qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

microchip-icicle-kit.rst (5503B)


      1 Microchip PolarFire SoC Icicle Kit (``microchip-icicle-kit``)
      2 =============================================================
      3 
      4 Microchip PolarFire SoC Icicle Kit integrates a PolarFire SoC, with one
      5 SiFive's E51 plus four U54 cores and many on-chip peripherals and an FPGA.
      6 
      7 For more details about Microchip PolarFire SoC, please see:
      8 https://www.microsemi.com/product-directory/soc-fpgas/5498-polarfire-soc-fpga
      9 
     10 The Icicle Kit board information can be found here:
     11 https://www.microsemi.com/existing-parts/parts/152514
     12 
     13 Supported devices
     14 -----------------
     15 
     16 The ``microchip-icicle-kit`` machine supports the following devices:
     17 
     18 * 1 E51 core
     19 * 4 U54 cores
     20 * Core Level Interruptor (CLINT)
     21 * Platform-Level Interrupt Controller (PLIC)
     22 * L2 Loosely Integrated Memory (L2-LIM)
     23 * DDR memory controller
     24 * 5 MMUARTs
     25 * 1 DMA controller
     26 * 2 GEM Ethernet controllers
     27 * 1 SDHC storage controller
     28 
     29 Boot options
     30 ------------
     31 
     32 The ``microchip-icicle-kit`` machine can start using the standard -bios
     33 functionality for loading its BIOS image, aka Hart Software Services (HSS_).
     34 HSS loads the second stage bootloader U-Boot from an SD card. Then a kernel
     35 can be loaded from U-Boot. It also supports direct kernel booting via the
     36 -kernel option along with the device tree blob via -dtb. When direct kernel
     37 boot is used, the OpenSBI fw_dynamic BIOS image is used to boot a payload
     38 like U-Boot or OS kernel directly.
     39 
     40 The user provided DTB should have the following requirements:
     41 
     42 * The /cpus node should contain at least one subnode for E51 and the number
     43   of subnodes should match QEMU's ``-smp`` option
     44 * The /memory reg size should match QEMU’s selected ram_size via ``-m``
     45 * Should contain a node for the CLINT device with a compatible string
     46   "riscv,clint0"
     47 
     48 QEMU follows below truth table to select which payload to execute:
     49 
     50 ===== ========== ========== =======
     51 -bios    -kernel       -dtb payload
     52 ===== ========== ========== =======
     53     N          N don't care     HSS
     54     Y don't care don't care     HSS
     55     N          Y          Y  kernel
     56 ===== ========== ========== =======
     57 
     58 The memory is set to 1537 MiB by default which is the minimum required high
     59 memory size by HSS. A sanity check on ram size is performed in the machine
     60 init routine to prompt user to increase the RAM size to > 1537 MiB when less
     61 than 1537 MiB ram is detected.
     62 
     63 Running HSS
     64 -----------
     65 
     66 HSS 2020.12 release is tested at the time of writing. To build an HSS image
     67 that can be booted by the ``microchip-icicle-kit`` machine, type the following
     68 in the HSS source tree:
     69 
     70 .. code-block:: bash
     71 
     72   $ export CROSS_COMPILE=riscv64-linux-
     73   $ cp boards/mpfs-icicle-kit-es/def_config .config
     74   $ make BOARD=mpfs-icicle-kit-es
     75 
     76 Download the official SD card image released by Microchip and prepare it for
     77 QEMU usage:
     78 
     79 .. code-block:: bash
     80 
     81   $ wget ftp://ftpsoc.microsemi.com/outgoing/core-image-minimal-dev-icicle-kit-es-sd-20201009141623.rootfs.wic.gz
     82   $ gunzip core-image-minimal-dev-icicle-kit-es-sd-20201009141623.rootfs.wic.gz
     83   $ qemu-img resize core-image-minimal-dev-icicle-kit-es-sd-20201009141623.rootfs.wic 4G
     84 
     85 Then we can boot the machine by:
     86 
     87 .. code-block:: bash
     88 
     89   $ qemu-system-riscv64 -M microchip-icicle-kit -smp 5 \
     90       -bios path/to/hss.bin -sd path/to/sdcard.img \
     91       -nic user,model=cadence_gem \
     92       -nic tap,ifname=tap,model=cadence_gem,script=no \
     93       -display none -serial stdio \
     94       -chardev socket,id=serial1,path=serial1.sock,server=on,wait=on \
     95       -serial chardev:serial1
     96 
     97 With above command line, current terminal session will be used for the first
     98 serial port. Open another terminal window, and use ``minicom`` to connect the
     99 second serial port.
    100 
    101 .. code-block:: bash
    102 
    103   $ minicom -D unix\#serial1.sock
    104 
    105 HSS output is on the first serial port (stdio) and U-Boot outputs on the
    106 second serial port. U-Boot will automatically load the Linux kernel from
    107 the SD card image.
    108 
    109 Direct Kernel Boot
    110 ------------------
    111 
    112 Sometimes we just want to test booting a new kernel, and transforming the
    113 kernel image to the format required by the HSS bootflow is tedious. We can
    114 use '-kernel' for direct kernel booting just like other RISC-V machines do.
    115 
    116 In this mode, the OpenSBI fw_dynamic BIOS image for 'generic' platform is
    117 used to boot an S-mode payload like U-Boot or OS kernel directly.
    118 
    119 For example, the following commands show building a U-Boot image from U-Boot
    120 mainline v2021.07 for the Microchip Icicle Kit board:
    121 
    122 .. code-block:: bash
    123 
    124   $ export CROSS_COMPILE=riscv64-linux-
    125   $ make microchip_mpfs_icicle_defconfig
    126 
    127 Then we can boot the machine by:
    128 
    129 .. code-block:: bash
    130 
    131   $ qemu-system-riscv64 -M microchip-icicle-kit -smp 5 -m 2G \
    132       -sd path/to/sdcard.img \
    133       -nic user,model=cadence_gem \
    134       -nic tap,ifname=tap,model=cadence_gem,script=no \
    135       -display none -serial stdio \
    136       -kernel path/to/u-boot/build/dir/u-boot.bin \
    137       -dtb path/to/u-boot/build/dir/u-boot.dtb
    138 
    139 CAVEATS:
    140 
    141 * Check the "stdout-path" property in the /chosen node in the DTB to determine
    142   which serial port is used for the serial console, e.g.: if the console is set
    143   to the second serial port, change to use "-serial null -serial stdio".
    144 * The default U-Boot configuration uses CONFIG_OF_SEPARATE hence the ELF image
    145   ``u-boot`` cannot be passed to "-kernel" as it does not contain the DTB hence
    146   ``u-boot.bin`` has to be used which does contain one. To use the ELF image,
    147   we need to change to CONFIG_OF_EMBED or CONFIG_OF_PRIOR_STAGE.
    148 
    149 .. _HSS: https://github.com/polarfire-soc/hart-software-services