qapi-code-gen.rst (65144B)
1 ================================== 2 How to use the QAPI code generator 3 ================================== 4 5 .. 6 Copyright IBM Corp. 2011 7 Copyright (C) 2012-2016 Red Hat, Inc. 8 9 This work is licensed under the terms of the GNU GPL, version 2 or 10 later. See the COPYING file in the top-level directory. 11 12 13 Introduction 14 ============ 15 16 QAPI is a native C API within QEMU which provides management-level 17 functionality to internal and external users. For external 18 users/processes, this interface is made available by a JSON-based wire 19 format for the QEMU Monitor Protocol (QMP) for controlling qemu, as 20 well as the QEMU Guest Agent (QGA) for communicating with the guest. 21 The remainder of this document uses "Client JSON Protocol" when 22 referring to the wire contents of a QMP or QGA connection. 23 24 To map between Client JSON Protocol interfaces and the native C API, 25 we generate C code from a QAPI schema. This document describes the 26 QAPI schema language, and how it gets mapped to the Client JSON 27 Protocol and to C. It additionally provides guidance on maintaining 28 Client JSON Protocol compatibility. 29 30 31 The QAPI schema language 32 ======================== 33 34 The QAPI schema defines the Client JSON Protocol's commands and 35 events, as well as types used by them. Forward references are 36 allowed. 37 38 It is permissible for the schema to contain additional types not used 39 by any commands or events, for the side effect of generated C code 40 used internally. 41 42 There are several kinds of types: simple types (a number of built-in 43 types, such as ``int`` and ``str``; as well as enumerations), arrays, 44 complex types (structs and unions), and alternate types (a choice 45 between other types). 46 47 48 Schema syntax 49 ------------- 50 51 Syntax is loosely based on `JSON <http://www.ietf.org/rfc/rfc8259.txt>`_. 52 Differences: 53 54 * Comments: start with a hash character (``#``) that is not part of a 55 string, and extend to the end of the line. 56 57 * Strings are enclosed in ``'single quotes'``, not ``"double quotes"``. 58 59 * Strings are restricted to printable ASCII, and escape sequences to 60 just ``\\``. 61 62 * Numbers and ``null`` are not supported. 63 64 A second layer of syntax defines the sequences of JSON texts that are 65 a correctly structured QAPI schema. We provide a grammar for this 66 syntax in an EBNF-like notation: 67 68 * Production rules look like ``non-terminal = expression`` 69 * Concatenation: expression ``A B`` matches expression ``A``, then ``B`` 70 * Alternation: expression ``A | B`` matches expression ``A`` or ``B`` 71 * Repetition: expression ``A...`` matches zero or more occurrences of 72 expression ``A`` 73 * Repetition: expression ``A, ...`` matches zero or more occurrences of 74 expression ``A`` separated by ``,`` 75 * Grouping: expression ``( A )`` matches expression ``A`` 76 * JSON's structural characters are terminals: ``{ } [ ] : ,`` 77 * JSON's literal names are terminals: ``false true`` 78 * String literals enclosed in ``'single quotes'`` are terminal, and match 79 this JSON string, with a leading ``*`` stripped off 80 * When JSON object member's name starts with ``*``, the member is 81 optional. 82 * The symbol ``STRING`` is a terminal, and matches any JSON string 83 * The symbol ``BOOL`` is a terminal, and matches JSON ``false`` or ``true`` 84 * ALL-CAPS words other than ``STRING`` are non-terminals 85 86 The order of members within JSON objects does not matter unless 87 explicitly noted. 88 89 A QAPI schema consists of a series of top-level expressions:: 90 91 SCHEMA = TOP-LEVEL-EXPR... 92 93 The top-level expressions are all JSON objects. Code and 94 documentation is generated in schema definition order. Code order 95 should not matter. 96 97 A top-level expressions is either a directive or a definition:: 98 99 TOP-LEVEL-EXPR = DIRECTIVE | DEFINITION 100 101 There are two kinds of directives and six kinds of definitions:: 102 103 DIRECTIVE = INCLUDE | PRAGMA 104 DEFINITION = ENUM | STRUCT | UNION | ALTERNATE | COMMAND | EVENT 105 106 These are discussed in detail below. 107 108 109 Built-in Types 110 -------------- 111 112 The following types are predefined, and map to C as follows: 113 114 ============= ============== ============================================ 115 Schema C JSON 116 ============= ============== ============================================ 117 ``str`` ``char *`` any JSON string, UTF-8 118 ``number`` ``double`` any JSON number 119 ``int`` ``int64_t`` a JSON number without fractional part 120 that fits into the C integer type 121 ``int8`` ``int8_t`` likewise 122 ``int16`` ``int16_t`` likewise 123 ``int32`` ``int32_t`` likewise 124 ``int64`` ``int64_t`` likewise 125 ``uint8`` ``uint8_t`` likewise 126 ``uint16`` ``uint16_t`` likewise 127 ``uint32`` ``uint32_t`` likewise 128 ``uint64`` ``uint64_t`` likewise 129 ``size`` ``uint64_t`` like ``uint64_t``, except 130 ``StringInputVisitor`` accepts size suffixes 131 ``bool`` ``bool`` JSON ``true`` or ``false`` 132 ``null`` ``QNull *`` JSON ``null`` 133 ``any`` ``QObject *`` any JSON value 134 ``QType`` ``QType`` JSON string matching enum ``QType`` values 135 ============= ============== ============================================ 136 137 138 Include directives 139 ------------------ 140 141 Syntax:: 142 143 INCLUDE = { 'include': STRING } 144 145 The QAPI schema definitions can be modularized using the 'include' directive:: 146 147 { 'include': 'path/to/file.json' } 148 149 The directive is evaluated recursively, and include paths are relative 150 to the file using the directive. Multiple includes of the same file 151 are idempotent. 152 153 As a matter of style, it is a good idea to have all files be 154 self-contained, but at the moment, nothing prevents an included file 155 from making a forward reference to a type that is only introduced by 156 an outer file. The parser may be made stricter in the future to 157 prevent incomplete include files. 158 159 .. _pragma: 160 161 Pragma directives 162 ----------------- 163 164 Syntax:: 165 166 PRAGMA = { 'pragma': { 167 '*doc-required': BOOL, 168 '*command-name-exceptions': [ STRING, ... ], 169 '*command-returns-exceptions': [ STRING, ... ], 170 '*member-name-exceptions': [ STRING, ... ] } } 171 172 The pragma directive lets you control optional generator behavior. 173 174 Pragma's scope is currently the complete schema. Setting the same 175 pragma to different values in parts of the schema doesn't work. 176 177 Pragma 'doc-required' takes a boolean value. If true, documentation 178 is required. Default is false. 179 180 Pragma 'command-name-exceptions' takes a list of commands whose names 181 may contain ``"_"`` instead of ``"-"``. Default is none. 182 183 Pragma 'command-returns-exceptions' takes a list of commands that may 184 violate the rules on permitted return types. Default is none. 185 186 Pragma 'member-name-exceptions' takes a list of types whose member 187 names may contain uppercase letters, and ``"_"`` instead of ``"-"``. 188 Default is none. 189 190 .. _ENUM-VALUE: 191 192 Enumeration types 193 ----------------- 194 195 Syntax:: 196 197 ENUM = { 'enum': STRING, 198 'data': [ ENUM-VALUE, ... ], 199 '*prefix': STRING, 200 '*if': COND, 201 '*features': FEATURES } 202 ENUM-VALUE = STRING 203 | { 'name': STRING, 204 '*if': COND, 205 '*features': FEATURES } 206 207 Member 'enum' names the enum type. 208 209 Each member of the 'data' array defines a value of the enumeration 210 type. The form STRING is shorthand for :code:`{ 'name': STRING }`. The 211 'name' values must be be distinct. 212 213 Example:: 214 215 { 'enum': 'MyEnum', 'data': [ 'value1', 'value2', 'value3' ] } 216 217 Nothing prevents an empty enumeration, although it is probably not 218 useful. 219 220 On the wire, an enumeration type's value is represented by its 221 (string) name. In C, it's represented by an enumeration constant. 222 These are of the form PREFIX_NAME, where PREFIX is derived from the 223 enumeration type's name, and NAME from the value's name. For the 224 example above, the generator maps 'MyEnum' to MY_ENUM and 'value1' to 225 VALUE1, resulting in the enumeration constant MY_ENUM_VALUE1. The 226 optional 'prefix' member overrides PREFIX. 227 228 The generated C enumeration constants have values 0, 1, ..., N-1 (in 229 QAPI schema order), where N is the number of values. There is an 230 additional enumeration constant PREFIX__MAX with value N. 231 232 Do not use string or an integer type when an enumeration type can do 233 the job satisfactorily. 234 235 The optional 'if' member specifies a conditional. See `Configuring the 236 schema`_ below for more on this. 237 238 The optional 'features' member specifies features. See Features_ 239 below for more on this. 240 241 242 .. _TYPE-REF: 243 244 Type references and array types 245 ------------------------------- 246 247 Syntax:: 248 249 TYPE-REF = STRING | ARRAY-TYPE 250 ARRAY-TYPE = [ STRING ] 251 252 A string denotes the type named by the string. 253 254 A one-element array containing a string denotes an array of the type 255 named by the string. Example: ``['int']`` denotes an array of ``int``. 256 257 258 Struct types 259 ------------ 260 261 Syntax:: 262 263 STRUCT = { 'struct': STRING, 264 'data': MEMBERS, 265 '*base': STRING, 266 '*if': COND, 267 '*features': FEATURES } 268 MEMBERS = { MEMBER, ... } 269 MEMBER = STRING : TYPE-REF 270 | STRING : { 'type': TYPE-REF, 271 '*if': COND, 272 '*features': FEATURES } 273 274 Member 'struct' names the struct type. 275 276 Each MEMBER of the 'data' object defines a member of the struct type. 277 278 .. _MEMBERS: 279 280 The MEMBER's STRING name consists of an optional ``*`` prefix and the 281 struct member name. If ``*`` is present, the member is optional. 282 283 The MEMBER's value defines its properties, in particular its type. 284 The form TYPE-REF_ is shorthand for :code:`{ 'type': TYPE-REF }`. 285 286 Example:: 287 288 { 'struct': 'MyType', 289 'data': { 'member1': 'str', 'member2': ['int'], '*member3': 'str' } } 290 291 A struct type corresponds to a struct in C, and an object in JSON. 292 The C struct's members are generated in QAPI schema order. 293 294 The optional 'base' member names a struct type whose members are to be 295 included in this type. They go first in the C struct. 296 297 Example:: 298 299 { 'struct': 'BlockdevOptionsGenericFormat', 300 'data': { 'file': 'str' } } 301 { 'struct': 'BlockdevOptionsGenericCOWFormat', 302 'base': 'BlockdevOptionsGenericFormat', 303 'data': { '*backing': 'str' } } 304 305 An example BlockdevOptionsGenericCOWFormat object on the wire could use 306 both members like this:: 307 308 { "file": "/some/place/my-image", 309 "backing": "/some/place/my-backing-file" } 310 311 The optional 'if' member specifies a conditional. See `Configuring 312 the schema`_ below for more on this. 313 314 The optional 'features' member specifies features. See Features_ 315 below for more on this. 316 317 318 Union types 319 ----------- 320 321 Syntax:: 322 323 UNION = { 'union': STRING, 324 'base': ( MEMBERS | STRING ), 325 'discriminator': STRING, 326 'data': BRANCHES, 327 '*if': COND, 328 '*features': FEATURES } 329 BRANCHES = { BRANCH, ... } 330 BRANCH = STRING : TYPE-REF 331 | STRING : { 'type': TYPE-REF, '*if': COND } 332 333 Member 'union' names the union type. 334 335 The 'base' member defines the common members. If it is a MEMBERS_ 336 object, it defines common members just like a struct type's 'data' 337 member defines struct type members. If it is a STRING, it names a 338 struct type whose members are the common members. 339 340 Member 'discriminator' must name a non-optional enum-typed member of 341 the base struct. That member's value selects a branch by its name. 342 If no such branch exists, an empty branch is assumed. 343 344 Each BRANCH of the 'data' object defines a branch of the union. A 345 union must have at least one branch. 346 347 The BRANCH's STRING name is the branch name. It must be a value of 348 the discriminator enum type. 349 350 The BRANCH's value defines the branch's properties, in particular its 351 type. The type must a struct type. The form TYPE-REF_ is shorthand 352 for :code:`{ 'type': TYPE-REF }`. 353 354 In the Client JSON Protocol, a union is represented by an object with 355 the common members (from the base type) and the selected branch's 356 members. The two sets of member names must be disjoint. 357 358 Example:: 359 360 { 'enum': 'BlockdevDriver', 'data': [ 'file', 'qcow2' ] } 361 { 'union': 'BlockdevOptions', 362 'base': { 'driver': 'BlockdevDriver', '*read-only': 'bool' }, 363 'discriminator': 'driver', 364 'data': { 'file': 'BlockdevOptionsFile', 365 'qcow2': 'BlockdevOptionsQcow2' } } 366 367 Resulting in these JSON objects:: 368 369 { "driver": "file", "read-only": true, 370 "filename": "/some/place/my-image" } 371 { "driver": "qcow2", "read-only": false, 372 "backing": "/some/place/my-image", "lazy-refcounts": true } 373 374 The order of branches need not match the order of the enum values. 375 The branches need not cover all possible enum values. In the 376 resulting generated C data types, a union is represented as a struct 377 with the base members in QAPI schema order, and then a union of 378 structures for each branch of the struct. 379 380 The optional 'if' member specifies a conditional. See `Configuring 381 the schema`_ below for more on this. 382 383 The optional 'features' member specifies features. See Features_ 384 below for more on this. 385 386 387 Alternate types 388 --------------- 389 390 Syntax:: 391 392 ALTERNATE = { 'alternate': STRING, 393 'data': ALTERNATIVES, 394 '*if': COND, 395 '*features': FEATURES } 396 ALTERNATIVES = { ALTERNATIVE, ... } 397 ALTERNATIVE = STRING : STRING 398 | STRING : { 'type': STRING, '*if': COND } 399 400 Member 'alternate' names the alternate type. 401 402 Each ALTERNATIVE of the 'data' object defines a branch of the 403 alternate. An alternate must have at least one branch. 404 405 The ALTERNATIVE's STRING name is the branch name. 406 407 The ALTERNATIVE's value defines the branch's properties, in particular 408 its type. The form STRING is shorthand for :code:`{ 'type': STRING }`. 409 410 Example:: 411 412 { 'alternate': 'BlockdevRef', 413 'data': { 'definition': 'BlockdevOptions', 414 'reference': 'str' } } 415 416 An alternate type is like a union type, except there is no 417 discriminator on the wire. Instead, the branch to use is inferred 418 from the value. An alternate can only express a choice between types 419 represented differently on the wire. 420 421 If a branch is typed as the 'bool' built-in, the alternate accepts 422 true and false; if it is typed as any of the various numeric 423 built-ins, it accepts a JSON number; if it is typed as a 'str' 424 built-in or named enum type, it accepts a JSON string; if it is typed 425 as the 'null' built-in, it accepts JSON null; and if it is typed as a 426 complex type (struct or union), it accepts a JSON object. 427 428 The example alternate declaration above allows using both of the 429 following example objects:: 430 431 { "file": "my_existing_block_device_id" } 432 { "file": { "driver": "file", 433 "read-only": false, 434 "filename": "/tmp/mydisk.qcow2" } } 435 436 The optional 'if' member specifies a conditional. See `Configuring 437 the schema`_ below for more on this. 438 439 The optional 'features' member specifies features. See Features_ 440 below for more on this. 441 442 443 Commands 444 -------- 445 446 Syntax:: 447 448 COMMAND = { 'command': STRING, 449 ( 450 '*data': ( MEMBERS | STRING ), 451 | 452 'data': STRING, 453 'boxed': true, 454 ) 455 '*returns': TYPE-REF, 456 '*success-response': false, 457 '*gen': false, 458 '*allow-oob': true, 459 '*allow-preconfig': true, 460 '*coroutine': true, 461 '*if': COND, 462 '*features': FEATURES } 463 464 Member 'command' names the command. 465 466 Member 'data' defines the arguments. It defaults to an empty MEMBERS_ 467 object. 468 469 If 'data' is a MEMBERS_ object, then MEMBERS defines arguments just 470 like a struct type's 'data' defines struct type members. 471 472 If 'data' is a STRING, then STRING names a complex type whose members 473 are the arguments. A union type requires ``'boxed': true``. 474 475 Member 'returns' defines the command's return type. It defaults to an 476 empty struct type. It must normally be a complex type or an array of 477 a complex type. To return anything else, the command must be listed 478 in pragma 'commands-returns-exceptions'. If you do this, extending 479 the command to return additional information will be harder. Use of 480 the pragma for new commands is strongly discouraged. 481 482 A command's error responses are not specified in the QAPI schema. 483 Error conditions should be documented in comments. 484 485 In the Client JSON Protocol, the value of the "execute" or "exec-oob" 486 member is the command name. The value of the "arguments" member then 487 has to conform to the arguments, and the value of the success 488 response's "return" member will conform to the return type. 489 490 Some example commands:: 491 492 { 'command': 'my-first-command', 493 'data': { 'arg1': 'str', '*arg2': 'str' } } 494 { 'struct': 'MyType', 'data': { '*value': 'str' } } 495 { 'command': 'my-second-command', 496 'returns': [ 'MyType' ] } 497 498 which would validate this Client JSON Protocol transaction:: 499 500 => { "execute": "my-first-command", 501 "arguments": { "arg1": "hello" } } 502 <= { "return": { } } 503 => { "execute": "my-second-command" } 504 <= { "return": [ { "value": "one" }, { } ] } 505 506 The generator emits a prototype for the C function implementing the 507 command. The function itself needs to be written by hand. See 508 section `Code generated for commands`_ for examples. 509 510 The function returns the return type. When member 'boxed' is absent, 511 it takes the command arguments as arguments one by one, in QAPI schema 512 order. Else it takes them wrapped in the C struct generated for the 513 complex argument type. It takes an additional ``Error **`` argument in 514 either case. 515 516 The generator also emits a marshalling function that extracts 517 arguments for the user's function out of an input QDict, calls the 518 user's function, and if it succeeded, builds an output QObject from 519 its return value. This is for use by the QMP monitor core. 520 521 In rare cases, QAPI cannot express a type-safe representation of a 522 corresponding Client JSON Protocol command. You then have to suppress 523 generation of a marshalling function by including a member 'gen' with 524 boolean value false, and instead write your own function. For 525 example:: 526 527 { 'command': 'netdev_add', 528 'data': {'type': 'str', 'id': 'str'}, 529 'gen': false } 530 531 Please try to avoid adding new commands that rely on this, and instead 532 use type-safe unions. 533 534 Normally, the QAPI schema is used to describe synchronous exchanges, 535 where a response is expected. But in some cases, the action of a 536 command is expected to change state in a way that a successful 537 response is not possible (although the command will still return an 538 error object on failure). When a successful reply is not possible, 539 the command definition includes the optional member 'success-response' 540 with boolean value false. So far, only QGA makes use of this member. 541 542 Member 'allow-oob' declares whether the command supports out-of-band 543 (OOB) execution. It defaults to false. For example:: 544 545 { 'command': 'migrate_recover', 546 'data': { 'uri': 'str' }, 'allow-oob': true } 547 548 See qmp-spec.txt for out-of-band execution syntax and semantics. 549 550 Commands supporting out-of-band execution can still be executed 551 in-band. 552 553 When a command is executed in-band, its handler runs in the main 554 thread with the BQL held. 555 556 When a command is executed out-of-band, its handler runs in a 557 dedicated monitor I/O thread with the BQL *not* held. 558 559 An OOB-capable command handler must satisfy the following conditions: 560 561 - It terminates quickly. 562 - It does not invoke system calls that may block. 563 - It does not access guest RAM that may block when userfaultfd is 564 enabled for postcopy live migration. 565 - It takes only "fast" locks, i.e. all critical sections protected by 566 any lock it takes also satisfy the conditions for OOB command 567 handler code. 568 569 The restrictions on locking limit access to shared state. Such access 570 requires synchronization, but OOB commands can't take the BQL or any 571 other "slow" lock. 572 573 When in doubt, do not implement OOB execution support. 574 575 Member 'allow-preconfig' declares whether the command is available 576 before the machine is built. It defaults to false. For example:: 577 578 { 'enum': 'QMPCapability', 579 'data': [ 'oob' ] } 580 { 'command': 'qmp_capabilities', 581 'data': { '*enable': [ 'QMPCapability' ] }, 582 'allow-preconfig': true } 583 584 QMP is available before the machine is built only when QEMU was 585 started with --preconfig. 586 587 Member 'coroutine' tells the QMP dispatcher whether the command handler 588 is safe to be run in a coroutine. It defaults to false. If it is true, 589 the command handler is called from coroutine context and may yield while 590 waiting for an external event (such as I/O completion) in order to avoid 591 blocking the guest and other background operations. 592 593 Coroutine safety can be hard to prove, similar to thread safety. Common 594 pitfalls are: 595 596 - The global mutex isn't held across ``qemu_coroutine_yield()``, so 597 operations that used to assume that they execute atomically may have 598 to be more careful to protect against changes in the global state. 599 600 - Nested event loops (``AIO_WAIT_WHILE()`` etc.) are problematic in 601 coroutine context and can easily lead to deadlocks. They should be 602 replaced by yielding and reentering the coroutine when the condition 603 becomes false. 604 605 Since the command handler may assume coroutine context, any callers 606 other than the QMP dispatcher must also call it in coroutine context. 607 In particular, HMP commands calling such a QMP command handler must be 608 marked ``.coroutine = true`` in hmp-commands.hx. 609 610 It is an error to specify both ``'coroutine': true`` and ``'allow-oob': true`` 611 for a command. We don't currently have a use case for both together and 612 without a use case, it's not entirely clear what the semantics should 613 be. 614 615 The optional 'if' member specifies a conditional. See `Configuring 616 the schema`_ below for more on this. 617 618 The optional 'features' member specifies features. See Features_ 619 below for more on this. 620 621 622 Events 623 ------ 624 625 Syntax:: 626 627 EVENT = { 'event': STRING, 628 ( 629 '*data': ( MEMBERS | STRING ), 630 | 631 'data': STRING, 632 'boxed': true, 633 ) 634 '*if': COND, 635 '*features': FEATURES } 636 637 Member 'event' names the event. This is the event name used in the 638 Client JSON Protocol. 639 640 Member 'data' defines the event-specific data. It defaults to an 641 empty MEMBERS object. 642 643 If 'data' is a MEMBERS object, then MEMBERS defines event-specific 644 data just like a struct type's 'data' defines struct type members. 645 646 If 'data' is a STRING, then STRING names a complex type whose members 647 are the event-specific data. A union type requires ``'boxed': true``. 648 649 An example event is:: 650 651 { 'event': 'EVENT_C', 652 'data': { '*a': 'int', 'b': 'str' } } 653 654 Resulting in this JSON object:: 655 656 { "event": "EVENT_C", 657 "data": { "b": "test string" }, 658 "timestamp": { "seconds": 1267020223, "microseconds": 435656 } } 659 660 The generator emits a function to send the event. When member 'boxed' 661 is absent, it takes event-specific data one by one, in QAPI schema 662 order. Else it takes them wrapped in the C struct generated for the 663 complex type. See section `Code generated for events`_ for examples. 664 665 The optional 'if' member specifies a conditional. See `Configuring 666 the schema`_ below for more on this. 667 668 The optional 'features' member specifies features. See Features_ 669 below for more on this. 670 671 672 .. _FEATURE: 673 674 Features 675 -------- 676 677 Syntax:: 678 679 FEATURES = [ FEATURE, ... ] 680 FEATURE = STRING 681 | { 'name': STRING, '*if': COND } 682 683 Sometimes, the behaviour of QEMU changes compatibly, but without a 684 change in the QMP syntax (usually by allowing values or operations 685 that previously resulted in an error). QMP clients may still need to 686 know whether the extension is available. 687 688 For this purpose, a list of features can be specified for a command or 689 struct type. Each list member can either be ``{ 'name': STRING, '*if': 690 COND }``, or STRING, which is shorthand for ``{ 'name': STRING }``. 691 692 The optional 'if' member specifies a conditional. See `Configuring 693 the schema`_ below for more on this. 694 695 Example:: 696 697 { 'struct': 'TestType', 698 'data': { 'number': 'int' }, 699 'features': [ 'allow-negative-numbers' ] } 700 701 The feature strings are exposed to clients in introspection, as 702 explained in section `Client JSON Protocol introspection`_. 703 704 Intended use is to have each feature string signal that this build of 705 QEMU shows a certain behaviour. 706 707 708 Special features 709 ~~~~~~~~~~~~~~~~ 710 711 Feature "deprecated" marks a command, event, enum value, or struct 712 member as deprecated. It is not supported elsewhere so far. 713 Interfaces so marked may be withdrawn in future releases in accordance 714 with QEMU's deprecation policy. 715 716 Feature "unstable" marks a command, event, enum value, or struct 717 member as unstable. It is not supported elsewhere so far. Interfaces 718 so marked may be withdrawn or changed incompatibly in future releases. 719 720 721 Naming rules and reserved names 722 ------------------------------- 723 724 All names must begin with a letter, and contain only ASCII letters, 725 digits, hyphen, and underscore. There are two exceptions: enum values 726 may start with a digit, and names that are downstream extensions (see 727 section `Downstream extensions`_) start with underscore. 728 729 Names beginning with ``q_`` are reserved for the generator, which uses 730 them for munging QMP names that resemble C keywords or other 731 problematic strings. For example, a member named ``default`` in qapi 732 becomes ``q_default`` in the generated C code. 733 734 Types, commands, and events share a common namespace. Therefore, 735 generally speaking, type definitions should always use CamelCase for 736 user-defined type names, while built-in types are lowercase. 737 738 Type names ending with ``Kind`` or ``List`` are reserved for the 739 generator, which uses them for implicit union enums and array types, 740 respectively. 741 742 Command names, member names within a type, and feature names should be 743 all lower case with words separated by a hyphen. However, some 744 existing older commands and complex types use underscore; when 745 extending them, consistency is preferred over blindly avoiding 746 underscore. 747 748 Event names should be ALL_CAPS with words separated by underscore. 749 750 Member name ``u`` and names starting with ``has-`` or ``has_`` are reserved 751 for the generator, which uses them for unions and for tracking 752 optional members. 753 754 Names beginning with ``x-`` used to signify "experimental". This 755 convention has been replaced by special feature "unstable". 756 757 Pragmas ``command-name-exceptions`` and ``member-name-exceptions`` let 758 you violate naming rules. Use for new code is strongly discouraged. See 759 `Pragma directives`_ for details. 760 761 762 Downstream extensions 763 --------------------- 764 765 QAPI schema names that are externally visible, say in the Client JSON 766 Protocol, need to be managed with care. Names starting with a 767 downstream prefix of the form __RFQDN_ are reserved for the downstream 768 who controls the valid, reverse fully qualified domain name RFQDN. 769 RFQDN may only contain ASCII letters, digits, hyphen and period. 770 771 Example: Red Hat, Inc. controls redhat.com, and may therefore add a 772 downstream command ``__com.redhat_drive-mirror``. 773 774 775 Configuring the schema 776 ---------------------- 777 778 Syntax:: 779 780 COND = STRING 781 | { 'all: [ COND, ... ] } 782 | { 'any: [ COND, ... ] } 783 | { 'not': COND } 784 785 All definitions take an optional 'if' member. Its value must be a 786 string, or an object with a single member 'all', 'any' or 'not'. 787 788 The C code generated for the definition will then be guarded by an #if 789 preprocessing directive with an operand generated from that condition: 790 791 * STRING will generate defined(STRING) 792 * { 'all': [COND, ...] } will generate (COND && ...) 793 * { 'any': [COND, ...] } will generate (COND || ...) 794 * { 'not': COND } will generate !COND 795 796 Example: a conditional struct :: 797 798 { 'struct': 'IfStruct', 'data': { 'foo': 'int' }, 799 'if': { 'all': [ 'CONFIG_FOO', 'HAVE_BAR' ] } } 800 801 gets its generated code guarded like this:: 802 803 #if defined(CONFIG_FOO) && defined(HAVE_BAR) 804 ... generated code ... 805 #endif /* defined(HAVE_BAR) && defined(CONFIG_FOO) */ 806 807 Individual members of complex types, commands arguments, and 808 event-specific data can also be made conditional. This requires the 809 longhand form of MEMBER. 810 811 Example: a struct type with unconditional member 'foo' and conditional 812 member 'bar' :: 813 814 { 'struct': 'IfStruct', 815 'data': { 'foo': 'int', 816 'bar': { 'type': 'int', 'if': 'IFCOND'} } } 817 818 A union's discriminator may not be conditional. 819 820 Likewise, individual enumeration values be conditional. This requires 821 the longhand form of ENUM-VALUE_. 822 823 Example: an enum type with unconditional value 'foo' and conditional 824 value 'bar' :: 825 826 { 'enum': 'IfEnum', 827 'data': [ 'foo', 828 { 'name' : 'bar', 'if': 'IFCOND' } ] } 829 830 Likewise, features can be conditional. This requires the longhand 831 form of FEATURE_. 832 833 Example: a struct with conditional feature 'allow-negative-numbers' :: 834 835 { 'struct': 'TestType', 836 'data': { 'number': 'int' }, 837 'features': [ { 'name': 'allow-negative-numbers', 838 'if': 'IFCOND' } ] } 839 840 Please note that you are responsible to ensure that the C code will 841 compile with an arbitrary combination of conditions, since the 842 generator is unable to check it at this point. 843 844 The conditions apply to introspection as well, i.e. introspection 845 shows a conditional entity only when the condition is satisfied in 846 this particular build. 847 848 849 Documentation comments 850 ---------------------- 851 852 A multi-line comment that starts and ends with a ``##`` line is a 853 documentation comment. 854 855 If the documentation comment starts like :: 856 857 ## 858 # @SYMBOL: 859 860 it documents the definition of SYMBOL, else it's free-form 861 documentation. 862 863 See below for more on `Definition documentation`_. 864 865 Free-form documentation may be used to provide additional text and 866 structuring content. 867 868 869 Headings and subheadings 870 ~~~~~~~~~~~~~~~~~~~~~~~~ 871 872 A free-form documentation comment containing a line which starts with 873 some ``=`` symbols and then a space defines a section heading:: 874 875 ## 876 # = This is a top level heading 877 # 878 # This is a free-form comment which will go under the 879 # top level heading. 880 ## 881 882 ## 883 # == This is a second level heading 884 ## 885 886 A heading line must be the first line of the documentation 887 comment block. 888 889 Section headings must always be correctly nested, so you can only 890 define a third-level heading inside a second-level heading, and so on. 891 892 893 Documentation markup 894 ~~~~~~~~~~~~~~~~~~~~ 895 896 Documentation comments can use most rST markup. In particular, 897 a ``::`` literal block can be used for examples:: 898 899 # :: 900 # 901 # Text of the example, may span 902 # multiple lines 903 904 ``*`` starts an itemized list:: 905 906 # * First item, may span 907 # multiple lines 908 # * Second item 909 910 You can also use ``-`` instead of ``*``. 911 912 A decimal number followed by ``.`` starts a numbered list:: 913 914 # 1. First item, may span 915 # multiple lines 916 # 2. Second item 917 918 The actual number doesn't matter. 919 920 Lists of either kind must be preceded and followed by a blank line. 921 If a list item's text spans multiple lines, then the second and 922 subsequent lines must be correctly indented to line up with the 923 first character of the first line. 924 925 The usual ****strong****, *\*emphasized\** and ````literal```` markup 926 should be used. If you need a single literal ``*``, you will need to 927 backslash-escape it. As an extension beyond the usual rST syntax, you 928 can also use ``@foo`` to reference a name in the schema; this is rendered 929 the same way as ````foo````. 930 931 Example:: 932 933 ## 934 # Some text foo with **bold** and *emphasis* 935 # 1. with a list 936 # 2. like that 937 # 938 # And some code: 939 # 940 # :: 941 # 942 # $ echo foo 943 # -> do this 944 # <- get that 945 ## 946 947 948 Definition documentation 949 ~~~~~~~~~~~~~~~~~~~~~~~~ 950 951 Definition documentation, if present, must immediately precede the 952 definition it documents. 953 954 When documentation is required (see pragma_ 'doc-required'), every 955 definition must have documentation. 956 957 Definition documentation starts with a line naming the definition, 958 followed by an optional overview, a description of each argument (for 959 commands and events), member (for structs and unions), branch (for 960 alternates), or value (for enums), a description of each feature (if 961 any), and finally optional tagged sections. 962 963 The description of an argument or feature 'name' starts with 964 '\@name:'. The description text can start on the line following the 965 '\@name:', in which case it must not be indented at all. It can also 966 start on the same line as the '\@name:'. In this case if it spans 967 multiple lines then second and subsequent lines must be indented to 968 line up with the first character of the first line of the 969 description:: 970 971 # @argone: 972 # This is a two line description 973 # in the first style. 974 # 975 # @argtwo: This is a two line description 976 # in the second style. 977 978 The number of spaces between the ':' and the text is not significant. 979 980 .. admonition:: FIXME 981 982 The parser accepts these things in almost any order. 983 984 .. admonition:: FIXME 985 986 union branches should be described, too. 987 988 Extensions added after the definition was first released carry a 989 '(since x.y.z)' comment. 990 991 The feature descriptions must be preceded by a line "Features:", like 992 this:: 993 994 # Features: 995 # @feature: Description text 996 997 A tagged section starts with one of the following words: 998 "Note:"/"Notes:", "Since:", "Example"/"Examples", "Returns:", "TODO:". 999 The section ends with the start of a new section. 1000 1001 The text of a section can start on a new line, in 1002 which case it must not be indented at all. It can also start 1003 on the same line as the 'Note:', 'Returns:', etc tag. In this 1004 case if it spans multiple lines then second and subsequent 1005 lines must be indented to match the first, in the same way as 1006 multiline argument descriptions. 1007 1008 A 'Since: x.y.z' tagged section lists the release that introduced the 1009 definition. 1010 1011 An 'Example' or 'Examples' section is automatically rendered 1012 entirely as literal fixed-width text. In other sections, 1013 the text is formatted, and rST markup can be used. 1014 1015 For example:: 1016 1017 ## 1018 # @BlockStats: 1019 # 1020 # Statistics of a virtual block device or a block backing device. 1021 # 1022 # @device: If the stats are for a virtual block device, the name 1023 # corresponding to the virtual block device. 1024 # 1025 # @node-name: The node name of the device. (since 2.3) 1026 # 1027 # ... more members ... 1028 # 1029 # Since: 0.14.0 1030 ## 1031 { 'struct': 'BlockStats', 1032 'data': {'*device': 'str', '*node-name': 'str', 1033 ... more members ... } } 1034 1035 ## 1036 # @query-blockstats: 1037 # 1038 # Query the @BlockStats for all virtual block devices. 1039 # 1040 # @query-nodes: If true, the command will query all the 1041 # block nodes ... explain, explain ... (since 2.3) 1042 # 1043 # Returns: A list of @BlockStats for each virtual block devices. 1044 # 1045 # Since: 0.14.0 1046 # 1047 # Example: 1048 # 1049 # -> { "execute": "query-blockstats" } 1050 # <- { 1051 # ... lots of output ... 1052 # } 1053 # 1054 ## 1055 { 'command': 'query-blockstats', 1056 'data': { '*query-nodes': 'bool' }, 1057 'returns': ['BlockStats'] } 1058 1059 1060 Client JSON Protocol introspection 1061 ================================== 1062 1063 Clients of a Client JSON Protocol commonly need to figure out what 1064 exactly the server (QEMU) supports. 1065 1066 For this purpose, QMP provides introspection via command 1067 query-qmp-schema. QGA currently doesn't support introspection. 1068 1069 While Client JSON Protocol wire compatibility should be maintained 1070 between qemu versions, we cannot make the same guarantees for 1071 introspection stability. For example, one version of qemu may provide 1072 a non-variant optional member of a struct, and a later version rework 1073 the member to instead be non-optional and associated with a variant. 1074 Likewise, one version of qemu may list a member with open-ended type 1075 'str', and a later version could convert it to a finite set of strings 1076 via an enum type; or a member may be converted from a specific type to 1077 an alternate that represents a choice between the original type and 1078 something else. 1079 1080 query-qmp-schema returns a JSON array of SchemaInfo objects. These 1081 objects together describe the wire ABI, as defined in the QAPI schema. 1082 There is no specified order to the SchemaInfo objects returned; a 1083 client must search for a particular name throughout the entire array 1084 to learn more about that name, but is at least guaranteed that there 1085 will be no collisions between type, command, and event names. 1086 1087 However, the SchemaInfo can't reflect all the rules and restrictions 1088 that apply to QMP. It's interface introspection (figuring out what's 1089 there), not interface specification. The specification is in the QAPI 1090 schema. To understand how QMP is to be used, you need to study the 1091 QAPI schema. 1092 1093 Like any other command, query-qmp-schema is itself defined in the QAPI 1094 schema, along with the SchemaInfo type. This text attempts to give an 1095 overview how things work. For details you need to consult the QAPI 1096 schema. 1097 1098 SchemaInfo objects have common members "name", "meta-type", 1099 "features", and additional variant members depending on the value of 1100 meta-type. 1101 1102 Each SchemaInfo object describes a wire ABI entity of a certain 1103 meta-type: a command, event or one of several kinds of type. 1104 1105 SchemaInfo for commands and events have the same name as in the QAPI 1106 schema. 1107 1108 Command and event names are part of the wire ABI, but type names are 1109 not. Therefore, the SchemaInfo for types have auto-generated 1110 meaningless names. For readability, the examples in this section use 1111 meaningful type names instead. 1112 1113 Optional member "features" exposes the entity's feature strings as a 1114 JSON array of strings. 1115 1116 To examine a type, start with a command or event using it, then follow 1117 references by name. 1118 1119 QAPI schema definitions not reachable that way are omitted. 1120 1121 The SchemaInfo for a command has meta-type "command", and variant 1122 members "arg-type", "ret-type" and "allow-oob". On the wire, the 1123 "arguments" member of a client's "execute" command must conform to the 1124 object type named by "arg-type". The "return" member that the server 1125 passes in a success response conforms to the type named by "ret-type". 1126 When "allow-oob" is true, it means the command supports out-of-band 1127 execution. It defaults to false. 1128 1129 If the command takes no arguments, "arg-type" names an object type 1130 without members. Likewise, if the command returns nothing, "ret-type" 1131 names an object type without members. 1132 1133 Example: the SchemaInfo for command query-qmp-schema :: 1134 1135 { "name": "query-qmp-schema", "meta-type": "command", 1136 "arg-type": "q_empty", "ret-type": "SchemaInfoList" } 1137 1138 Type "q_empty" is an automatic object type without members, and type 1139 "SchemaInfoList" is the array of SchemaInfo type. 1140 1141 The SchemaInfo for an event has meta-type "event", and variant member 1142 "arg-type". On the wire, a "data" member that the server passes in an 1143 event conforms to the object type named by "arg-type". 1144 1145 If the event carries no additional information, "arg-type" names an 1146 object type without members. The event may not have a data member on 1147 the wire then. 1148 1149 Each command or event defined with 'data' as MEMBERS object in the 1150 QAPI schema implicitly defines an object type. 1151 1152 Example: the SchemaInfo for EVENT_C from section Events_ :: 1153 1154 { "name": "EVENT_C", "meta-type": "event", 1155 "arg-type": "q_obj-EVENT_C-arg" } 1156 1157 Type "q_obj-EVENT_C-arg" is an implicitly defined object type with 1158 the two members from the event's definition. 1159 1160 The SchemaInfo for struct and union types has meta-type "object". 1161 1162 The SchemaInfo for a struct type has variant member "members". 1163 1164 The SchemaInfo for a union type additionally has variant members "tag" 1165 and "variants". 1166 1167 "members" is a JSON array describing the object's common members, if 1168 any. Each element is a JSON object with members "name" (the member's 1169 name), "type" (the name of its type), "features" (a JSON array of 1170 feature strings), and "default". The latter two are optional. The 1171 member is optional if "default" is present. Currently, "default" can 1172 only have value null. Other values are reserved for future 1173 extensions. The "members" array is in no particular order; clients 1174 must search the entire object when learning whether a particular 1175 member is supported. 1176 1177 Example: the SchemaInfo for MyType from section `Struct types`_ :: 1178 1179 { "name": "MyType", "meta-type": "object", 1180 "members": [ 1181 { "name": "member1", "type": "str" }, 1182 { "name": "member2", "type": "int" }, 1183 { "name": "member3", "type": "str", "default": null } ] } 1184 1185 "features" exposes the command's feature strings as a JSON array of 1186 strings. 1187 1188 Example: the SchemaInfo for TestType from section Features_:: 1189 1190 { "name": "TestType", "meta-type": "object", 1191 "members": [ 1192 { "name": "number", "type": "int" } ], 1193 "features": ["allow-negative-numbers"] } 1194 1195 "tag" is the name of the common member serving as type tag. 1196 "variants" is a JSON array describing the object's variant members. 1197 Each element is a JSON object with members "case" (the value of type 1198 tag this element applies to) and "type" (the name of an object type 1199 that provides the variant members for this type tag value). The 1200 "variants" array is in no particular order, and is not guaranteed to 1201 list cases in the same order as the corresponding "tag" enum type. 1202 1203 Example: the SchemaInfo for union BlockdevOptions from section 1204 `Union types`_ :: 1205 1206 { "name": "BlockdevOptions", "meta-type": "object", 1207 "members": [ 1208 { "name": "driver", "type": "BlockdevDriver" }, 1209 { "name": "read-only", "type": "bool", "default": null } ], 1210 "tag": "driver", 1211 "variants": [ 1212 { "case": "file", "type": "BlockdevOptionsFile" }, 1213 { "case": "qcow2", "type": "BlockdevOptionsQcow2" } ] } 1214 1215 Note that base types are "flattened": its members are included in the 1216 "members" array. 1217 1218 The SchemaInfo for an alternate type has meta-type "alternate", and 1219 variant member "members". "members" is a JSON array. Each element is 1220 a JSON object with member "type", which names a type. Values of the 1221 alternate type conform to exactly one of its member types. There is 1222 no guarantee on the order in which "members" will be listed. 1223 1224 Example: the SchemaInfo for BlockdevRef from section `Alternate types`_ :: 1225 1226 { "name": "BlockdevRef", "meta-type": "alternate", 1227 "members": [ 1228 { "type": "BlockdevOptions" }, 1229 { "type": "str" } ] } 1230 1231 The SchemaInfo for an array type has meta-type "array", and variant 1232 member "element-type", which names the array's element type. Array 1233 types are implicitly defined. For convenience, the array's name may 1234 resemble the element type; however, clients should examine member 1235 "element-type" instead of making assumptions based on parsing member 1236 "name". 1237 1238 Example: the SchemaInfo for ['str'] :: 1239 1240 { "name": "[str]", "meta-type": "array", 1241 "element-type": "str" } 1242 1243 The SchemaInfo for an enumeration type has meta-type "enum" and 1244 variant member "members". 1245 1246 "members" is a JSON array describing the enumeration values. Each 1247 element is a JSON object with member "name" (the member's name), and 1248 optionally "features" (a JSON array of feature strings). The 1249 "members" array is in no particular order; clients must search the 1250 entire array when learning whether a particular value is supported. 1251 1252 Example: the SchemaInfo for MyEnum from section `Enumeration types`_ :: 1253 1254 { "name": "MyEnum", "meta-type": "enum", 1255 "members": [ 1256 { "name": "value1" }, 1257 { "name": "value2" }, 1258 { "name": "value3" } 1259 ] } 1260 1261 The SchemaInfo for a built-in type has the same name as the type in 1262 the QAPI schema (see section `Built-in Types`_), with one exception 1263 detailed below. It has variant member "json-type" that shows how 1264 values of this type are encoded on the wire. 1265 1266 Example: the SchemaInfo for str :: 1267 1268 { "name": "str", "meta-type": "builtin", "json-type": "string" } 1269 1270 The QAPI schema supports a number of integer types that only differ in 1271 how they map to C. They are identical as far as SchemaInfo is 1272 concerned. Therefore, they get all mapped to a single type "int" in 1273 SchemaInfo. 1274 1275 As explained above, type names are not part of the wire ABI. Not even 1276 the names of built-in types. Clients should examine member 1277 "json-type" instead of hard-coding names of built-in types. 1278 1279 1280 Compatibility considerations 1281 ============================ 1282 1283 Maintaining backward compatibility at the Client JSON Protocol level 1284 while evolving the schema requires some care. This section is about 1285 syntactic compatibility, which is necessary, but not sufficient, for 1286 actual compatibility. 1287 1288 Clients send commands with argument data, and receive command 1289 responses with return data and events with event data. 1290 1291 Adding opt-in functionality to the send direction is backwards 1292 compatible: adding commands, optional arguments, enumeration values, 1293 union and alternate branches; turning an argument type into an 1294 alternate of that type; making mandatory arguments optional. Clients 1295 oblivious of the new functionality continue to work. 1296 1297 Incompatible changes include removing commands, command arguments, 1298 enumeration values, union and alternate branches, adding mandatory 1299 command arguments, and making optional arguments mandatory. 1300 1301 The specified behavior of an absent optional argument should remain 1302 the same. With proper documentation, this policy still allows some 1303 flexibility; for example, when an optional 'buffer-size' argument is 1304 specified to default to a sensible buffer size, the actual default 1305 value can still be changed. The specified default behavior is not the 1306 exact size of the buffer, only that the default size is sensible. 1307 1308 Adding functionality to the receive direction is generally backwards 1309 compatible: adding events, adding return and event data members. 1310 Clients are expected to ignore the ones they don't know. 1311 1312 Removing "unreachable" stuff like events that can't be triggered 1313 anymore, optional return or event data members that can't be sent 1314 anymore, and return or event data member (enumeration) values that 1315 can't be sent anymore makes no difference to clients, except for 1316 introspection. The latter can conceivably confuse clients, so tread 1317 carefully. 1318 1319 Incompatible changes include removing return and event data members. 1320 1321 Any change to a command definition's 'data' or one of the types used 1322 there (recursively) needs to consider send direction compatibility. 1323 1324 Any change to a command definition's 'return', an event definition's 1325 'data', or one of the types used there (recursively) needs to consider 1326 receive direction compatibility. 1327 1328 Any change to types used in both contexts need to consider both. 1329 1330 Enumeration type values and complex and alternate type members may be 1331 reordered freely. For enumerations and alternate types, this doesn't 1332 affect the wire encoding. For complex types, this might make the 1333 implementation emit JSON object members in a different order, which 1334 the Client JSON Protocol permits. 1335 1336 Since type names are not visible in the Client JSON Protocol, types 1337 may be freely renamed. Even certain refactorings are invisible, such 1338 as splitting members from one type into a common base type. 1339 1340 1341 Code generation 1342 =============== 1343 1344 The QAPI code generator qapi-gen.py generates code and documentation 1345 from the schema. Together with the core QAPI libraries, this code 1346 provides everything required to take JSON commands read in by a Client 1347 JSON Protocol server, unmarshal the arguments into the underlying C 1348 types, call into the corresponding C function, map the response back 1349 to a Client JSON Protocol response to be returned to the user, and 1350 introspect the commands. 1351 1352 As an example, we'll use the following schema, which describes a 1353 single complex user-defined type, along with command which takes a 1354 list of that type as a parameter, and returns a single element of that 1355 type. The user is responsible for writing the implementation of 1356 qmp_my_command(); everything else is produced by the generator. :: 1357 1358 $ cat example-schema.json 1359 { 'struct': 'UserDefOne', 1360 'data': { 'integer': 'int', '*string': 'str' } } 1361 1362 { 'command': 'my-command', 1363 'data': { 'arg1': ['UserDefOne'] }, 1364 'returns': 'UserDefOne' } 1365 1366 { 'event': 'MY_EVENT' } 1367 1368 We run qapi-gen.py like this:: 1369 1370 $ python scripts/qapi-gen.py --output-dir="qapi-generated" \ 1371 --prefix="example-" example-schema.json 1372 1373 For a more thorough look at generated code, the testsuite includes 1374 tests/qapi-schema/qapi-schema-tests.json that covers more examples of 1375 what the generator will accept, and compiles the resulting C code as 1376 part of 'make check-unit'. 1377 1378 1379 Code generated for QAPI types 1380 ----------------------------- 1381 1382 The following files are created: 1383 1384 ``$(prefix)qapi-types.h`` 1385 C types corresponding to types defined in the schema 1386 1387 ``$(prefix)qapi-types.c`` 1388 Cleanup functions for the above C types 1389 1390 The $(prefix) is an optional parameter used as a namespace to keep the 1391 generated code from one schema/code-generation separated from others so code 1392 can be generated/used from multiple schemas without clobbering previously 1393 created code. 1394 1395 Example:: 1396 1397 $ cat qapi-generated/example-qapi-types.h 1398 [Uninteresting stuff omitted...] 1399 1400 #ifndef EXAMPLE_QAPI_TYPES_H 1401 #define EXAMPLE_QAPI_TYPES_H 1402 1403 #include "qapi/qapi-builtin-types.h" 1404 1405 typedef struct UserDefOne UserDefOne; 1406 1407 typedef struct UserDefOneList UserDefOneList; 1408 1409 typedef struct q_obj_my_command_arg q_obj_my_command_arg; 1410 1411 struct UserDefOne { 1412 int64_t integer; 1413 bool has_string; 1414 char *string; 1415 }; 1416 1417 void qapi_free_UserDefOne(UserDefOne *obj); 1418 G_DEFINE_AUTOPTR_CLEANUP_FUNC(UserDefOne, qapi_free_UserDefOne) 1419 1420 struct UserDefOneList { 1421 UserDefOneList *next; 1422 UserDefOne *value; 1423 }; 1424 1425 void qapi_free_UserDefOneList(UserDefOneList *obj); 1426 G_DEFINE_AUTOPTR_CLEANUP_FUNC(UserDefOneList, qapi_free_UserDefOneList) 1427 1428 struct q_obj_my_command_arg { 1429 UserDefOneList *arg1; 1430 }; 1431 1432 #endif /* EXAMPLE_QAPI_TYPES_H */ 1433 $ cat qapi-generated/example-qapi-types.c 1434 [Uninteresting stuff omitted...] 1435 1436 void qapi_free_UserDefOne(UserDefOne *obj) 1437 { 1438 Visitor *v; 1439 1440 if (!obj) { 1441 return; 1442 } 1443 1444 v = qapi_dealloc_visitor_new(); 1445 visit_type_UserDefOne(v, NULL, &obj, NULL); 1446 visit_free(v); 1447 } 1448 1449 void qapi_free_UserDefOneList(UserDefOneList *obj) 1450 { 1451 Visitor *v; 1452 1453 if (!obj) { 1454 return; 1455 } 1456 1457 v = qapi_dealloc_visitor_new(); 1458 visit_type_UserDefOneList(v, NULL, &obj, NULL); 1459 visit_free(v); 1460 } 1461 1462 [Uninteresting stuff omitted...] 1463 1464 For a modular QAPI schema (see section `Include directives`_), code for 1465 each sub-module SUBDIR/SUBMODULE.json is actually generated into :: 1466 1467 SUBDIR/$(prefix)qapi-types-SUBMODULE.h 1468 SUBDIR/$(prefix)qapi-types-SUBMODULE.c 1469 1470 If qapi-gen.py is run with option --builtins, additional files are 1471 created: 1472 1473 ``qapi-builtin-types.h`` 1474 C types corresponding to built-in types 1475 1476 ``qapi-builtin-types.c`` 1477 Cleanup functions for the above C types 1478 1479 1480 Code generated for visiting QAPI types 1481 -------------------------------------- 1482 1483 These are the visitor functions used to walk through and convert 1484 between a native QAPI C data structure and some other format (such as 1485 QObject); the generated functions are named visit_type_FOO() and 1486 visit_type_FOO_members(). 1487 1488 The following files are generated: 1489 1490 ``$(prefix)qapi-visit.c`` 1491 Visitor function for a particular C type, used to automagically 1492 convert QObjects into the corresponding C type and vice-versa, as 1493 well as for deallocating memory for an existing C type 1494 1495 ``$(prefix)qapi-visit.h`` 1496 Declarations for previously mentioned visitor functions 1497 1498 Example:: 1499 1500 $ cat qapi-generated/example-qapi-visit.h 1501 [Uninteresting stuff omitted...] 1502 1503 #ifndef EXAMPLE_QAPI_VISIT_H 1504 #define EXAMPLE_QAPI_VISIT_H 1505 1506 #include "qapi/qapi-builtin-visit.h" 1507 #include "example-qapi-types.h" 1508 1509 1510 bool visit_type_UserDefOne_members(Visitor *v, UserDefOne *obj, Error **errp); 1511 1512 bool visit_type_UserDefOne(Visitor *v, const char *name, 1513 UserDefOne **obj, Error **errp); 1514 1515 bool visit_type_UserDefOneList(Visitor *v, const char *name, 1516 UserDefOneList **obj, Error **errp); 1517 1518 bool visit_type_q_obj_my_command_arg_members(Visitor *v, q_obj_my_command_arg *obj, Error **errp); 1519 1520 #endif /* EXAMPLE_QAPI_VISIT_H */ 1521 $ cat qapi-generated/example-qapi-visit.c 1522 [Uninteresting stuff omitted...] 1523 1524 bool visit_type_UserDefOne_members(Visitor *v, UserDefOne *obj, Error **errp) 1525 { 1526 if (!visit_type_int(v, "integer", &obj->integer, errp)) { 1527 return false; 1528 } 1529 if (visit_optional(v, "string", &obj->has_string)) { 1530 if (!visit_type_str(v, "string", &obj->string, errp)) { 1531 return false; 1532 } 1533 } 1534 return true; 1535 } 1536 1537 bool visit_type_UserDefOne(Visitor *v, const char *name, 1538 UserDefOne **obj, Error **errp) 1539 { 1540 bool ok = false; 1541 1542 if (!visit_start_struct(v, name, (void **)obj, sizeof(UserDefOne), errp)) { 1543 return false; 1544 } 1545 if (!*obj) { 1546 /* incomplete */ 1547 assert(visit_is_dealloc(v)); 1548 ok = true; 1549 goto out_obj; 1550 } 1551 if (!visit_type_UserDefOne_members(v, *obj, errp)) { 1552 goto out_obj; 1553 } 1554 ok = visit_check_struct(v, errp); 1555 out_obj: 1556 visit_end_struct(v, (void **)obj); 1557 if (!ok && visit_is_input(v)) { 1558 qapi_free_UserDefOne(*obj); 1559 *obj = NULL; 1560 } 1561 return ok; 1562 } 1563 1564 bool visit_type_UserDefOneList(Visitor *v, const char *name, 1565 UserDefOneList **obj, Error **errp) 1566 { 1567 bool ok = false; 1568 UserDefOneList *tail; 1569 size_t size = sizeof(**obj); 1570 1571 if (!visit_start_list(v, name, (GenericList **)obj, size, errp)) { 1572 return false; 1573 } 1574 1575 for (tail = *obj; tail; 1576 tail = (UserDefOneList *)visit_next_list(v, (GenericList *)tail, size)) { 1577 if (!visit_type_UserDefOne(v, NULL, &tail->value, errp)) { 1578 goto out_obj; 1579 } 1580 } 1581 1582 ok = visit_check_list(v, errp); 1583 out_obj: 1584 visit_end_list(v, (void **)obj); 1585 if (!ok && visit_is_input(v)) { 1586 qapi_free_UserDefOneList(*obj); 1587 *obj = NULL; 1588 } 1589 return ok; 1590 } 1591 1592 bool visit_type_q_obj_my_command_arg_members(Visitor *v, q_obj_my_command_arg *obj, Error **errp) 1593 { 1594 if (!visit_type_UserDefOneList(v, "arg1", &obj->arg1, errp)) { 1595 return false; 1596 } 1597 return true; 1598 } 1599 1600 [Uninteresting stuff omitted...] 1601 1602 For a modular QAPI schema (see section `Include directives`_), code for 1603 each sub-module SUBDIR/SUBMODULE.json is actually generated into :: 1604 1605 SUBDIR/$(prefix)qapi-visit-SUBMODULE.h 1606 SUBDIR/$(prefix)qapi-visit-SUBMODULE.c 1607 1608 If qapi-gen.py is run with option --builtins, additional files are 1609 created: 1610 1611 ``qapi-builtin-visit.h`` 1612 Visitor functions for built-in types 1613 1614 ``qapi-builtin-visit.c`` 1615 Declarations for these visitor functions 1616 1617 1618 Code generated for commands 1619 --------------------------- 1620 1621 These are the marshaling/dispatch functions for the commands defined 1622 in the schema. The generated code provides qmp_marshal_COMMAND(), and 1623 declares qmp_COMMAND() that the user must implement. 1624 1625 The following files are generated: 1626 1627 ``$(prefix)qapi-commands.c`` 1628 Command marshal/dispatch functions for each QMP command defined in 1629 the schema 1630 1631 ``$(prefix)qapi-commands.h`` 1632 Function prototypes for the QMP commands specified in the schema 1633 1634 ``$(prefix)qapi-commands.trace-events`` 1635 Trace event declarations, see :ref:`tracing`. 1636 1637 ``$(prefix)qapi-init-commands.h`` 1638 Command initialization prototype 1639 1640 ``$(prefix)qapi-init-commands.c`` 1641 Command initialization code 1642 1643 Example:: 1644 1645 $ cat qapi-generated/example-qapi-commands.h 1646 [Uninteresting stuff omitted...] 1647 1648 #ifndef EXAMPLE_QAPI_COMMANDS_H 1649 #define EXAMPLE_QAPI_COMMANDS_H 1650 1651 #include "example-qapi-types.h" 1652 1653 UserDefOne *qmp_my_command(UserDefOneList *arg1, Error **errp); 1654 void qmp_marshal_my_command(QDict *args, QObject **ret, Error **errp); 1655 1656 #endif /* EXAMPLE_QAPI_COMMANDS_H */ 1657 1658 $ cat qapi-generated/example-qapi-commands.trace-events 1659 # AUTOMATICALLY GENERATED, DO NOT MODIFY 1660 1661 qmp_enter_my_command(const char *json) "%s" 1662 qmp_exit_my_command(const char *result, bool succeeded) "%s %d" 1663 1664 $ cat qapi-generated/example-qapi-commands.c 1665 [Uninteresting stuff omitted...] 1666 1667 1668 static void qmp_marshal_output_UserDefOne(UserDefOne *ret_in, 1669 QObject **ret_out, Error **errp) 1670 { 1671 Visitor *v; 1672 1673 v = qobject_output_visitor_new_qmp(ret_out); 1674 if (visit_type_UserDefOne(v, "unused", &ret_in, errp)) { 1675 visit_complete(v, ret_out); 1676 } 1677 visit_free(v); 1678 v = qapi_dealloc_visitor_new(); 1679 visit_type_UserDefOne(v, "unused", &ret_in, NULL); 1680 visit_free(v); 1681 } 1682 1683 void qmp_marshal_my_command(QDict *args, QObject **ret, Error **errp) 1684 { 1685 Error *err = NULL; 1686 bool ok = false; 1687 Visitor *v; 1688 UserDefOne *retval; 1689 q_obj_my_command_arg arg = {0}; 1690 1691 v = qobject_input_visitor_new_qmp(QOBJECT(args)); 1692 if (!visit_start_struct(v, NULL, NULL, 0, errp)) { 1693 goto out; 1694 } 1695 if (visit_type_q_obj_my_command_arg_members(v, &arg, errp)) { 1696 ok = visit_check_struct(v, errp); 1697 } 1698 visit_end_struct(v, NULL); 1699 if (!ok) { 1700 goto out; 1701 } 1702 1703 if (trace_event_get_state_backends(TRACE_QMP_ENTER_MY_COMMAND)) { 1704 g_autoptr(GString) req_json = qobject_to_json(QOBJECT(args)); 1705 1706 trace_qmp_enter_my_command(req_json->str); 1707 } 1708 1709 retval = qmp_my_command(arg.arg1, &err); 1710 if (err) { 1711 trace_qmp_exit_my_command(error_get_pretty(err), false); 1712 error_propagate(errp, err); 1713 goto out; 1714 } 1715 1716 qmp_marshal_output_UserDefOne(retval, ret, errp); 1717 1718 if (trace_event_get_state_backends(TRACE_QMP_EXIT_MY_COMMAND)) { 1719 g_autoptr(GString) ret_json = qobject_to_json(*ret); 1720 1721 trace_qmp_exit_my_command(ret_json->str, true); 1722 } 1723 1724 out: 1725 visit_free(v); 1726 v = qapi_dealloc_visitor_new(); 1727 visit_start_struct(v, NULL, NULL, 0, NULL); 1728 visit_type_q_obj_my_command_arg_members(v, &arg, NULL); 1729 visit_end_struct(v, NULL); 1730 visit_free(v); 1731 } 1732 1733 [Uninteresting stuff omitted...] 1734 $ cat qapi-generated/example-qapi-init-commands.h 1735 [Uninteresting stuff omitted...] 1736 #ifndef EXAMPLE_QAPI_INIT_COMMANDS_H 1737 #define EXAMPLE_QAPI_INIT_COMMANDS_H 1738 1739 #include "qapi/qmp/dispatch.h" 1740 1741 void example_qmp_init_marshal(QmpCommandList *cmds); 1742 1743 #endif /* EXAMPLE_QAPI_INIT_COMMANDS_H */ 1744 $ cat qapi-generated/example-qapi-init-commands.c 1745 [Uninteresting stuff omitted...] 1746 void example_qmp_init_marshal(QmpCommandList *cmds) 1747 { 1748 QTAILQ_INIT(cmds); 1749 1750 qmp_register_command(cmds, "my-command", 1751 qmp_marshal_my_command, QCO_NO_OPTIONS); 1752 } 1753 [Uninteresting stuff omitted...] 1754 1755 For a modular QAPI schema (see section `Include directives`_), code for 1756 each sub-module SUBDIR/SUBMODULE.json is actually generated into:: 1757 1758 SUBDIR/$(prefix)qapi-commands-SUBMODULE.h 1759 SUBDIR/$(prefix)qapi-commands-SUBMODULE.c 1760 1761 1762 Code generated for events 1763 ------------------------- 1764 1765 This is the code related to events defined in the schema, providing 1766 qapi_event_send_EVENT(). 1767 1768 The following files are created: 1769 1770 ``$(prefix)qapi-events.h`` 1771 Function prototypes for each event type 1772 1773 ``$(prefix)qapi-events.c`` 1774 Implementation of functions to send an event 1775 1776 ``$(prefix)qapi-emit-events.h`` 1777 Enumeration of all event names, and common event code declarations 1778 1779 ``$(prefix)qapi-emit-events.c`` 1780 Common event code definitions 1781 1782 Example:: 1783 1784 $ cat qapi-generated/example-qapi-events.h 1785 [Uninteresting stuff omitted...] 1786 1787 #ifndef EXAMPLE_QAPI_EVENTS_H 1788 #define EXAMPLE_QAPI_EVENTS_H 1789 1790 #include "qapi/util.h" 1791 #include "example-qapi-types.h" 1792 1793 void qapi_event_send_my_event(void); 1794 1795 #endif /* EXAMPLE_QAPI_EVENTS_H */ 1796 $ cat qapi-generated/example-qapi-events.c 1797 [Uninteresting stuff omitted...] 1798 1799 void qapi_event_send_my_event(void) 1800 { 1801 QDict *qmp; 1802 1803 qmp = qmp_event_build_dict("MY_EVENT"); 1804 1805 example_qapi_event_emit(EXAMPLE_QAPI_EVENT_MY_EVENT, qmp); 1806 1807 qobject_unref(qmp); 1808 } 1809 1810 [Uninteresting stuff omitted...] 1811 $ cat qapi-generated/example-qapi-emit-events.h 1812 [Uninteresting stuff omitted...] 1813 1814 #ifndef EXAMPLE_QAPI_EMIT_EVENTS_H 1815 #define EXAMPLE_QAPI_EMIT_EVENTS_H 1816 1817 #include "qapi/util.h" 1818 1819 typedef enum example_QAPIEvent { 1820 EXAMPLE_QAPI_EVENT_MY_EVENT, 1821 EXAMPLE_QAPI_EVENT__MAX, 1822 } example_QAPIEvent; 1823 1824 #define example_QAPIEvent_str(val) \ 1825 qapi_enum_lookup(&example_QAPIEvent_lookup, (val)) 1826 1827 extern const QEnumLookup example_QAPIEvent_lookup; 1828 1829 void example_qapi_event_emit(example_QAPIEvent event, QDict *qdict); 1830 1831 #endif /* EXAMPLE_QAPI_EMIT_EVENTS_H */ 1832 $ cat qapi-generated/example-qapi-emit-events.c 1833 [Uninteresting stuff omitted...] 1834 1835 const QEnumLookup example_QAPIEvent_lookup = { 1836 .array = (const char *const[]) { 1837 [EXAMPLE_QAPI_EVENT_MY_EVENT] = "MY_EVENT", 1838 }, 1839 .size = EXAMPLE_QAPI_EVENT__MAX 1840 }; 1841 1842 [Uninteresting stuff omitted...] 1843 1844 For a modular QAPI schema (see section `Include directives`_), code for 1845 each sub-module SUBDIR/SUBMODULE.json is actually generated into :: 1846 1847 SUBDIR/$(prefix)qapi-events-SUBMODULE.h 1848 SUBDIR/$(prefix)qapi-events-SUBMODULE.c 1849 1850 1851 Code generated for introspection 1852 -------------------------------- 1853 1854 The following files are created: 1855 1856 ``$(prefix)qapi-introspect.c`` 1857 Defines a string holding a JSON description of the schema 1858 1859 ``$(prefix)qapi-introspect.h`` 1860 Declares the above string 1861 1862 Example:: 1863 1864 $ cat qapi-generated/example-qapi-introspect.h 1865 [Uninteresting stuff omitted...] 1866 1867 #ifndef EXAMPLE_QAPI_INTROSPECT_H 1868 #define EXAMPLE_QAPI_INTROSPECT_H 1869 1870 #include "qapi/qmp/qlit.h" 1871 1872 extern const QLitObject example_qmp_schema_qlit; 1873 1874 #endif /* EXAMPLE_QAPI_INTROSPECT_H */ 1875 $ cat qapi-generated/example-qapi-introspect.c 1876 [Uninteresting stuff omitted...] 1877 1878 const QLitObject example_qmp_schema_qlit = QLIT_QLIST(((QLitObject[]) { 1879 QLIT_QDICT(((QLitDictEntry[]) { 1880 { "arg-type", QLIT_QSTR("0"), }, 1881 { "meta-type", QLIT_QSTR("command"), }, 1882 { "name", QLIT_QSTR("my-command"), }, 1883 { "ret-type", QLIT_QSTR("1"), }, 1884 {} 1885 })), 1886 QLIT_QDICT(((QLitDictEntry[]) { 1887 { "arg-type", QLIT_QSTR("2"), }, 1888 { "meta-type", QLIT_QSTR("event"), }, 1889 { "name", QLIT_QSTR("MY_EVENT"), }, 1890 {} 1891 })), 1892 /* "0" = q_obj_my-command-arg */ 1893 QLIT_QDICT(((QLitDictEntry[]) { 1894 { "members", QLIT_QLIST(((QLitObject[]) { 1895 QLIT_QDICT(((QLitDictEntry[]) { 1896 { "name", QLIT_QSTR("arg1"), }, 1897 { "type", QLIT_QSTR("[1]"), }, 1898 {} 1899 })), 1900 {} 1901 })), }, 1902 { "meta-type", QLIT_QSTR("object"), }, 1903 { "name", QLIT_QSTR("0"), }, 1904 {} 1905 })), 1906 /* "1" = UserDefOne */ 1907 QLIT_QDICT(((QLitDictEntry[]) { 1908 { "members", QLIT_QLIST(((QLitObject[]) { 1909 QLIT_QDICT(((QLitDictEntry[]) { 1910 { "name", QLIT_QSTR("integer"), }, 1911 { "type", QLIT_QSTR("int"), }, 1912 {} 1913 })), 1914 QLIT_QDICT(((QLitDictEntry[]) { 1915 { "default", QLIT_QNULL, }, 1916 { "name", QLIT_QSTR("string"), }, 1917 { "type", QLIT_QSTR("str"), }, 1918 {} 1919 })), 1920 {} 1921 })), }, 1922 { "meta-type", QLIT_QSTR("object"), }, 1923 { "name", QLIT_QSTR("1"), }, 1924 {} 1925 })), 1926 /* "2" = q_empty */ 1927 QLIT_QDICT(((QLitDictEntry[]) { 1928 { "members", QLIT_QLIST(((QLitObject[]) { 1929 {} 1930 })), }, 1931 { "meta-type", QLIT_QSTR("object"), }, 1932 { "name", QLIT_QSTR("2"), }, 1933 {} 1934 })), 1935 QLIT_QDICT(((QLitDictEntry[]) { 1936 { "element-type", QLIT_QSTR("1"), }, 1937 { "meta-type", QLIT_QSTR("array"), }, 1938 { "name", QLIT_QSTR("[1]"), }, 1939 {} 1940 })), 1941 QLIT_QDICT(((QLitDictEntry[]) { 1942 { "json-type", QLIT_QSTR("int"), }, 1943 { "meta-type", QLIT_QSTR("builtin"), }, 1944 { "name", QLIT_QSTR("int"), }, 1945 {} 1946 })), 1947 QLIT_QDICT(((QLitDictEntry[]) { 1948 { "json-type", QLIT_QSTR("string"), }, 1949 { "meta-type", QLIT_QSTR("builtin"), }, 1950 { "name", QLIT_QSTR("str"), }, 1951 {} 1952 })), 1953 {} 1954 })); 1955 1956 [Uninteresting stuff omitted...]