qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

cache.c (24286B)


      1 /*
      2  * Copyright (C) 2021, Mahmoud Mandour <ma.mandourr@gmail.com>
      3  *
      4  * License: GNU GPL, version 2 or later.
      5  *   See the COPYING file in the top-level directory.
      6  */
      7 
      8 #include <inttypes.h>
      9 #include <stdio.h>
     10 #include <glib.h>
     11 
     12 #include <qemu-plugin.h>
     13 
     14 #define STRTOLL(x) g_ascii_strtoll(x, NULL, 10)
     15 
     16 QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION;
     17 
     18 static enum qemu_plugin_mem_rw rw = QEMU_PLUGIN_MEM_RW;
     19 
     20 static GHashTable *miss_ht;
     21 
     22 static GMutex hashtable_lock;
     23 static GRand *rng;
     24 
     25 static int limit;
     26 static bool sys;
     27 
     28 enum EvictionPolicy {
     29     LRU,
     30     FIFO,
     31     RAND,
     32 };
     33 
     34 enum EvictionPolicy policy;
     35 
     36 /*
     37  * A CacheSet is a set of cache blocks. A memory block that maps to a set can be
     38  * put in any of the blocks inside the set. The number of block per set is
     39  * called the associativity (assoc).
     40  *
     41  * Each block contains the stored tag and a valid bit. Since this is not
     42  * a functional simulator, the data itself is not stored. We only identify
     43  * whether a block is in the cache or not by searching for its tag.
     44  *
     45  * In order to search for memory data in the cache, the set identifier and tag
     46  * are extracted from the address and the set is probed to see whether a tag
     47  * match occur.
     48  *
     49  * An address is logically divided into three portions: The block offset,
     50  * the set number, and the tag.
     51  *
     52  * The set number is used to identify the set in which the block may exist.
     53  * The tag is compared against all the tags of a set to search for a match. If a
     54  * match is found, then the access is a hit.
     55  *
     56  * The CacheSet also contains bookkeaping information about eviction details.
     57  */
     58 
     59 typedef struct {
     60     uint64_t tag;
     61     bool valid;
     62 } CacheBlock;
     63 
     64 typedef struct {
     65     CacheBlock *blocks;
     66     uint64_t *lru_priorities;
     67     uint64_t lru_gen_counter;
     68     GQueue *fifo_queue;
     69 } CacheSet;
     70 
     71 typedef struct {
     72     CacheSet *sets;
     73     int num_sets;
     74     int cachesize;
     75     int assoc;
     76     int blksize_shift;
     77     uint64_t set_mask;
     78     uint64_t tag_mask;
     79     uint64_t accesses;
     80     uint64_t misses;
     81 } Cache;
     82 
     83 typedef struct {
     84     char *disas_str;
     85     const char *symbol;
     86     uint64_t addr;
     87     uint64_t l1_dmisses;
     88     uint64_t l1_imisses;
     89     uint64_t l2_misses;
     90 } InsnData;
     91 
     92 void (*update_hit)(Cache *cache, int set, int blk);
     93 void (*update_miss)(Cache *cache, int set, int blk);
     94 
     95 void (*metadata_init)(Cache *cache);
     96 void (*metadata_destroy)(Cache *cache);
     97 
     98 static int cores;
     99 static Cache **l1_dcaches, **l1_icaches;
    100 
    101 static bool use_l2;
    102 static Cache **l2_ucaches;
    103 
    104 static GMutex *l1_dcache_locks;
    105 static GMutex *l1_icache_locks;
    106 static GMutex *l2_ucache_locks;
    107 
    108 static uint64_t l1_dmem_accesses;
    109 static uint64_t l1_imem_accesses;
    110 static uint64_t l1_imisses;
    111 static uint64_t l1_dmisses;
    112 
    113 static uint64_t l2_mem_accesses;
    114 static uint64_t l2_misses;
    115 
    116 static int pow_of_two(int num)
    117 {
    118     g_assert((num & (num - 1)) == 0);
    119     int ret = 0;
    120     while (num /= 2) {
    121         ret++;
    122     }
    123     return ret;
    124 }
    125 
    126 /*
    127  * LRU evection policy: For each set, a generation counter is maintained
    128  * alongside a priority array.
    129  *
    130  * On each set access, the generation counter is incremented.
    131  *
    132  * On a cache hit: The hit-block is assigned the current generation counter,
    133  * indicating that it is the most recently used block.
    134  *
    135  * On a cache miss: The block with the least priority is searched and replaced
    136  * with the newly-cached block, of which the priority is set to the current
    137  * generation number.
    138  */
    139 
    140 static void lru_priorities_init(Cache *cache)
    141 {
    142     int i;
    143 
    144     for (i = 0; i < cache->num_sets; i++) {
    145         cache->sets[i].lru_priorities = g_new0(uint64_t, cache->assoc);
    146         cache->sets[i].lru_gen_counter = 0;
    147     }
    148 }
    149 
    150 static void lru_update_blk(Cache *cache, int set_idx, int blk_idx)
    151 {
    152     CacheSet *set = &cache->sets[set_idx];
    153     set->lru_priorities[blk_idx] = cache->sets[set_idx].lru_gen_counter;
    154     set->lru_gen_counter++;
    155 }
    156 
    157 static int lru_get_lru_block(Cache *cache, int set_idx)
    158 {
    159     int i, min_idx, min_priority;
    160 
    161     min_priority = cache->sets[set_idx].lru_priorities[0];
    162     min_idx = 0;
    163 
    164     for (i = 1; i < cache->assoc; i++) {
    165         if (cache->sets[set_idx].lru_priorities[i] < min_priority) {
    166             min_priority = cache->sets[set_idx].lru_priorities[i];
    167             min_idx = i;
    168         }
    169     }
    170     return min_idx;
    171 }
    172 
    173 static void lru_priorities_destroy(Cache *cache)
    174 {
    175     int i;
    176 
    177     for (i = 0; i < cache->num_sets; i++) {
    178         g_free(cache->sets[i].lru_priorities);
    179     }
    180 }
    181 
    182 /*
    183  * FIFO eviction policy: a FIFO queue is maintained for each CacheSet that
    184  * stores accesses to the cache.
    185  *
    186  * On a compulsory miss: The block index is enqueued to the fifo_queue to
    187  * indicate that it's the latest cached block.
    188  *
    189  * On a conflict miss: The first-in block is removed from the cache and the new
    190  * block is put in its place and enqueued to the FIFO queue.
    191  */
    192 
    193 static void fifo_init(Cache *cache)
    194 {
    195     int i;
    196 
    197     for (i = 0; i < cache->num_sets; i++) {
    198         cache->sets[i].fifo_queue = g_queue_new();
    199     }
    200 }
    201 
    202 static int fifo_get_first_block(Cache *cache, int set)
    203 {
    204     GQueue *q = cache->sets[set].fifo_queue;
    205     return GPOINTER_TO_INT(g_queue_pop_tail(q));
    206 }
    207 
    208 static void fifo_update_on_miss(Cache *cache, int set, int blk_idx)
    209 {
    210     GQueue *q = cache->sets[set].fifo_queue;
    211     g_queue_push_head(q, GINT_TO_POINTER(blk_idx));
    212 }
    213 
    214 static void fifo_destroy(Cache *cache)
    215 {
    216     int i;
    217 
    218     for (i = 0; i < cache->num_sets; i++) {
    219         g_queue_free(cache->sets[i].fifo_queue);
    220     }
    221 }
    222 
    223 static inline uint64_t extract_tag(Cache *cache, uint64_t addr)
    224 {
    225     return addr & cache->tag_mask;
    226 }
    227 
    228 static inline uint64_t extract_set(Cache *cache, uint64_t addr)
    229 {
    230     return (addr & cache->set_mask) >> cache->blksize_shift;
    231 }
    232 
    233 static const char *cache_config_error(int blksize, int assoc, int cachesize)
    234 {
    235     if (cachesize % blksize != 0) {
    236         return "cache size must be divisible by block size";
    237     } else if (cachesize % (blksize * assoc) != 0) {
    238         return "cache size must be divisible by set size (assoc * block size)";
    239     } else {
    240         return NULL;
    241     }
    242 }
    243 
    244 static bool bad_cache_params(int blksize, int assoc, int cachesize)
    245 {
    246     return (cachesize % blksize) != 0 || (cachesize % (blksize * assoc) != 0);
    247 }
    248 
    249 static Cache *cache_init(int blksize, int assoc, int cachesize)
    250 {
    251     Cache *cache;
    252     int i;
    253     uint64_t blk_mask;
    254 
    255     /*
    256      * This function shall not be called directly, and hence expects suitable
    257      * parameters.
    258      */
    259     g_assert(!bad_cache_params(blksize, assoc, cachesize));
    260 
    261     cache = g_new(Cache, 1);
    262     cache->assoc = assoc;
    263     cache->cachesize = cachesize;
    264     cache->num_sets = cachesize / (blksize * assoc);
    265     cache->sets = g_new(CacheSet, cache->num_sets);
    266     cache->blksize_shift = pow_of_two(blksize);
    267     cache->accesses = 0;
    268     cache->misses = 0;
    269 
    270     for (i = 0; i < cache->num_sets; i++) {
    271         cache->sets[i].blocks = g_new0(CacheBlock, assoc);
    272     }
    273 
    274     blk_mask = blksize - 1;
    275     cache->set_mask = ((cache->num_sets - 1) << cache->blksize_shift);
    276     cache->tag_mask = ~(cache->set_mask | blk_mask);
    277 
    278     if (metadata_init) {
    279         metadata_init(cache);
    280     }
    281 
    282     return cache;
    283 }
    284 
    285 static Cache **caches_init(int blksize, int assoc, int cachesize)
    286 {
    287     Cache **caches;
    288     int i;
    289 
    290     if (bad_cache_params(blksize, assoc, cachesize)) {
    291         return NULL;
    292     }
    293 
    294     caches = g_new(Cache *, cores);
    295 
    296     for (i = 0; i < cores; i++) {
    297         caches[i] = cache_init(blksize, assoc, cachesize);
    298     }
    299 
    300     return caches;
    301 }
    302 
    303 static int get_invalid_block(Cache *cache, uint64_t set)
    304 {
    305     int i;
    306 
    307     for (i = 0; i < cache->assoc; i++) {
    308         if (!cache->sets[set].blocks[i].valid) {
    309             return i;
    310         }
    311     }
    312 
    313     return -1;
    314 }
    315 
    316 static int get_replaced_block(Cache *cache, int set)
    317 {
    318     switch (policy) {
    319     case RAND:
    320         return g_rand_int_range(rng, 0, cache->assoc);
    321     case LRU:
    322         return lru_get_lru_block(cache, set);
    323     case FIFO:
    324         return fifo_get_first_block(cache, set);
    325     default:
    326         g_assert_not_reached();
    327     }
    328 }
    329 
    330 static int in_cache(Cache *cache, uint64_t addr)
    331 {
    332     int i;
    333     uint64_t tag, set;
    334 
    335     tag = extract_tag(cache, addr);
    336     set = extract_set(cache, addr);
    337 
    338     for (i = 0; i < cache->assoc; i++) {
    339         if (cache->sets[set].blocks[i].tag == tag &&
    340                 cache->sets[set].blocks[i].valid) {
    341             return i;
    342         }
    343     }
    344 
    345     return -1;
    346 }
    347 
    348 /**
    349  * access_cache(): Simulate a cache access
    350  * @cache: The cache under simulation
    351  * @addr: The address of the requested memory location
    352  *
    353  * Returns true if the requsted data is hit in the cache and false when missed.
    354  * The cache is updated on miss for the next access.
    355  */
    356 static bool access_cache(Cache *cache, uint64_t addr)
    357 {
    358     int hit_blk, replaced_blk;
    359     uint64_t tag, set;
    360 
    361     tag = extract_tag(cache, addr);
    362     set = extract_set(cache, addr);
    363 
    364     hit_blk = in_cache(cache, addr);
    365     if (hit_blk != -1) {
    366         if (update_hit) {
    367             update_hit(cache, set, hit_blk);
    368         }
    369         return true;
    370     }
    371 
    372     replaced_blk = get_invalid_block(cache, set);
    373 
    374     if (replaced_blk == -1) {
    375         replaced_blk = get_replaced_block(cache, set);
    376     }
    377 
    378     if (update_miss) {
    379         update_miss(cache, set, replaced_blk);
    380     }
    381 
    382     cache->sets[set].blocks[replaced_blk].tag = tag;
    383     cache->sets[set].blocks[replaced_blk].valid = true;
    384 
    385     return false;
    386 }
    387 
    388 static void vcpu_mem_access(unsigned int vcpu_index, qemu_plugin_meminfo_t info,
    389                             uint64_t vaddr, void *userdata)
    390 {
    391     uint64_t effective_addr;
    392     struct qemu_plugin_hwaddr *hwaddr;
    393     int cache_idx;
    394     InsnData *insn;
    395     bool hit_in_l1;
    396 
    397     hwaddr = qemu_plugin_get_hwaddr(info, vaddr);
    398     if (hwaddr && qemu_plugin_hwaddr_is_io(hwaddr)) {
    399         return;
    400     }
    401 
    402     effective_addr = hwaddr ? qemu_plugin_hwaddr_phys_addr(hwaddr) : vaddr;
    403     cache_idx = vcpu_index % cores;
    404 
    405     g_mutex_lock(&l1_dcache_locks[cache_idx]);
    406     hit_in_l1 = access_cache(l1_dcaches[cache_idx], effective_addr);
    407     if (!hit_in_l1) {
    408         insn = (InsnData *) userdata;
    409         __atomic_fetch_add(&insn->l1_dmisses, 1, __ATOMIC_SEQ_CST);
    410         l1_dcaches[cache_idx]->misses++;
    411     }
    412     l1_dcaches[cache_idx]->accesses++;
    413     g_mutex_unlock(&l1_dcache_locks[cache_idx]);
    414 
    415     if (hit_in_l1 || !use_l2) {
    416         /* No need to access L2 */
    417         return;
    418     }
    419 
    420     g_mutex_lock(&l2_ucache_locks[cache_idx]);
    421     if (!access_cache(l2_ucaches[cache_idx], effective_addr)) {
    422         insn = (InsnData *) userdata;
    423         __atomic_fetch_add(&insn->l2_misses, 1, __ATOMIC_SEQ_CST);
    424         l2_ucaches[cache_idx]->misses++;
    425     }
    426     l2_ucaches[cache_idx]->accesses++;
    427     g_mutex_unlock(&l2_ucache_locks[cache_idx]);
    428 }
    429 
    430 static void vcpu_insn_exec(unsigned int vcpu_index, void *userdata)
    431 {
    432     uint64_t insn_addr;
    433     InsnData *insn;
    434     int cache_idx;
    435     bool hit_in_l1;
    436 
    437     insn_addr = ((InsnData *) userdata)->addr;
    438 
    439     cache_idx = vcpu_index % cores;
    440     g_mutex_lock(&l1_icache_locks[cache_idx]);
    441     hit_in_l1 = access_cache(l1_icaches[cache_idx], insn_addr);
    442     if (!hit_in_l1) {
    443         insn = (InsnData *) userdata;
    444         __atomic_fetch_add(&insn->l1_imisses, 1, __ATOMIC_SEQ_CST);
    445         l1_icaches[cache_idx]->misses++;
    446     }
    447     l1_icaches[cache_idx]->accesses++;
    448     g_mutex_unlock(&l1_icache_locks[cache_idx]);
    449 
    450     if (hit_in_l1 || !use_l2) {
    451         /* No need to access L2 */
    452         return;
    453     }
    454 
    455     g_mutex_lock(&l2_ucache_locks[cache_idx]);
    456     if (!access_cache(l2_ucaches[cache_idx], insn_addr)) {
    457         insn = (InsnData *) userdata;
    458         __atomic_fetch_add(&insn->l2_misses, 1, __ATOMIC_SEQ_CST);
    459         l2_ucaches[cache_idx]->misses++;
    460     }
    461     l2_ucaches[cache_idx]->accesses++;
    462     g_mutex_unlock(&l2_ucache_locks[cache_idx]);
    463 }
    464 
    465 static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb)
    466 {
    467     size_t n_insns;
    468     size_t i;
    469     InsnData *data;
    470 
    471     n_insns = qemu_plugin_tb_n_insns(tb);
    472     for (i = 0; i < n_insns; i++) {
    473         struct qemu_plugin_insn *insn = qemu_plugin_tb_get_insn(tb, i);
    474         uint64_t effective_addr;
    475 
    476         if (sys) {
    477             effective_addr = (uint64_t) qemu_plugin_insn_haddr(insn);
    478         } else {
    479             effective_addr = (uint64_t) qemu_plugin_insn_vaddr(insn);
    480         }
    481 
    482         /*
    483          * Instructions might get translated multiple times, we do not create
    484          * new entries for those instructions. Instead, we fetch the same
    485          * entry from the hash table and register it for the callback again.
    486          */
    487         g_mutex_lock(&hashtable_lock);
    488         data = g_hash_table_lookup(miss_ht, GUINT_TO_POINTER(effective_addr));
    489         if (data == NULL) {
    490             data = g_new0(InsnData, 1);
    491             data->disas_str = qemu_plugin_insn_disas(insn);
    492             data->symbol = qemu_plugin_insn_symbol(insn);
    493             data->addr = effective_addr;
    494             g_hash_table_insert(miss_ht, GUINT_TO_POINTER(effective_addr),
    495                                (gpointer) data);
    496         }
    497         g_mutex_unlock(&hashtable_lock);
    498 
    499         qemu_plugin_register_vcpu_mem_cb(insn, vcpu_mem_access,
    500                                          QEMU_PLUGIN_CB_NO_REGS,
    501                                          rw, data);
    502 
    503         qemu_plugin_register_vcpu_insn_exec_cb(insn, vcpu_insn_exec,
    504                                                QEMU_PLUGIN_CB_NO_REGS, data);
    505     }
    506 }
    507 
    508 static void insn_free(gpointer data)
    509 {
    510     InsnData *insn = (InsnData *) data;
    511     g_free(insn->disas_str);
    512     g_free(insn);
    513 }
    514 
    515 static void cache_free(Cache *cache)
    516 {
    517     for (int i = 0; i < cache->num_sets; i++) {
    518         g_free(cache->sets[i].blocks);
    519     }
    520 
    521     if (metadata_destroy) {
    522         metadata_destroy(cache);
    523     }
    524 
    525     g_free(cache->sets);
    526     g_free(cache);
    527 }
    528 
    529 static void caches_free(Cache **caches)
    530 {
    531     int i;
    532 
    533     for (i = 0; i < cores; i++) {
    534         cache_free(caches[i]);
    535     }
    536 }
    537 
    538 static void append_stats_line(GString *line, uint64_t l1_daccess,
    539                               uint64_t l1_dmisses, uint64_t l1_iaccess,
    540                               uint64_t l1_imisses,  uint64_t l2_access,
    541                               uint64_t l2_misses)
    542 {
    543     double l1_dmiss_rate, l1_imiss_rate, l2_miss_rate;
    544 
    545     l1_dmiss_rate = ((double) l1_dmisses) / (l1_daccess) * 100.0;
    546     l1_imiss_rate = ((double) l1_imisses) / (l1_iaccess) * 100.0;
    547 
    548     g_string_append_printf(line, "%-14lu %-12lu %9.4lf%%  %-14lu %-12lu"
    549                            " %9.4lf%%",
    550                            l1_daccess,
    551                            l1_dmisses,
    552                            l1_daccess ? l1_dmiss_rate : 0.0,
    553                            l1_iaccess,
    554                            l1_imisses,
    555                            l1_iaccess ? l1_imiss_rate : 0.0);
    556 
    557     if (use_l2) {
    558         l2_miss_rate =  ((double) l2_misses) / (l2_access) * 100.0;
    559         g_string_append_printf(line, "  %-12lu %-11lu %10.4lf%%",
    560                                l2_access,
    561                                l2_misses,
    562                                l2_access ? l2_miss_rate : 0.0);
    563     }
    564 
    565     g_string_append(line, "\n");
    566 }
    567 
    568 static void sum_stats(void)
    569 {
    570     int i;
    571 
    572     g_assert(cores > 1);
    573     for (i = 0; i < cores; i++) {
    574         l1_imisses += l1_icaches[i]->misses;
    575         l1_dmisses += l1_dcaches[i]->misses;
    576         l1_imem_accesses += l1_icaches[i]->accesses;
    577         l1_dmem_accesses += l1_dcaches[i]->accesses;
    578 
    579         if (use_l2) {
    580             l2_misses += l2_ucaches[i]->misses;
    581             l2_mem_accesses += l2_ucaches[i]->accesses;
    582         }
    583     }
    584 }
    585 
    586 static int dcmp(gconstpointer a, gconstpointer b)
    587 {
    588     InsnData *insn_a = (InsnData *) a;
    589     InsnData *insn_b = (InsnData *) b;
    590 
    591     return insn_a->l1_dmisses < insn_b->l1_dmisses ? 1 : -1;
    592 }
    593 
    594 static int icmp(gconstpointer a, gconstpointer b)
    595 {
    596     InsnData *insn_a = (InsnData *) a;
    597     InsnData *insn_b = (InsnData *) b;
    598 
    599     return insn_a->l1_imisses < insn_b->l1_imisses ? 1 : -1;
    600 }
    601 
    602 static int l2_cmp(gconstpointer a, gconstpointer b)
    603 {
    604     InsnData *insn_a = (InsnData *) a;
    605     InsnData *insn_b = (InsnData *) b;
    606 
    607     return insn_a->l2_misses < insn_b->l2_misses ? 1 : -1;
    608 }
    609 
    610 static void log_stats(void)
    611 {
    612     int i;
    613     Cache *icache, *dcache, *l2_cache;
    614 
    615     g_autoptr(GString) rep = g_string_new("core #, data accesses, data misses,"
    616                                           " dmiss rate, insn accesses,"
    617                                           " insn misses, imiss rate");
    618 
    619     if (use_l2) {
    620         g_string_append(rep, ", l2 accesses, l2 misses, l2 miss rate");
    621     }
    622 
    623     g_string_append(rep, "\n");
    624 
    625     for (i = 0; i < cores; i++) {
    626         g_string_append_printf(rep, "%-8d", i);
    627         dcache = l1_dcaches[i];
    628         icache = l1_icaches[i];
    629         l2_cache = use_l2 ? l2_ucaches[i] : NULL;
    630         append_stats_line(rep, dcache->accesses, dcache->misses,
    631                 icache->accesses, icache->misses,
    632                 l2_cache ? l2_cache->accesses : 0,
    633                 l2_cache ? l2_cache->misses : 0);
    634     }
    635 
    636     if (cores > 1) {
    637         sum_stats();
    638         g_string_append_printf(rep, "%-8s", "sum");
    639         append_stats_line(rep, l1_dmem_accesses, l1_dmisses,
    640                 l1_imem_accesses, l1_imisses,
    641                 l2_cache ? l2_mem_accesses : 0, l2_cache ? l2_misses : 0);
    642     }
    643 
    644     g_string_append(rep, "\n");
    645     qemu_plugin_outs(rep->str);
    646 }
    647 
    648 static void log_top_insns(void)
    649 {
    650     int i;
    651     GList *curr, *miss_insns;
    652     InsnData *insn;
    653 
    654     miss_insns = g_hash_table_get_values(miss_ht);
    655     miss_insns = g_list_sort(miss_insns, dcmp);
    656     g_autoptr(GString) rep = g_string_new("");
    657     g_string_append_printf(rep, "%s", "address, data misses, instruction\n");
    658 
    659     for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) {
    660         insn = (InsnData *) curr->data;
    661         g_string_append_printf(rep, "0x%" PRIx64, insn->addr);
    662         if (insn->symbol) {
    663             g_string_append_printf(rep, " (%s)", insn->symbol);
    664         }
    665         g_string_append_printf(rep, ", %ld, %s\n", insn->l1_dmisses,
    666                                insn->disas_str);
    667     }
    668 
    669     miss_insns = g_list_sort(miss_insns, icmp);
    670     g_string_append_printf(rep, "%s", "\naddress, fetch misses, instruction\n");
    671 
    672     for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) {
    673         insn = (InsnData *) curr->data;
    674         g_string_append_printf(rep, "0x%" PRIx64, insn->addr);
    675         if (insn->symbol) {
    676             g_string_append_printf(rep, " (%s)", insn->symbol);
    677         }
    678         g_string_append_printf(rep, ", %ld, %s\n", insn->l1_imisses,
    679                                insn->disas_str);
    680     }
    681 
    682     if (!use_l2) {
    683         goto finish;
    684     }
    685 
    686     miss_insns = g_list_sort(miss_insns, l2_cmp);
    687     g_string_append_printf(rep, "%s", "\naddress, L2 misses, instruction\n");
    688 
    689     for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) {
    690         insn = (InsnData *) curr->data;
    691         g_string_append_printf(rep, "0x%" PRIx64, insn->addr);
    692         if (insn->symbol) {
    693             g_string_append_printf(rep, " (%s)", insn->symbol);
    694         }
    695         g_string_append_printf(rep, ", %ld, %s\n", insn->l2_misses,
    696                                insn->disas_str);
    697     }
    698 
    699 finish:
    700     qemu_plugin_outs(rep->str);
    701     g_list_free(miss_insns);
    702 }
    703 
    704 static void plugin_exit(qemu_plugin_id_t id, void *p)
    705 {
    706     log_stats();
    707     log_top_insns();
    708 
    709     caches_free(l1_dcaches);
    710     caches_free(l1_icaches);
    711 
    712     g_free(l1_dcache_locks);
    713     g_free(l1_icache_locks);
    714 
    715     if (use_l2) {
    716         caches_free(l2_ucaches);
    717         g_free(l2_ucache_locks);
    718     }
    719 
    720     g_hash_table_destroy(miss_ht);
    721 }
    722 
    723 static void policy_init(void)
    724 {
    725     switch (policy) {
    726     case LRU:
    727         update_hit = lru_update_blk;
    728         update_miss = lru_update_blk;
    729         metadata_init = lru_priorities_init;
    730         metadata_destroy = lru_priorities_destroy;
    731         break;
    732     case FIFO:
    733         update_miss = fifo_update_on_miss;
    734         metadata_init = fifo_init;
    735         metadata_destroy = fifo_destroy;
    736         break;
    737     case RAND:
    738         rng = g_rand_new();
    739         break;
    740     default:
    741         g_assert_not_reached();
    742     }
    743 }
    744 
    745 QEMU_PLUGIN_EXPORT
    746 int qemu_plugin_install(qemu_plugin_id_t id, const qemu_info_t *info,
    747                         int argc, char **argv)
    748 {
    749     int i;
    750     int l1_iassoc, l1_iblksize, l1_icachesize;
    751     int l1_dassoc, l1_dblksize, l1_dcachesize;
    752     int l2_assoc, l2_blksize, l2_cachesize;
    753 
    754     limit = 32;
    755     sys = info->system_emulation;
    756 
    757     l1_dassoc = 8;
    758     l1_dblksize = 64;
    759     l1_dcachesize = l1_dblksize * l1_dassoc * 32;
    760 
    761     l1_iassoc = 8;
    762     l1_iblksize = 64;
    763     l1_icachesize = l1_iblksize * l1_iassoc * 32;
    764 
    765     l2_assoc = 16;
    766     l2_blksize = 64;
    767     l2_cachesize = l2_assoc * l2_blksize * 2048;
    768 
    769     policy = LRU;
    770 
    771     cores = sys ? qemu_plugin_n_vcpus() : 1;
    772 
    773     for (i = 0; i < argc; i++) {
    774         char *opt = argv[i];
    775         g_autofree char **tokens = g_strsplit(opt, "=", 2);
    776 
    777         if (g_strcmp0(tokens[0], "iblksize") == 0) {
    778             l1_iblksize = STRTOLL(tokens[1]);
    779         } else if (g_strcmp0(tokens[0], "iassoc") == 0) {
    780             l1_iassoc = STRTOLL(tokens[1]);
    781         } else if (g_strcmp0(tokens[0], "icachesize") == 0) {
    782             l1_icachesize = STRTOLL(tokens[1]);
    783         } else if (g_strcmp0(tokens[0], "dblksize") == 0) {
    784             l1_dblksize = STRTOLL(tokens[1]);
    785         } else if (g_strcmp0(tokens[0], "dassoc") == 0) {
    786             l1_dassoc = STRTOLL(tokens[1]);
    787         } else if (g_strcmp0(tokens[0], "dcachesize") == 0) {
    788             l1_dcachesize = STRTOLL(tokens[1]);
    789         } else if (g_strcmp0(tokens[0], "limit") == 0) {
    790             limit = STRTOLL(tokens[1]);
    791         } else if (g_strcmp0(tokens[0], "cores") == 0) {
    792             cores = STRTOLL(tokens[1]);
    793         } else if (g_strcmp0(tokens[0], "l2cachesize") == 0) {
    794             use_l2 = true;
    795             l2_cachesize = STRTOLL(tokens[1]);
    796         } else if (g_strcmp0(tokens[0], "l2blksize") == 0) {
    797             use_l2 = true;
    798             l2_blksize = STRTOLL(tokens[1]);
    799         } else if (g_strcmp0(tokens[0], "l2assoc") == 0) {
    800             use_l2 = true;
    801             l2_assoc = STRTOLL(tokens[1]);
    802         } else if (g_strcmp0(tokens[0], "l2") == 0) {
    803             if (!qemu_plugin_bool_parse(tokens[0], tokens[1], &use_l2)) {
    804                 fprintf(stderr, "boolean argument parsing failed: %s\n", opt);
    805                 return -1;
    806             }
    807         } else if (g_strcmp0(tokens[0], "evict") == 0) {
    808             if (g_strcmp0(tokens[1], "rand") == 0) {
    809                 policy = RAND;
    810             } else if (g_strcmp0(tokens[1], "lru") == 0) {
    811                 policy = LRU;
    812             } else if (g_strcmp0(tokens[1], "fifo") == 0) {
    813                 policy = FIFO;
    814             } else {
    815                 fprintf(stderr, "invalid eviction policy: %s\n", opt);
    816                 return -1;
    817             }
    818         } else {
    819             fprintf(stderr, "option parsing failed: %s\n", opt);
    820             return -1;
    821         }
    822     }
    823 
    824     policy_init();
    825 
    826     l1_dcaches = caches_init(l1_dblksize, l1_dassoc, l1_dcachesize);
    827     if (!l1_dcaches) {
    828         const char *err = cache_config_error(l1_dblksize, l1_dassoc, l1_dcachesize);
    829         fprintf(stderr, "dcache cannot be constructed from given parameters\n");
    830         fprintf(stderr, "%s\n", err);
    831         return -1;
    832     }
    833 
    834     l1_icaches = caches_init(l1_iblksize, l1_iassoc, l1_icachesize);
    835     if (!l1_icaches) {
    836         const char *err = cache_config_error(l1_iblksize, l1_iassoc, l1_icachesize);
    837         fprintf(stderr, "icache cannot be constructed from given parameters\n");
    838         fprintf(stderr, "%s\n", err);
    839         return -1;
    840     }
    841 
    842     l2_ucaches = use_l2 ? caches_init(l2_blksize, l2_assoc, l2_cachesize) : NULL;
    843     if (!l2_ucaches && use_l2) {
    844         const char *err = cache_config_error(l2_blksize, l2_assoc, l2_cachesize);
    845         fprintf(stderr, "L2 cache cannot be constructed from given parameters\n");
    846         fprintf(stderr, "%s\n", err);
    847         return -1;
    848     }
    849 
    850     l1_dcache_locks = g_new0(GMutex, cores);
    851     l1_icache_locks = g_new0(GMutex, cores);
    852     l2_ucache_locks = use_l2 ? g_new0(GMutex, cores) : NULL;
    853 
    854     qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans);
    855     qemu_plugin_register_atexit_cb(id, plugin_exit, NULL);
    856 
    857     miss_ht = g_hash_table_new_full(NULL, g_direct_equal, NULL, insn_free);
    858 
    859     return 0;
    860 }