64_t addr)
   1242 {
   1243     int target_page_shift = ctz32(s->dump_info.page_size);
   1244 
   1245     return (addr >> target_page_shift) - ARCH_PFN_OFFSET;
   1246 }
   1247 
   1248 static uint64_t dump_pfn_to_paddr(DumpState *s, uint64_t pfn)
   1249 {
   1250     int target_page_shift = ctz32(s->dump_info.page_size);
   1251 
   1252     return (pfn + ARCH_PFN_OFFSET) << target_page_shift;
   1253 }
   1254 
   1255 /*
   1256  * Return the page frame number and the page content in *bufptr. bufptr can be
   1257  * NULL. If not NULL, *bufptr must contains a target page size of pre-allocated
   1258  * memory. This is not necessarily the memory returned.
   1259  */
   1260 static bool get_next_page(GuestPhysBlock **blockptr, uint64_t *pfnptr,
   1261                           uint8_t **bufptr, DumpState *s)
   1262 {
   1263     GuestPhysBlock *block = *blockptr;
   1264     uint32_t page_size = s->dump_info.page_size;
   1265     uint8_t *buf = NULL, *hbuf;
   1266     hwaddr addr;
   1267 
   1268     /* block == NULL means the start of the iteration */
   1269     if (!block) {
   1270         block = QTAILQ_FIRST(&s->guest_phys_blocks.head);
   1271         *blockptr = block;
   1272         addr = block->target_start;
   1273         *pfnptr = dump_paddr_to_pfn(s, addr);
   1274     } else {
   1275         *pfnptr += 1;
   1276         addr = dump_pfn_to_paddr(s, *pfnptr);
   1277     }
   1278     assert(block != NULL);
   1279 
   1280     while (1) {
   1281         if (addr >= block->target_start && addr < block->target_end) {
   1282             size_t n = MIN(block->target_end - addr, page_size - addr % page_size);
   1283             hbuf = block->host_addr + (addr - block->target_start);
   1284             if (!buf) {
   1285                 if (n == page_size) {
   1286                     /* this is a whole target page, go for it */
   1287                     assert(addr % page_size == 0);
   1288                     buf = hbuf;
   1289                     break;
   1290                 } else if (bufptr) {
   1291                     assert(*bufptr);
   1292                     buf = *bufptr;
   1293                     memset(buf, 0, page_size);
   1294                 } else {
   1295                     return true;
   1296                 }
   1297             }
   1298 
   1299             memcpy(buf + addr % page_size, hbuf, n);
   1300             addr += n;
   1301             if (addr % page_size == 0) {
   1302                 /* we filled up the page */
   1303                 break;
   1304             }
   1305         } else {
   1306             /* the next page is in the next block */
   1307             *blockptr = block = QTAILQ_NEXT(block, next);
   1308             if (!block) {
   1309                 break;
   1310             }
   1311 
   1312             addr = block->target_start;
   1313             /* are we still in the same page? */
   1314             if (dump_paddr_to_pfn(s, addr) != *pfnptr) {
   1315                 if (buf) {
   1316                     /* no, but we already filled something earlier, return it */
   1317                     break;
   1318                 } else {
   1319                     /* else continue from there */
   1320                     *pfnptr = dump_paddr_to_pfn(s, addr);
   1321                 }
   1322             }
   1323         }
   1324     }
   1325 
   1326     if (bufptr) {
   1327         *bufptr = buf;
   1328     }
   1329 
   1330     return buf != NULL;
   1331 }
   1332 
   1333 static void write_dump_bitmap(DumpState *s, Error **errp)
   1334 {
   1335     int ret = 0;
   1336     uint64_t last_pfn, pfn;
   1337     void *dump_bitmap_buf;
   1338     size_t num_dumpable;
   1339     GuestPhysBlock *block_iter = NULL;
   1340     size_t bitmap_bufsize = dump_bitmap_get_bufsize(s);
   1341     size_t bits_per_buf = bitmap_bufsize * CHAR_BIT;
   1342 
   1343     /* dump_bitmap_buf is used to store dump_bitmap temporarily */
   1344     dump_bitmap_buf = g_malloc0(bitmap_bufsize);
   1345 
   1346     num_dumpable = 0;
   1347     last_pfn = 0;
   1348 
   1349     /*
   1350      * exam memory page by page, and set the bit in dump_bitmap corresponded
   1351      * to the existing page.
   1352      */
   1353     while (get_next_page(&block_iter, &pfn, NULL, s)) {
   1354         ret = set_dump_bitmap(last_pfn, pfn, true, dump_bitmap_buf, s);
   1355         if (ret < 0) {
   1356             error_setg(errp, "dump: failed to set dump_bitmap");
   1357             goto out;
   1358         }
   1359 
   1360         last_pfn = pfn;
   1361         num_dumpable++;
   1362     }
   1363 
   1364     /*
   1365      * set_dump_bitmap will always leave the recently set bit un-sync. Here we
   1366      * set the remaining bits from last_pfn to the end of the bitmap buffer to
   1367      * 0. With those set, the un-sync bit will be synchronized into the vmcore.
   1368      */
   1369     if (num_dumpable > 0) {
   1370         ret = set_dump_bitmap(last_pfn, last_pfn + bits_per_buf, false,
   1371                               dump_bitmap_buf, s);
   1372         if (ret < 0) {
   1373             error_setg(errp, "dump: failed to sync dump_bitmap");
   1374             goto out;
   1375         }
   1376     }
   1377 
   1378     /* number of dumpable pages that will be dumped later */
   1379     s->num_dumpable = num_dumpable;
   1380 
   1381 out:
   1382     g_free(dump_bitmap_buf);
   1383 }
   1384 
   1385 static void prepare_data_cache(DataCache *data_cache, DumpState *s,
   1386                                off_t offset)
   1387 {
   1388     data_cache->fd = s->fd;
   1389     data_cache->data_size = 0;
   1390     data_cache->buf_size = 4 * dump_bitmap_get_bufsize(s);
   1391     data_cache->buf = g_malloc0(data_cache->buf_size);
   1392     data_cache->offset = offset;
   1393 }
   1394 
   1395 static int write_cache(DataCache *dc, const void *buf, size_t size,
   1396                        bool flag_sync)
   1397 {
   1398     /*
   1399      * dc->buf_size should not be less than size, otherwise dc will never be
   1400      * enough
   1401      */
   1402     assert(size <= dc->buf_size);
   1403 
   1404     /*
   1405      * if flag_sync is set, synchronize data in dc->buf into vmcore.
   1406      * otherwise check if the space is enough for caching data in buf, if not,
   1407      * write the data in dc->buf to dc->fd and reset dc->buf
   1408      */
   1409     if ((!flag_sync && dc->data_size + size > dc->buf_size) ||
   1410         (flag_sync && dc->data_size > 0)) {
   1411         if (write_buffer(dc->fd, dc->offset, dc->buf, dc->data_size) < 0) {
   1412             return -1;
   1413         }
   1414 
   1415         dc->offset += dc->data_size;
   1416         dc->data_size = 0;
   1417     }
   1418 
   1419     if (!flag_sync) {
   1420         memcpy(dc->buf + dc->data_size, buf, size);
   1421         dc->data_size += size;
   1422     }
   1423 
   1424     return 0;
   1425 }
   1426 
   1427 static void free_data_cache(DataCache *data_cache)
   1428 {
   1429     g_free(data_cache->buf);
   1430 }
   1431 
   1432 static size_t get_len_buf_out(size_t page_size, uint32_t flag_compress)
   1433 {
   1434     switch (flag_compress) {
   1435     case DUMP_DH_COMPRESSED_ZLIB:
   1436         return compressBound(page_size);
   1437 
   1438     case DUMP_DH_COMPRESSED_LZO:
   1439         /*
   1440          * LZO will expand incompressible data by a little amount. Please check
   1441          * the following URL to see the expansion calculation:
   1442          * http://www.oberhumer.com/opensource/lzo/lzofaq.php
   1443          */
   1444         return page_size + page_size / 16 + 64 + 3;
   1445 
   1446 #ifdef CONFIG_SNAPPY
   1447     case DUMP_DH_COMPRESSED_SNAPPY:
   1448         return snappy_max_compressed_length(page_size);
   1449 #endif
   1450     }
   1451     return 0;
   1452 }
   1453 
   1454 static void write_dump_pages(DumpState *s, Error **errp)
   1455 {
   1456     int ret = 0;
   1457     DataCache page_desc, page_data;
   1458     size_t len_buf_out, size_out;
   1459 #ifdef CONFIG_LZO
   1460     lzo_bytep wrkmem = NULL;
   1461 #endif
   1462     uint8_t *buf_out = NULL;
   1463     off_t offset_desc, offset_data;
   1464     PageDescriptor pd, pd_zero;
   1465     uint8_t *buf;
   1466     GuestPhysBlock *block_iter = NULL;
   1467     uint64_t pfn_iter;
   1468     g_autofree uint8_t *page = NULL;
   1469 
   1470     /* get offset of page_desc and page_data in dump file */
   1471     offset_desc = s->offset_page;
   1472     offset_data = offset_desc + sizeof(PageDescriptor) * s->num_dumpable;
   1473 
   1474     prepare_data_cache(&page_desc, s, offset_desc);
   1475     prepare_data_cache(&page_data, s, offset_data);
   1476 
   1477     /* prepare buffer to store compressed data */
   1478     len_buf_out = get_len_buf_out(s->dump_info.page_size, s->flag_compress);
   1479     assert(len_buf_out != 0);
   1480 
   1481 #ifdef CONFIG_LZO
   1482     wrkmem = g_malloc(LZO1X_1_MEM_COMPRESS);
   1483 #endif
   1484 
   1485     buf_out = g_malloc(len_buf_out);
   1486 
   1487     /*
   1488      * init zero page's page_desc and page_data, because every zero page
   1489      * uses the same page_data
   1490      */
   1491     pd_zero.size = cpu_to_dump32(s, s->dump_info.page_size);
   1492     pd_zero.flags = cpu_to_dump32(s, 0);
   1493     pd_zero.offset = cpu_to_dump64(s, offset_data);
   1494     pd_zero.page_flags = cpu_to_dump64(s, 0);
   1495     buf = g_malloc0(s->dump_info.page_size);
   1496     ret = write_cache(&page_data, buf, s->dump_info.page_size, false);
   1497     g_free(buf);
   1498     if (ret < 0) {
   1499         error_setg(errp, "dump: failed to write page data (zero page)");
   1500         goto out;
   1501     }
   1502 
   1503     offset_data += s->dump_info.page_size;
   1504     page = g_malloc(s->dump_info.page_size);
   1505 
   1506     /*
   1507      * dump memory to vmcore page by page. zero page will all be resided in the
   1508      * first page of page section
   1509      */
   1510     for (buf = page; get_next_page(&block_iter, &pfn_iter, &buf, s); buf = page) {
   1511         /* check zero page */
   1512         if (buffer_is_zero(buf, s->dump_info.page_size)) {
   1513             ret = write_cache(&page_desc, &pd_zero, sizeof(PageDescriptor),
   1514                               false);
   1515             if (ret < 0) {
   1516                 error_setg(errp, "dump: failed to write page desc");
   1517                 goto out;
   1518             }
   1519         } else {
   1520             /*
   1521              * not zero page, then:
   1522              * 1. compress the page
   1523              * 2. write the compressed page into the cache of page_data
   1524              * 3. get page desc of the compressed page and write it into the
   1525              *    cache of page_desc
   1526              *
   1527              * only one compression format will be used here, for
   1528              * s->flag_compress is set. But when compression fails to work,
   1529              * we fall back to save in plaintext.
   1530              */
   1531              size_out = len_buf_out;
   1532              if ((s->flag_compress & DUMP_DH_COMPRESSED_ZLIB) &&
   1533                     (compress2(buf_out, (uLongf *)&size_out, buf,
   1534                                s->dump_info.page_size, Z_BEST_SPEED) == Z_OK) &&
   1535                     (size_out < s->dump_info.page_size)) {
   1536                 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_ZLIB);
   1537                 pd.size  = cpu_to_dump32(s, size_out);
   1538 
   1539                 ret = write_cache(&page_data, buf_out, size_out, false);
   1540                 if (ret < 0) {
   1541                     error_setg(errp, "dump: failed to write page data");
   1542                     goto out;
   1543                 }
   1544 #ifdef CONFIG_LZO
   1545             } else if ((s->flag_compress & DUMP_DH_COMPRESSED_LZO) &&
   1546                     (lzo1x_1_compress(buf, s->dump_info.page_size, buf_out,
   1547                     (lzo_uint *)&size_out, wrkmem) == LZO_E_OK) &&
   1548                     (size_out < s->dump_info.page_size)) {
   1549                 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_LZO);
   1550                 pd.size  = cpu_to_dump32(s, size_out);
   1551 
   1552                 ret = write_cache(&page_data, buf_out, size_out, false);
   1553                 if (ret < 0) {
   1554                     error_setg(errp, "dump: failed to write page data");
   1555                     goto out;
   1556                 }
   1557 #endif
   1558 #ifdef CONFIG_SNAPPY
   1559             } else if ((s->flag_compress & DUMP_DH_COMPRESSED_SNAPPY) &&
   1560                     (snappy_compress((char *)buf, s->dump_info.page_size,
   1561                     (char *)buf_out, &size_out) == SNAPPY_OK) &&
   1562                     (size_out < s->dump_info.page_size)) {
   1563                 pd.flags = cpu_to_dump32(s, DUMP_DH_COMPRESSED_SNAPPY);
   1564                 pd.size  = cpu_to_dump32(s, size_out);
   1565 
   1566                 ret = write_cache(&page_data, buf_out, size_out, false);
   1567                 if (ret < 0) {
   1568                     error_setg(errp, "dump: failed to write page data");
   1569                     goto out;
   1570                 }
   1571 #endif
   1572             } else {
   1573                 /*
   1574                  * fall back to save in plaintext, size_out should be
   1575                  * assigned the target's page size
   1576                  */
   1577                 pd.flags = cpu_to_dump32(s, 0);
   1578                 size_out = s->dump_info.page_size;
   1579                 pd.size = cpu_to_dump32(s, size_out);
   1580 
   1581                 ret = write_cache(&page_data, buf,
   1582                                   s->dump_info.page_size, false);
   1583                 if (ret < 0) {
   1584                     error_setg(errp, "dump: failed to write page data");
   1585                     goto out;
   1586                 }
   1587             }
   1588 
   1589             /* get and write page desc here */
   1590             pd.page_flags = cpu_to_dump64(s, 0);
   1591             pd.offset = cpu_to_dump64(s, offset_data);
   1592             offset_data += size_out;
   1593 
   1594             ret = write_cache(&page_desc, &pd, sizeof(PageDescriptor), false);
   1595             if (ret < 0) {
   1596                 error_setg(errp, "dump: failed to write page desc");
   1597                 goto out;
   1598             }
   1599         }
   1600         s->written_size += s->dump_info.page_size;
   1601     }
   1602 
   1603     ret = write_cache(&page_desc, NULL, 0, true);
   1604     if (ret < 0) {
   1605         error_setg(errp, "dump: failed to sync cache for page_desc");
   1606         goto out;
   1607     }
   1608     ret = write_cache(&page_data, NULL, 0, true);
   1609     if (ret < 0) {
   1610         error_setg(errp, "dump: failed to sync cache for page_data");
   1611         goto out;
   1612     }
   1613 
   1614 out:
   1615     free_data_cache(&page_desc);
   1616     free_data_cache(&page_data);
   1617 
   1618 #ifdef CONFIG_LZO
   1619     g_free(wrkmem);
   1620 #endif
   1621 
   1622     g_free(buf_out);
   1623 }
   1624 
   1625 static void create_kdump_vmcore(DumpState *s, Error **errp)
   1626 {
   1627     ERRP_GUARD();
   1628     int ret;
   1629 
   1630     /*
   1631      * the kdump-compressed format is:
   1632      *                                               File offset
   1633      *  +------------------------------------------+ 0x0
   1634      *  |    main header (struct disk_dump_header) |
   1635      *  |------------------------------------------+ block 1
   1636      *  |    sub header (struct kdump_sub_header)  |
   1637      *  |------------------------------------------+ block 2
   1638      *  |            1st-dump_bitmap               |
   1639      *  |------------------------------------------+ block 2 + X blocks
   1640      *  |            2nd-dump_bitmap               | (aligned by block)
   1641      *  |------------------------------------------+ block 2 + 2 * X blocks
   1642      *  |  page desc for pfn 0 (struct page_desc)  | (aligned by block)
   1643      *  |  page desc for pfn 1 (struct page_desc)  |
   1644      *  |                    :                     |
   1645      *  |------------------------------------------| (not aligned by block)
   1646      *  |         page data (pfn 0)                |
   1647      *  |         page data (pfn 1)                |
   1648      *  |                    :                     |
   1649      *  +------------------------------------------+
   1650      */
   1651 
   1652     ret = write_start_flat_header(s->fd);
   1653     if (ret < 0) {
   1654         error_setg(errp, "dump: failed to write start flat header");
   1655         return;
   1656     }
   1657 
   1658     write_dump_header(s, errp);
   1659     if (*errp) {
   1660         return;
   1661     }
   1662 
   1663     write_dump_bitmap(s, errp);
   1664     if (*errp) {
   1665         return;
   1666     }
   1667 
   1668     write_dump_pages(s, errp);
   1669     if (*errp) {
   1670         return;
   1671     }
   1672 
   1673     ret = write_end_flat_header(s->fd);
   1674     if (ret < 0) {
   1675         error_setg(errp, "dump: failed to write end flat header");
   1676         return;
   1677     }
   1678 }
   1679 
   1680 static int validate_start_block(DumpState *s)
   1681 {
   1682     GuestPhysBlock *block;
   1683 
   1684     if (!dump_has_filter(s)) {
   1685         return 0;
   1686     }
   1687 
   1688     QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
   1689         /* This block is out of the range */
   1690         if (block->target_start >= s->filter_area_begin + s->filter_area_length ||
   1691             block->target_end <= s->filter_area_begin) {
   1692             continue;
   1693         }
   1694         return 0;
   1695    }
   1696 
   1697     return -1;
   1698 }
   1699 
   1700 static void get_max_mapnr(DumpState *s)
   1701 {
   1702     GuestPhysBlock *last_block;
   1703 
   1704     last_block = QTAILQ_LAST(&s->guest_phys_blocks.head);
   1705     s->max_mapnr = dump_paddr_to_pfn(s, last_block->target_end);
   1706 }
   1707 
   1708 static DumpState dump_state_global = { .status = DUMP_STATUS_NONE };
   1709 
   1710 static void dump_state_prepare(DumpState *s)
   1711 {
   1712     /* zero the struct, setting status to active */
   1713     *s = (DumpState) { .status = DUMP_STATUS_ACTIVE };
   1714 }
   1715 
   1716 bool qemu_system_dump_in_progress(void)
   1717 {
   1718     DumpState *state = &dump_state_global;
   1719     return (qatomic_read(&state->status) == DUMP_STATUS_ACTIVE);
   1720 }
   1721 
   1722 /*
   1723  * calculate total size of memory to be dumped (taking filter into
   1724  * account.)
   1725  */
   1726 static int64_t dump_calculate_size(DumpState *s)
   1727 {
   1728     GuestPhysBlock *block;
   1729     int64_t total = 0;
   1730 
   1731     QTAILQ_FOREACH(block, &s->guest_phys_blocks.head, next) {
   1732         total += dump_filtered_memblock_size(block,
   1733                                              s->filter_area_begin,
   1734                                              s->filter_area_length);
   1735     }
   1736 
   1737     return total;
   1738 }
   1739 
   1740 static void vmcoreinfo_update_phys_base(DumpState *s)
   1741 {
   1742     uint64_t size, note_head_size, name_size, phys_base;
   1743     char **lines;
   1744     uint8_t *vmci;
   1745     size_t i;
   1746 
   1747     if (!note_name_equal(s, s->guest_note, "VMCOREINFO")) {
   1748         return;
   1749     }
   1750 
   1751     get_note_sizes(s, s->guest_note, &note_head_size, &name_size, &size);
   1752     note_head_size = ROUND_UP(note_head_size, 4);
   1753 
   1754     vmci = s->guest_note + note_head_size + ROUND_UP(name_size, 4);
   1755     *(vmci + size) = '\0';
   1756 
   1757     lines = g_strsplit((char *)vmci, "\n", -1);
   1758     for (i = 0; lines[i]; i++) {
   1759         const char *prefix = NULL;
   1760 
   1761         if (s->dump_info.d_machine == EM_X86_64) {
   1762             prefix = "NUMBER(phys_base)=";
   1763         } else if (s->dump_info.d_machine == EM_AARCH64) {
   1764             prefix = "NUMBER(PHYS_OFFSET)=";
   1765         }
   1766 
   1767         if (prefix && g_str_has_prefix(lines[i], prefix)) {
   1768             if (qemu_strtou64(lines[i] + strlen(prefix), NULL, 16,
   1769                               &phys_base) < 0) {
   1770                 warn_report("Failed to read %s", prefix);
   1771             } else {
   1772                 s->dump_info.phys_base = phys_base;
   1773             }
   1774             break;
   1775         }
   1776     }
   1777 
   1778     g_strfreev(lines);
   1779 }
   1780 
   1781 static void dump_init(DumpState *s, int fd, bool has_format,
   1782                       DumpGuestMemoryFormat format, bool paging, bool has_filter,
   1783                       int64_t begin, int64_t length, Error **errp)
   1784 {
   1785     ERRP_GUARD();
   1786     VMCoreInfoState *vmci = vmcoreinfo_find();
   1787     CPUState *cpu;
   1788     int nr_cpus;
   1789     int ret;
   1790 
   1791     s->has_format = has_format;
   1792     s->format = format;
   1793     s->written_size = 0;
   1794 
   1795     /* kdump-compressed is conflict with paging and filter */
   1796     if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
   1797         assert(!paging && !has_filter);
   1798     }
   1799 
   1800     if (runstate_is_running()) {
   1801         vm_stop(RUN_STATE_SAVE_VM);
   1802         s->resume = true;
   1803     } else {
   1804         s->resume = false;
   1805     }
   1806 
   1807     /* If we use KVM, we should synchronize the registers before we get dump
   1808      * info or physmap info.
   1809      */
   1810     cpu_synchronize_all_states();
   1811     nr_cpus = 0;
   1812     CPU_FOREACH(cpu) {
   1813         nr_cpus++;
   1814     }
   1815 
   1816     s->fd = fd;
   1817     if (has_filter && !length) {
   1818         error_setg(errp, QERR_INVALID_PARAMETER, "length");
   1819         goto cleanup;
   1820     }
   1821     s->filter_area_begin = begin;
   1822     s->filter_area_length = length;
   1823 
   1824     /* First index is 0, it's the special null name */
   1825     s->string_table_buf = g_array_new(FALSE, TRUE, 1);
   1826     /*
   1827      * Allocate the null name, due to the clearing option set to true
   1828      * it will be 0.
   1829      */
   1830     g_array_set_size(s->string_table_buf, 1);
   1831 
   1832     memory_mapping_list_init(&s->list);
   1833 
   1834     guest_phys_blocks_init(&s->guest_phys_blocks);
   1835     guest_phys_blocks_append(&s->guest_phys_blocks);
   1836     s->total_size = dump_calculate_size(s);
   1837 #ifdef DEBUG_DUMP_GUEST_MEMORY
   1838     fprintf(stderr, "DUMP: total memory to dump: %lu\n", s->total_size);
   1839 #endif
   1840 
   1841     /* it does not make sense to dump non-existent memory */
   1842     if (!s->total_size) {
   1843         error_setg(errp, "dump: no guest memory to dump");
   1844         goto cleanup;
   1845     }
   1846 
   1847     /* Is the filter filtering everything? */
   1848     if (validate_start_block(s) == -1) {
   1849         error_setg(errp, QERR_INVALID_PARAMETER, "begin");
   1850         goto cleanup;
   1851     }
   1852 
   1853     /* get dump info: endian, class and architecture.
   1854      * If the target architecture is not supported, cpu_get_dump_info() will
   1855      * return -1.
   1856      */
   1857     ret = cpu_get_dump_info(&s->dump_info, &s->guest_phys_blocks);
   1858     if (ret < 0) {
   1859         error_setg(errp, QERR_UNSUPPORTED);
   1860         goto cleanup;
   1861     }
   1862 
   1863     if (!s->dump_info.page_size) {
   1864         s->dump_info.page_size = TARGET_PAGE_SIZE;
   1865     }
   1866 
   1867     s->note_size = cpu_get_note_size(s->dump_info.d_class,
   1868                                      s->dump_info.d_machine, nr_cpus);
   1869     if (s->note_size < 0) {
   1870         error_setg(errp, QERR_UNSUPPORTED);
   1871         goto cleanup;
   1872     }
   1873 
   1874     /*
   1875      * The goal of this block is to (a) update the previously guessed
   1876      * phys_base, (b) copy the guest note out of the guest.
   1877      * Failure to do so is not fatal for dumping.
   1878      */
   1879     if (vmci) {
   1880         uint64_t addr, note_head_size, name_size, desc_size;
   1881         uint32_t size;
   1882         uint16_t format;
   1883 
   1884         note_head_size = dump_is_64bit(s) ?
   1885             sizeof(Elf64_Nhdr) : sizeof(Elf32_Nhdr);
   1886 
   1887         format = le16_to_cpu(vmci->vmcoreinfo.guest_format);
   1888         size = le32_to_cpu(vmci->vmcoreinfo.size);
   1889         addr = le64_to_cpu(vmci->vmcoreinfo.paddr);
   1890         if (!vmci->has_vmcoreinfo) {
   1891             warn_report("guest note is not present");
   1892         } else if (size < note_head_size || size > MAX_GUEST_NOTE_SIZE) {
   1893             warn_report("guest note size is invalid: %" PRIu32, size);
   1894         } else if (format != FW_CFG_VMCOREINFO_FORMAT_ELF) {
   1895             warn_report("guest note format is unsupported: %" PRIu16, format);
   1896         } else {
   1897             s->guest_note = g_malloc(size + 1); /* +1 for adding \0 */
   1898             cpu_physical_memory_read(addr, s->guest_note, size);
   1899 
   1900             get_note_sizes(s, s->guest_note, NULL, &name_size, &desc_size);
   1901             s->guest_note_size = ELF_NOTE_SIZE(note_head_size, name_size,
   1902                                                desc_size);
   1903             if (name_size > MAX_GUEST_NOTE_SIZE ||
   1904                 desc_size > MAX_GUEST_NOTE_SIZE ||
   1905                 s->guest_note_size > size) {
   1906                 warn_report("Invalid guest note header");
   1907                 g_free(s->guest_note);
   1908                 s->guest_note = NULL;
   1909             } else {
   1910                 vmcoreinfo_update_phys_base(s);
   1911                 s->note_size += s->guest_note_size;
   1912             }
   1913         }
   1914     }
   1915 
   1916     /* get memory mapping */
   1917     if (paging) {
   1918         qemu_get_guest_memory_mapping(&s->list, &s->guest_phys_blocks, errp);
   1919         if (*errp) {
   1920             goto cleanup;
   1921         }
   1922     } else {
   1923         qemu_get_guest_simple_memory_mapping(&s->list, &s->guest_phys_blocks);
   1924     }
   1925 
   1926     s->nr_cpus = nr_cpus;
   1927 
   1928     get_max_mapnr(s);
   1929 
   1930     uint64_t tmp;
   1931     tmp = DIV_ROUND_UP(DIV_ROUND_UP(s->max_mapnr, CHAR_BIT),
   1932                        s->dump_info.page_size);
   1933     s->len_dump_bitmap = tmp * s->dump_info.page_size;
   1934 
   1935     /* init for kdump-compressed format */
   1936     if (has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
   1937         switch (format) {
   1938         case DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB:
   1939             s->flag_compress = DUMP_DH_COMPRESSED_ZLIB;
   1940             break;
   1941 
   1942         case DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO:
   1943 #ifdef CONFIG_LZO
   1944             if (lzo_init() != LZO_E_OK) {
   1945                 error_setg(errp, "failed to initialize the LZO library");
   1946                 goto cleanup;
   1947             }
   1948 #endif
   1949             s->flag_compress = DUMP_DH_COMPRESSED_LZO;
   1950             break;
   1951 
   1952         case DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY:
   1953             s->flag_compress = DUMP_DH_COMPRESSED_SNAPPY;
   1954             break;
   1955 
   1956         default:
   1957             s->flag_compress = 0;
   1958         }
   1959 
   1960         return;
   1961     }
   1962 
   1963     if (dump_has_filter(s)) {
   1964         memory_mapping_filter(&s->list, s->filter_area_begin, s->filter_area_length);
   1965     }
   1966 
   1967     /*
   1968      * The first section header is always a special one in which most
   1969      * fields are 0. The section header string table is also always
   1970      * set.
   1971      */
   1972     s->shdr_num = 2;
   1973 
   1974     /*
   1975      * Adds the number of architecture sections to shdr_num and sets
   1976      * elf_section_data_size so we know the offsets and sizes of all
   1977      * parts.
   1978      */
   1979     if (s->dump_info.arch_sections_add_fn) {
   1980         s->dump_info.arch_sections_add_fn(s);
   1981     }
   1982 
   1983     /*
   1984      * calculate shdr_num so we know the offsets and sizes of all
   1985      * parts.
   1986      * Calculate phdr_num
   1987      *
   1988      * The absolute maximum amount of phdrs is UINT32_MAX - 1 as
   1989      * sh_info is 32 bit. There's special handling once we go over
   1990      * UINT16_MAX - 1 but that is handled in the ehdr and section
   1991      * code.
   1992      */
   1993     s->phdr_num = 1; /* Reserve PT_NOTE */
   1994     if (s->list.num <= UINT32_MAX - 1) {
   1995         s->phdr_num += s->list.num;
   1996     } else {
   1997         s->phdr_num = UINT32_MAX;
   1998     }
   1999 
   2000     /*
   2001      * Now that the number of section and program headers is known we
   2002      * can calculate the offsets of the headers and data.
   2003      */
   2004     if (dump_is_64bit(s)) {
   2005         s->shdr_offset = sizeof(Elf64_Ehdr);
   2006         s->phdr_offset = s->shdr_offset + sizeof(Elf64_Shdr) * s->shdr_num;
   2007         s->note_offset = s->phdr_offset + sizeof(Elf64_Phdr) * s->phdr_num;
   2008     } else {
   2009         s->shdr_offset = sizeof(Elf32_Ehdr);
   2010         s->phdr_offset = s->shdr_offset + sizeof(Elf32_Shdr) * s->shdr_num;
   2011         s->note_offset = s->phdr_offset + sizeof(Elf32_Phdr) * s->phdr_num;
   2012     }
   2013     s->memory_offset = s->note_offset + s->note_size;
   2014     s->section_offset = s->memory_offset + s->total_size;
   2015 
   2016     return;
   2017 
   2018 cleanup:
   2019     dump_cleanup(s);
   2020 }
   2021 
   2022 /* this operation might be time consuming. */
   2023 static void dump_process(DumpState *s, Error **errp)
   2024 {
   2025     ERRP_GUARD();
   2026     DumpQueryResult *result = NULL;
   2027 
   2028     if (s->has_format && s->format == DUMP_GUEST_MEMORY_FORMAT_WIN_DMP) {
   2029 #ifdef TARGET_X86_64
   2030         create_win_dump(s, errp);
   2031 #endif
   2032     } else if (s->has_format && s->format != DUMP_GUEST_MEMORY_FORMAT_ELF) {
   2033         create_kdump_vmcore(s, errp);
   2034     } else {
   2035         create_vmcore(s, errp);
   2036     }
   2037 
   2038     /* make sure status is written after written_size updates */
   2039     smp_wmb();
   2040     qatomic_set(&s->status,
   2041                (*errp ? DUMP_STATUS_FAILED : DUMP_STATUS_COMPLETED));
   2042 
   2043     /* send DUMP_COMPLETED message (unconditionally) */
   2044     result = qmp_query_dump(NULL);
   2045     /* should never fail */
   2046     assert(result);
   2047     qapi_event_send_dump_completed(result, !!*errp, (*errp ?
   2048                                                      error_get_pretty(*errp) : NULL));
   2049     qapi_free_DumpQueryResult(result);
   2050 
   2051     dump_cleanup(s);
   2052 }
   2053 
   2054 static void *dump_thread(void *data)
   2055 {
   2056     DumpState *s = (DumpState *)data;
   2057     dump_process(s, NULL);
   2058     return NULL;
   2059 }
   2060 
   2061 DumpQueryResult *qmp_query_dump(Error **errp)
   2062 {
   2063     DumpQueryResult *result = g_new(DumpQueryResult, 1);
   2064     DumpState *state = &dump_state_global;
   2065     result->status = qatomic_read(&state->status);
   2066     /* make sure we are reading status and written_size in order */
   2067     smp_rmb();
   2068     result->completed = state->written_size;
   2069     result->total = state->total_size;
   2070     return result;
   2071 }
   2072 
   2073 void qmp_dump_guest_memory(bool paging, const char *file,
   2074                            bool has_detach, bool detach,
   2075                            bool has_begin, int64_t begin, bool has_length,
   2076                            int64_t length, bool has_format,
   2077                            DumpGuestMemoryFormat format, Error **errp)
   2078 {
   2079     ERRP_GUARD();
   2080     const char *p;
   2081     int fd = -1;
   2082     DumpState *s;
   2083     bool detach_p = false;
   2084 
   2085     if (runstate_check(RUN_STATE_INMIGRATE)) {
   2086         error_setg(errp, "Dump not allowed during incoming migration.");
   2087         return;
   2088     }
   2089 
   2090     /* if there is a dump in background, we should wait until the dump
   2091      * finished */
   2092     if (qemu_system_dump_in_progress()) {
   2093         error_setg(errp, "There is a dump in process, please wait.");
   2094         return;
   2095     }
   2096 
   2097     /*
   2098      * kdump-compressed format need the whole memory dumped, so paging or
   2099      * filter is not supported here.
   2100      */
   2101     if ((has_format && format != DUMP_GUEST_MEMORY_FORMAT_ELF) &&
   2102         (paging || has_begin || has_length)) {
   2103         error_setg(errp, "kdump-compressed format doesn't support paging or "
   2104                          "filter");
   2105         return;
   2106     }
   2107     if (has_begin && !has_length) {
   2108         error_setg(errp, QERR_MISSING_PARAMETER, "length");
   2109         return;
   2110     }
   2111     if (!has_begin && has_length) {
   2112         error_setg(errp, QERR_MISSING_PARAMETER, "begin");
   2113         return;
   2114     }
   2115     if (has_detach) {
   2116         detach_p = detach;
   2117     }
   2118 
   2119     /* check whether lzo/snappy is supported */
   2120 #ifndef CONFIG_LZO
   2121     if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO) {
   2122         error_setg(errp, "kdump-lzo is not available now");
   2123         return;
   2124     }
   2125 #endif
   2126 
   2127 #ifndef CONFIG_SNAPPY
   2128     if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY) {
   2129         error_setg(errp, "kdump-snappy is not available now");
   2130         return;
   2131     }
   2132 #endif
   2133 
   2134 #ifndef TARGET_X86_64
   2135     if (has_format && format == DUMP_GUEST_MEMORY_FORMAT_WIN_DMP) {
   2136         error_setg(errp, "Windows dump is only available for x86-64");
   2137         return;
   2138     }
   2139 #endif
   2140 
   2141 #if !defined(WIN32)
   2142     if (strstart(file, "fd:", &p)) {
   2143         fd = monitor_get_fd(monitor_cur(), p, errp);
   2144         if (fd == -1) {
   2145             return;
   2146         }
   2147     }
   2148 #endif
   2149 
   2150     if  (strstart(file, "file:", &p)) {
   2151         fd = qemu_open_old(p, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, S_IRUSR);
   2152         if (fd < 0) {
   2153             error_setg_file_open(errp, errno, p);
   2154             return;
   2155         }
   2156     }
   2157 
   2158     if (fd == -1) {
   2159         error_setg(errp, QERR_INVALID_PARAMETER, "protocol");
   2160         return;
   2161     }
   2162 
   2163     if (!dump_migration_blocker) {
   2164         error_setg(&dump_migration_blocker,
   2165                    "Live migration disabled: dump-guest-memory in progress");
   2166     }
   2167 
   2168     /*
   2169      * Allows even for -only-migratable, but forbid migration during the
   2170      * process of dump guest memory.
   2171      */
   2172     if (migrate_add_blocker_internal(dump_migration_blocker, errp)) {
   2173         /* Remember to release the fd before passing it over to dump state */
   2174         close(fd);
   2175         return;
   2176     }
   2177 
   2178     s = &dump_state_global;
   2179     dump_state_prepare(s);
   2180 
   2181     dump_init(s, fd, has_format, format, paging, has_begin,
   2182               begin, length, errp);
   2183     if (*errp) {
   2184         qatomic_set(&s->status, DUMP_STATUS_FAILED);
   2185         return;
   2186     }
   2187 
   2188     if (detach_p) {
   2189         /* detached dump */
   2190         s->detached = true;
   2191         qemu_thread_create(&s->dump_thread, "dump_thread", dump_thread,
   2192                            s, QEMU_THREAD_DETACHED);
   2193     } else {
   2194         /* sync dump */
   2195         dump_process(s, errp);
   2196     }
   2197 }
   2198 
   2199 DumpGuestMemoryCapability *qmp_query_dump_guest_memory_capability(Error **errp)
   2200 {
   2201     DumpGuestMemoryCapability *cap =
   2202                                   g_new0(DumpGuestMemoryCapability, 1);
   2203     DumpGuestMemoryFormatList **tail = &cap->formats;
   2204 
   2205     /* elf is always available */
   2206     QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_ELF);
   2207 
   2208     /* kdump-zlib is always available */
   2209     QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_ZLIB);
   2210 
   2211     /* add new item if kdump-lzo is available */
   2212 #ifdef CONFIG_LZO
   2213     QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_LZO);
   2214 #endif
   2215 
   2216     /* add new item if kdump-snappy is available */
   2217 #ifdef CONFIG_SNAPPY
   2218     QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_KDUMP_SNAPPY);
   2219 #endif
   2220 
   2221     /* Windows dump is available only if target is x86_64 */
   2222 #ifdef TARGET_X86_64
   2223     QAPI_LIST_APPEND(tail, DUMP_GUEST_MEMORY_FORMAT_WIN_DMP);
   2224 #endif
   2225 
   2226     return cap;
   2227 }