qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

signal.c (32430B)


      1 /*
      2  *  Emulation of BSD signals
      3  *
      4  *  Copyright (c) 2003 - 2008 Fabrice Bellard
      5  *  Copyright (c) 2013 Stacey Son
      6  *
      7  *  This program is free software; you can redistribute it and/or modify
      8  *  it under the terms of the GNU General Public License as published by
      9  *  the Free Software Foundation; either version 2 of the License, or
     10  *  (at your option) any later version.
     11  *
     12  *  This program is distributed in the hope that it will be useful,
     13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
     14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     15  *  GNU General Public License for more details.
     16  *
     17  *  You should have received a copy of the GNU General Public License
     18  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
     19  */
     20 
     21 #include "qemu/osdep.h"
     22 #include "qemu/log.h"
     23 #include "qemu.h"
     24 #include "signal-common.h"
     25 #include "trace.h"
     26 #include "hw/core/tcg-cpu-ops.h"
     27 #include "host-signal.h"
     28 
     29 static struct target_sigaction sigact_table[TARGET_NSIG];
     30 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc);
     31 static void target_to_host_sigset_internal(sigset_t *d,
     32         const target_sigset_t *s);
     33 
     34 static inline int on_sig_stack(TaskState *ts, unsigned long sp)
     35 {
     36     return sp - ts->sigaltstack_used.ss_sp < ts->sigaltstack_used.ss_size;
     37 }
     38 
     39 static inline int sas_ss_flags(TaskState *ts, unsigned long sp)
     40 {
     41     return ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE :
     42         on_sig_stack(ts, sp) ? SS_ONSTACK : 0;
     43 }
     44 
     45 /*
     46  * The BSD ABIs use the same singal numbers across all the CPU architectures, so
     47  * (unlike Linux) these functions are just the identity mapping. This might not
     48  * be true for XyzBSD running on AbcBSD, which doesn't currently work.
     49  */
     50 int host_to_target_signal(int sig)
     51 {
     52     return sig;
     53 }
     54 
     55 int target_to_host_signal(int sig)
     56 {
     57     return sig;
     58 }
     59 
     60 static inline void target_sigemptyset(target_sigset_t *set)
     61 {
     62     memset(set, 0, sizeof(*set));
     63 }
     64 
     65 static inline void target_sigaddset(target_sigset_t *set, int signum)
     66 {
     67     signum--;
     68     uint32_t mask = (uint32_t)1 << (signum % TARGET_NSIG_BPW);
     69     set->__bits[signum / TARGET_NSIG_BPW] |= mask;
     70 }
     71 
     72 static inline int target_sigismember(const target_sigset_t *set, int signum)
     73 {
     74     signum--;
     75     abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
     76     return (set->__bits[signum / TARGET_NSIG_BPW] & mask) != 0;
     77 }
     78 
     79 /* Adjust the signal context to rewind out of safe-syscall if we're in it */
     80 static inline void rewind_if_in_safe_syscall(void *puc)
     81 {
     82     ucontext_t *uc = (ucontext_t *)puc;
     83     uintptr_t pcreg = host_signal_pc(uc);
     84 
     85     if (pcreg > (uintptr_t)safe_syscall_start
     86         && pcreg < (uintptr_t)safe_syscall_end) {
     87         host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
     88     }
     89 }
     90 
     91 /*
     92  * Note: The following take advantage of the BSD signal property that all
     93  * signals are available on all architectures.
     94  */
     95 static void host_to_target_sigset_internal(target_sigset_t *d,
     96         const sigset_t *s)
     97 {
     98     int i;
     99 
    100     target_sigemptyset(d);
    101     for (i = 1; i <= NSIG; i++) {
    102         if (sigismember(s, i)) {
    103             target_sigaddset(d, host_to_target_signal(i));
    104         }
    105     }
    106 }
    107 
    108 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
    109 {
    110     target_sigset_t d1;
    111     int i;
    112 
    113     host_to_target_sigset_internal(&d1, s);
    114     for (i = 0; i < _SIG_WORDS; i++) {
    115         d->__bits[i] = tswap32(d1.__bits[i]);
    116     }
    117 }
    118 
    119 static void target_to_host_sigset_internal(sigset_t *d,
    120         const target_sigset_t *s)
    121 {
    122     int i;
    123 
    124     sigemptyset(d);
    125     for (i = 1; i <= TARGET_NSIG; i++) {
    126         if (target_sigismember(s, i)) {
    127             sigaddset(d, target_to_host_signal(i));
    128         }
    129     }
    130 }
    131 
    132 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
    133 {
    134     target_sigset_t s1;
    135     int i;
    136 
    137     for (i = 0; i < TARGET_NSIG_WORDS; i++) {
    138         s1.__bits[i] = tswap32(s->__bits[i]);
    139     }
    140     target_to_host_sigset_internal(d, &s1);
    141 }
    142 
    143 static bool has_trapno(int tsig)
    144 {
    145     return tsig == TARGET_SIGILL ||
    146         tsig == TARGET_SIGFPE ||
    147         tsig == TARGET_SIGSEGV ||
    148         tsig == TARGET_SIGBUS ||
    149         tsig == TARGET_SIGTRAP;
    150 }
    151 
    152 /* Siginfo conversion. */
    153 
    154 /*
    155  * Populate tinfo w/o swapping based on guessing which fields are valid.
    156  */
    157 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
    158         const siginfo_t *info)
    159 {
    160     int sig = host_to_target_signal(info->si_signo);
    161     int si_code = info->si_code;
    162     int si_type;
    163 
    164     /*
    165      * Make sure we that the variable portion of the target siginfo is zeroed
    166      * out so we don't leak anything into that.
    167      */
    168     memset(&tinfo->_reason, 0, sizeof(tinfo->_reason));
    169 
    170     /*
    171      * This is awkward, because we have to use a combination of the si_code and
    172      * si_signo to figure out which of the union's members are valid.o We
    173      * therefore make our best guess.
    174      *
    175      * Once we have made our guess, we record it in the top 16 bits of
    176      * the si_code, so that tswap_siginfo() later can use it.
    177      * tswap_siginfo() will strip these top bits out before writing
    178      * si_code to the guest (sign-extending the lower bits).
    179      */
    180     tinfo->si_signo = sig;
    181     tinfo->si_errno = info->si_errno;
    182     tinfo->si_code = info->si_code;
    183     tinfo->si_pid = info->si_pid;
    184     tinfo->si_uid = info->si_uid;
    185     tinfo->si_status = info->si_status;
    186     tinfo->si_addr = (abi_ulong)(unsigned long)info->si_addr;
    187     /*
    188      * si_value is opaque to kernel. On all FreeBSD platforms,
    189      * sizeof(sival_ptr) >= sizeof(sival_int) so the following
    190      * always will copy the larger element.
    191      */
    192     tinfo->si_value.sival_ptr =
    193         (abi_ulong)(unsigned long)info->si_value.sival_ptr;
    194 
    195     switch (si_code) {
    196         /*
    197          * All the SI_xxx codes that are defined here are global to
    198          * all the signals (they have values that none of the other,
    199          * more specific signal info will set).
    200          */
    201     case SI_USER:
    202     case SI_LWP:
    203     case SI_KERNEL:
    204     case SI_QUEUE:
    205     case SI_ASYNCIO:
    206         /*
    207          * Only the fixed parts are valid (though FreeBSD doesn't always
    208          * set all the fields to non-zero values.
    209          */
    210         si_type = QEMU_SI_NOINFO;
    211         break;
    212     case SI_TIMER:
    213         tinfo->_reason._timer._timerid = info->_reason._timer._timerid;
    214         tinfo->_reason._timer._overrun = info->_reason._timer._overrun;
    215         si_type = QEMU_SI_TIMER;
    216         break;
    217     case SI_MESGQ:
    218         tinfo->_reason._mesgq._mqd = info->_reason._mesgq._mqd;
    219         si_type = QEMU_SI_MESGQ;
    220         break;
    221     default:
    222         /*
    223          * We have to go based on the signal number now to figure out
    224          * what's valid.
    225          */
    226         si_type = QEMU_SI_NOINFO;
    227         if (has_trapno(sig)) {
    228             tinfo->_reason._fault._trapno = info->_reason._fault._trapno;
    229             si_type = QEMU_SI_FAULT;
    230         }
    231 #ifdef TARGET_SIGPOLL
    232         /*
    233          * FreeBSD never had SIGPOLL, but emulates it for Linux so there's
    234          * a chance it may popup in the future.
    235          */
    236         if (sig == TARGET_SIGPOLL) {
    237             tinfo->_reason._poll._band = info->_reason._poll._band;
    238             si_type = QEMU_SI_POLL;
    239         }
    240 #endif
    241         /*
    242          * Unsure that this can actually be generated, and our support for
    243          * capsicum is somewhere between weak and non-existant, but if we get
    244          * one, then we know what to save.
    245          */
    246 #ifdef QEMU_SI_CAPSICUM
    247         if (sig == TARGET_SIGTRAP) {
    248             tinfo->_reason._capsicum._syscall =
    249                 info->_reason._capsicum._syscall;
    250             si_type = QEMU_SI_CAPSICUM;
    251         }
    252 #endif
    253         break;
    254     }
    255     tinfo->si_code = deposit32(si_code, 24, 8, si_type);
    256 }
    257 
    258 static void tswap_siginfo(target_siginfo_t *tinfo, const target_siginfo_t *info)
    259 {
    260     int si_type = extract32(info->si_code, 24, 8);
    261     int si_code = sextract32(info->si_code, 0, 24);
    262 
    263     __put_user(info->si_signo, &tinfo->si_signo);
    264     __put_user(info->si_errno, &tinfo->si_errno);
    265     __put_user(si_code, &tinfo->si_code); /* Zero out si_type, it's internal */
    266     __put_user(info->si_pid, &tinfo->si_pid);
    267     __put_user(info->si_uid, &tinfo->si_uid);
    268     __put_user(info->si_status, &tinfo->si_status);
    269     __put_user(info->si_addr, &tinfo->si_addr);
    270     /*
    271      * Unswapped, because we passed it through mostly untouched.  si_value is
    272      * opaque to the kernel, so we didn't bother with potentially wasting cycles
    273      * to swap it into host byte order.
    274      */
    275     tinfo->si_value.sival_ptr = info->si_value.sival_ptr;
    276 
    277     /*
    278      * We can use our internal marker of which fields in the structure
    279      * are valid, rather than duplicating the guesswork of
    280      * host_to_target_siginfo_noswap() here.
    281      */
    282     switch (si_type) {
    283     case QEMU_SI_NOINFO:        /* No additional info */
    284         break;
    285     case QEMU_SI_FAULT:
    286         __put_user(info->_reason._fault._trapno,
    287                    &tinfo->_reason._fault._trapno);
    288         break;
    289     case QEMU_SI_TIMER:
    290         __put_user(info->_reason._timer._timerid,
    291                    &tinfo->_reason._timer._timerid);
    292         __put_user(info->_reason._timer._overrun,
    293                    &tinfo->_reason._timer._overrun);
    294         break;
    295     case QEMU_SI_MESGQ:
    296         __put_user(info->_reason._mesgq._mqd, &tinfo->_reason._mesgq._mqd);
    297         break;
    298     case QEMU_SI_POLL:
    299         /* Note: Not generated on FreeBSD */
    300         __put_user(info->_reason._poll._band, &tinfo->_reason._poll._band);
    301         break;
    302 #ifdef QEMU_SI_CAPSICUM
    303     case QEMU_SI_CAPSICUM:
    304         __put_user(info->_reason._capsicum._syscall,
    305                    &tinfo->_reason._capsicum._syscall);
    306         break;
    307 #endif
    308     default:
    309         g_assert_not_reached();
    310     }
    311 }
    312 
    313 int block_signals(void)
    314 {
    315     TaskState *ts = (TaskState *)thread_cpu->opaque;
    316     sigset_t set;
    317 
    318     /*
    319      * It's OK to block everything including SIGSEGV, because we won't run any
    320      * further guest code before unblocking signals in
    321      * process_pending_signals(). We depend on the FreeBSD behaivor here where
    322      * this will only affect this thread's signal mask. We don't use
    323      * pthread_sigmask which might seem more correct because that routine also
    324      * does odd things with SIGCANCEL to implement pthread_cancel().
    325      */
    326     sigfillset(&set);
    327     sigprocmask(SIG_SETMASK, &set, 0);
    328 
    329     return qatomic_xchg(&ts->signal_pending, 1);
    330 }
    331 
    332 /* Returns 1 if given signal should dump core if not handled. */
    333 static int core_dump_signal(int sig)
    334 {
    335     switch (sig) {
    336     case TARGET_SIGABRT:
    337     case TARGET_SIGFPE:
    338     case TARGET_SIGILL:
    339     case TARGET_SIGQUIT:
    340     case TARGET_SIGSEGV:
    341     case TARGET_SIGTRAP:
    342     case TARGET_SIGBUS:
    343         return 1;
    344     default:
    345         return 0;
    346     }
    347 }
    348 
    349 /* Abort execution with signal. */
    350 static G_NORETURN
    351 void dump_core_and_abort(int target_sig)
    352 {
    353     CPUArchState *env = thread_cpu->env_ptr;
    354     CPUState *cpu = env_cpu(env);
    355     TaskState *ts = cpu->opaque;
    356     int core_dumped = 0;
    357     int host_sig;
    358     struct sigaction act;
    359 
    360     host_sig = target_to_host_signal(target_sig);
    361     gdb_signalled(env, target_sig);
    362 
    363     /* Dump core if supported by target binary format */
    364     if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
    365         stop_all_tasks();
    366         core_dumped =
    367             ((*ts->bprm->core_dump)(target_sig, env) == 0);
    368     }
    369     if (core_dumped) {
    370         struct rlimit nodump;
    371 
    372         /*
    373          * We already dumped the core of target process, we don't want
    374          * a coredump of qemu itself.
    375          */
    376          getrlimit(RLIMIT_CORE, &nodump);
    377          nodump.rlim_cur = 0;
    378          setrlimit(RLIMIT_CORE, &nodump);
    379          (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) "
    380              "- %s\n", target_sig, strsignal(host_sig), "core dumped");
    381     }
    382 
    383     /*
    384      * The proper exit code for dying from an uncaught signal is
    385      * -<signal>.  The kernel doesn't allow exit() or _exit() to pass
    386      * a negative value.  To get the proper exit code we need to
    387      * actually die from an uncaught signal.  Here the default signal
    388      * handler is installed, we send ourself a signal and we wait for
    389      * it to arrive.
    390      */
    391     memset(&act, 0, sizeof(act));
    392     sigfillset(&act.sa_mask);
    393     act.sa_handler = SIG_DFL;
    394     sigaction(host_sig, &act, NULL);
    395 
    396     kill(getpid(), host_sig);
    397 
    398     /*
    399      * Make sure the signal isn't masked (just reuse the mask inside
    400      * of act).
    401      */
    402     sigdelset(&act.sa_mask, host_sig);
    403     sigsuspend(&act.sa_mask);
    404 
    405     /* unreachable */
    406     abort();
    407 }
    408 
    409 /*
    410  * Queue a signal so that it will be send to the virtual CPU as soon as
    411  * possible.
    412  */
    413 void queue_signal(CPUArchState *env, int sig, int si_type,
    414                   target_siginfo_t *info)
    415 {
    416     CPUState *cpu = env_cpu(env);
    417     TaskState *ts = cpu->opaque;
    418 
    419     trace_user_queue_signal(env, sig);
    420 
    421     info->si_code = deposit32(info->si_code, 24, 8, si_type);
    422 
    423     ts->sync_signal.info = *info;
    424     ts->sync_signal.pending = sig;
    425     /* Signal that a new signal is pending. */
    426     qatomic_set(&ts->signal_pending, 1);
    427     return;
    428 }
    429 
    430 static int fatal_signal(int sig)
    431 {
    432 
    433     switch (sig) {
    434     case TARGET_SIGCHLD:
    435     case TARGET_SIGURG:
    436     case TARGET_SIGWINCH:
    437     case TARGET_SIGINFO:
    438         /* Ignored by default. */
    439         return 0;
    440     case TARGET_SIGCONT:
    441     case TARGET_SIGSTOP:
    442     case TARGET_SIGTSTP:
    443     case TARGET_SIGTTIN:
    444     case TARGET_SIGTTOU:
    445         /* Job control signals.  */
    446         return 0;
    447     default:
    448         return 1;
    449     }
    450 }
    451 
    452 /*
    453  * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
    454  * 'force' part is handled in process_pending_signals().
    455  */
    456 void force_sig_fault(int sig, int code, abi_ulong addr)
    457 {
    458     CPUState *cpu = thread_cpu;
    459     CPUArchState *env = cpu->env_ptr;
    460     target_siginfo_t info = {};
    461 
    462     info.si_signo = sig;
    463     info.si_errno = 0;
    464     info.si_code = code;
    465     info.si_addr = addr;
    466     queue_signal(env, sig, QEMU_SI_FAULT, &info);
    467 }
    468 
    469 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
    470 {
    471     CPUArchState *env = thread_cpu->env_ptr;
    472     CPUState *cpu = env_cpu(env);
    473     TaskState *ts = cpu->opaque;
    474     target_siginfo_t tinfo;
    475     ucontext_t *uc = puc;
    476     struct emulated_sigtable *k;
    477     int guest_sig;
    478     uintptr_t pc = 0;
    479     bool sync_sig = false;
    480 
    481     /*
    482      * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
    483      * handling wrt signal blocking and unwinding.
    484      */
    485     if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) {
    486         MMUAccessType access_type;
    487         uintptr_t host_addr;
    488         abi_ptr guest_addr;
    489         bool is_write;
    490 
    491         host_addr = (uintptr_t)info->si_addr;
    492 
    493         /*
    494          * Convert forcefully to guest address space: addresses outside
    495          * reserved_va are still valid to report via SEGV_MAPERR.
    496          */
    497         guest_addr = h2g_nocheck(host_addr);
    498 
    499         pc = host_signal_pc(uc);
    500         is_write = host_signal_write(info, uc);
    501         access_type = adjust_signal_pc(&pc, is_write);
    502 
    503         if (host_sig == SIGSEGV) {
    504             bool maperr = true;
    505 
    506             if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) {
    507                 /* If this was a write to a TB protected page, restart. */
    508                 if (is_write &&
    509                     handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask,
    510                                                 pc, guest_addr)) {
    511                     return;
    512                 }
    513 
    514                 /*
    515                  * With reserved_va, the whole address space is PROT_NONE,
    516                  * which means that we may get ACCERR when we want MAPERR.
    517                  */
    518                 if (page_get_flags(guest_addr) & PAGE_VALID) {
    519                     maperr = false;
    520                 } else {
    521                     info->si_code = SEGV_MAPERR;
    522                 }
    523             }
    524 
    525             sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
    526             cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
    527         } else {
    528             sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
    529             if (info->si_code == BUS_ADRALN) {
    530                 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
    531             }
    532         }
    533 
    534         sync_sig = true;
    535     }
    536 
    537     /* Get the target signal number. */
    538     guest_sig = host_to_target_signal(host_sig);
    539     if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
    540         return;
    541     }
    542     trace_user_host_signal(cpu, host_sig, guest_sig);
    543 
    544     host_to_target_siginfo_noswap(&tinfo, info);
    545 
    546     k = &ts->sigtab[guest_sig - 1];
    547     k->info = tinfo;
    548     k->pending = guest_sig;
    549     ts->signal_pending = 1;
    550 
    551     /*
    552      * For synchronous signals, unwind the cpu state to the faulting
    553      * insn and then exit back to the main loop so that the signal
    554      * is delivered immediately.
    555      */
    556     if (sync_sig) {
    557         cpu->exception_index = EXCP_INTERRUPT;
    558         cpu_loop_exit_restore(cpu, pc);
    559     }
    560 
    561     rewind_if_in_safe_syscall(puc);
    562 
    563     /*
    564      * Block host signals until target signal handler entered. We
    565      * can't block SIGSEGV or SIGBUS while we're executing guest
    566      * code in case the guest code provokes one in the window between
    567      * now and it getting out to the main loop. Signals will be
    568      * unblocked again in process_pending_signals().
    569      */
    570     sigfillset(&uc->uc_sigmask);
    571     sigdelset(&uc->uc_sigmask, SIGSEGV);
    572     sigdelset(&uc->uc_sigmask, SIGBUS);
    573 
    574     /* Interrupt the virtual CPU as soon as possible. */
    575     cpu_exit(thread_cpu);
    576 }
    577 
    578 /* do_sigaltstack() returns target values and errnos. */
    579 /* compare to kern/kern_sig.c sys_sigaltstack() and kern_sigaltstack() */
    580 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp)
    581 {
    582     TaskState *ts = (TaskState *)thread_cpu->opaque;
    583     int ret;
    584     target_stack_t oss;
    585 
    586     if (uoss_addr) {
    587         /* Save current signal stack params */
    588         oss.ss_sp = tswapl(ts->sigaltstack_used.ss_sp);
    589         oss.ss_size = tswapl(ts->sigaltstack_used.ss_size);
    590         oss.ss_flags = tswapl(sas_ss_flags(ts, sp));
    591     }
    592 
    593     if (uss_addr) {
    594         target_stack_t *uss;
    595         target_stack_t ss;
    596         size_t minstacksize = TARGET_MINSIGSTKSZ;
    597 
    598         ret = -TARGET_EFAULT;
    599         if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) {
    600             goto out;
    601         }
    602         __get_user(ss.ss_sp, &uss->ss_sp);
    603         __get_user(ss.ss_size, &uss->ss_size);
    604         __get_user(ss.ss_flags, &uss->ss_flags);
    605         unlock_user_struct(uss, uss_addr, 0);
    606 
    607         ret = -TARGET_EPERM;
    608         if (on_sig_stack(ts, sp)) {
    609             goto out;
    610         }
    611 
    612         ret = -TARGET_EINVAL;
    613         if (ss.ss_flags != TARGET_SS_DISABLE
    614             && ss.ss_flags != TARGET_SS_ONSTACK
    615             && ss.ss_flags != 0) {
    616             goto out;
    617         }
    618 
    619         if (ss.ss_flags == TARGET_SS_DISABLE) {
    620             ss.ss_size = 0;
    621             ss.ss_sp = 0;
    622         } else {
    623             ret = -TARGET_ENOMEM;
    624             if (ss.ss_size < minstacksize) {
    625                 goto out;
    626             }
    627         }
    628 
    629         ts->sigaltstack_used.ss_sp = ss.ss_sp;
    630         ts->sigaltstack_used.ss_size = ss.ss_size;
    631     }
    632 
    633     if (uoss_addr) {
    634         ret = -TARGET_EFAULT;
    635         if (copy_to_user(uoss_addr, &oss, sizeof(oss))) {
    636             goto out;
    637         }
    638     }
    639 
    640     ret = 0;
    641 out:
    642     return ret;
    643 }
    644 
    645 /* do_sigaction() return host values and errnos */
    646 int do_sigaction(int sig, const struct target_sigaction *act,
    647         struct target_sigaction *oact)
    648 {
    649     struct target_sigaction *k;
    650     struct sigaction act1;
    651     int host_sig;
    652     int ret = 0;
    653 
    654     if (sig < 1 || sig > TARGET_NSIG) {
    655         return -TARGET_EINVAL;
    656     }
    657 
    658     if ((sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) &&
    659         act != NULL && act->_sa_handler != TARGET_SIG_DFL) {
    660         return -TARGET_EINVAL;
    661     }
    662 
    663     if (block_signals()) {
    664         return -TARGET_ERESTART;
    665     }
    666 
    667     k = &sigact_table[sig - 1];
    668     if (oact) {
    669         oact->_sa_handler = tswapal(k->_sa_handler);
    670         oact->sa_flags = tswap32(k->sa_flags);
    671         oact->sa_mask = k->sa_mask;
    672     }
    673     if (act) {
    674         k->_sa_handler = tswapal(act->_sa_handler);
    675         k->sa_flags = tswap32(act->sa_flags);
    676         k->sa_mask = act->sa_mask;
    677 
    678         /* Update the host signal state. */
    679         host_sig = target_to_host_signal(sig);
    680         if (host_sig != SIGSEGV && host_sig != SIGBUS) {
    681             memset(&act1, 0, sizeof(struct sigaction));
    682             sigfillset(&act1.sa_mask);
    683             act1.sa_flags = SA_SIGINFO;
    684             if (k->sa_flags & TARGET_SA_RESTART) {
    685                 act1.sa_flags |= SA_RESTART;
    686             }
    687             /*
    688              *  Note: It is important to update the host kernel signal mask to
    689              *  avoid getting unexpected interrupted system calls.
    690              */
    691             if (k->_sa_handler == TARGET_SIG_IGN) {
    692                 act1.sa_sigaction = (void *)SIG_IGN;
    693             } else if (k->_sa_handler == TARGET_SIG_DFL) {
    694                 if (fatal_signal(sig)) {
    695                     act1.sa_sigaction = host_signal_handler;
    696                 } else {
    697                     act1.sa_sigaction = (void *)SIG_DFL;
    698                 }
    699             } else {
    700                 act1.sa_sigaction = host_signal_handler;
    701             }
    702             ret = sigaction(host_sig, &act1, NULL);
    703         }
    704     }
    705     return ret;
    706 }
    707 
    708 static inline abi_ulong get_sigframe(struct target_sigaction *ka,
    709         CPUArchState *env, size_t frame_size)
    710 {
    711     TaskState *ts = (TaskState *)thread_cpu->opaque;
    712     abi_ulong sp;
    713 
    714     /* Use default user stack */
    715     sp = get_sp_from_cpustate(env);
    716 
    717     if ((ka->sa_flags & TARGET_SA_ONSTACK) && sas_ss_flags(ts, sp) == 0) {
    718         sp = ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size;
    719     }
    720 
    721 /* TODO: make this a target_arch function / define */
    722 #if defined(TARGET_ARM)
    723     return (sp - frame_size) & ~7;
    724 #elif defined(TARGET_AARCH64)
    725     return (sp - frame_size) & ~15;
    726 #else
    727     return sp - frame_size;
    728 #endif
    729 }
    730 
    731 /* compare to $M/$M/exec_machdep.c sendsig and sys/kern/kern_sig.c sigexit */
    732 
    733 static void setup_frame(int sig, int code, struct target_sigaction *ka,
    734     target_sigset_t *set, target_siginfo_t *tinfo, CPUArchState *env)
    735 {
    736     struct target_sigframe *frame;
    737     abi_ulong frame_addr;
    738     int i;
    739 
    740     frame_addr = get_sigframe(ka, env, sizeof(*frame));
    741     trace_user_setup_frame(env, frame_addr);
    742     if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) {
    743         unlock_user_struct(frame, frame_addr, 1);
    744         dump_core_and_abort(TARGET_SIGILL);
    745         return;
    746     }
    747 
    748     memset(frame, 0, sizeof(*frame));
    749     setup_sigframe_arch(env, frame_addr, frame, 0);
    750 
    751     for (i = 0; i < TARGET_NSIG_WORDS; i++) {
    752         __put_user(set->__bits[i], &frame->sf_uc.uc_sigmask.__bits[i]);
    753     }
    754 
    755     if (tinfo) {
    756         frame->sf_si.si_signo = tinfo->si_signo;
    757         frame->sf_si.si_errno = tinfo->si_errno;
    758         frame->sf_si.si_code = tinfo->si_code;
    759         frame->sf_si.si_pid = tinfo->si_pid;
    760         frame->sf_si.si_uid = tinfo->si_uid;
    761         frame->sf_si.si_status = tinfo->si_status;
    762         frame->sf_si.si_addr = tinfo->si_addr;
    763         /* see host_to_target_siginfo_noswap() for more details */
    764         frame->sf_si.si_value.sival_ptr = tinfo->si_value.sival_ptr;
    765         /*
    766          * At this point, whatever is in the _reason union is complete
    767          * and in target order, so just copy the whole thing over, even
    768          * if it's too large for this specific signal.
    769          * host_to_target_siginfo_noswap() and tswap_siginfo() have ensured
    770          * that's so.
    771          */
    772         memcpy(&frame->sf_si._reason, &tinfo->_reason,
    773                sizeof(tinfo->_reason));
    774     }
    775 
    776     set_sigtramp_args(env, sig, frame, frame_addr, ka);
    777 
    778     unlock_user_struct(frame, frame_addr, 1);
    779 }
    780 
    781 static int reset_signal_mask(target_ucontext_t *ucontext)
    782 {
    783     int i;
    784     sigset_t blocked;
    785     target_sigset_t target_set;
    786     TaskState *ts = (TaskState *)thread_cpu->opaque;
    787 
    788     for (i = 0; i < TARGET_NSIG_WORDS; i++) {
    789         if (__get_user(target_set.__bits[i],
    790                     &ucontext->uc_sigmask.__bits[i])) {
    791             return -TARGET_EFAULT;
    792         }
    793     }
    794     target_to_host_sigset_internal(&blocked, &target_set);
    795     ts->signal_mask = blocked;
    796 
    797     return 0;
    798 }
    799 
    800 /* See sys/$M/$M/exec_machdep.c sigreturn() */
    801 long do_sigreturn(CPUArchState *env, abi_ulong addr)
    802 {
    803     long ret;
    804     abi_ulong target_ucontext;
    805     target_ucontext_t *ucontext = NULL;
    806 
    807     /* Get the target ucontext address from the stack frame */
    808     ret = get_ucontext_sigreturn(env, addr, &target_ucontext);
    809     if (is_error(ret)) {
    810         return ret;
    811     }
    812     trace_user_do_sigreturn(env, addr);
    813     if (!lock_user_struct(VERIFY_READ, ucontext, target_ucontext, 0)) {
    814         goto badframe;
    815     }
    816 
    817     /* Set the register state back to before the signal. */
    818     if (set_mcontext(env, &ucontext->uc_mcontext, 1)) {
    819         goto badframe;
    820     }
    821 
    822     /* And reset the signal mask. */
    823     if (reset_signal_mask(ucontext)) {
    824         goto badframe;
    825     }
    826 
    827     unlock_user_struct(ucontext, target_ucontext, 0);
    828     return -TARGET_EJUSTRETURN;
    829 
    830 badframe:
    831     if (ucontext != NULL) {
    832         unlock_user_struct(ucontext, target_ucontext, 0);
    833     }
    834     return -TARGET_EFAULT;
    835 }
    836 
    837 void signal_init(void)
    838 {
    839     TaskState *ts = (TaskState *)thread_cpu->opaque;
    840     struct sigaction act;
    841     struct sigaction oact;
    842     int i;
    843     int host_sig;
    844 
    845     /* Set the signal mask from the host mask. */
    846     sigprocmask(0, 0, &ts->signal_mask);
    847 
    848     sigfillset(&act.sa_mask);
    849     act.sa_sigaction = host_signal_handler;
    850     act.sa_flags = SA_SIGINFO;
    851 
    852     for (i = 1; i <= TARGET_NSIG; i++) {
    853 #ifdef CONFIG_GPROF
    854         if (i == TARGET_SIGPROF) {
    855             continue;
    856         }
    857 #endif
    858         host_sig = target_to_host_signal(i);
    859         sigaction(host_sig, NULL, &oact);
    860         if (oact.sa_sigaction == (void *)SIG_IGN) {
    861             sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN;
    862         } else if (oact.sa_sigaction == (void *)SIG_DFL) {
    863             sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL;
    864         }
    865         /*
    866          * If there's already a handler installed then something has
    867          * gone horribly wrong, so don't even try to handle that case.
    868          * Install some handlers for our own use.  We need at least
    869          * SIGSEGV and SIGBUS, to detect exceptions.  We can not just
    870          * trap all signals because it affects syscall interrupt
    871          * behavior.  But do trap all default-fatal signals.
    872          */
    873         if (fatal_signal(i)) {
    874             sigaction(host_sig, &act, NULL);
    875         }
    876     }
    877 }
    878 
    879 static void handle_pending_signal(CPUArchState *env, int sig,
    880                                   struct emulated_sigtable *k)
    881 {
    882     CPUState *cpu = env_cpu(env);
    883     TaskState *ts = cpu->opaque;
    884     struct target_sigaction *sa;
    885     int code;
    886     sigset_t set;
    887     abi_ulong handler;
    888     target_siginfo_t tinfo;
    889     target_sigset_t target_old_set;
    890 
    891     trace_user_handle_signal(env, sig);
    892 
    893     k->pending = 0;
    894 
    895     sig = gdb_handlesig(cpu, sig);
    896     if (!sig) {
    897         sa = NULL;
    898         handler = TARGET_SIG_IGN;
    899     } else {
    900         sa = &sigact_table[sig - 1];
    901         handler = sa->_sa_handler;
    902     }
    903 
    904     if (do_strace) {
    905         print_taken_signal(sig, &k->info);
    906     }
    907 
    908     if (handler == TARGET_SIG_DFL) {
    909         /*
    910          * default handler : ignore some signal. The other are job
    911          * control or fatal.
    912          */
    913         if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN ||
    914             sig == TARGET_SIGTTOU) {
    915             kill(getpid(), SIGSTOP);
    916         } else if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG &&
    917                    sig != TARGET_SIGINFO && sig != TARGET_SIGWINCH &&
    918                    sig != TARGET_SIGCONT) {
    919             dump_core_and_abort(sig);
    920         }
    921     } else if (handler == TARGET_SIG_IGN) {
    922         /* ignore sig */
    923     } else if (handler == TARGET_SIG_ERR) {
    924         dump_core_and_abort(sig);
    925     } else {
    926         /* compute the blocked signals during the handler execution */
    927         sigset_t *blocked_set;
    928 
    929         target_to_host_sigset(&set, &sa->sa_mask);
    930         /*
    931          * SA_NODEFER indicates that the current signal should not be
    932          * blocked during the handler.
    933          */
    934         if (!(sa->sa_flags & TARGET_SA_NODEFER)) {
    935             sigaddset(&set, target_to_host_signal(sig));
    936         }
    937 
    938         /*
    939          * Save the previous blocked signal state to restore it at the
    940          * end of the signal execution (see do_sigreturn).
    941          */
    942         host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
    943 
    944         blocked_set = ts->in_sigsuspend ?
    945             &ts->sigsuspend_mask : &ts->signal_mask;
    946         sigorset(&ts->signal_mask, blocked_set, &set);
    947         ts->in_sigsuspend = false;
    948         sigprocmask(SIG_SETMASK, &ts->signal_mask, NULL);
    949 
    950         /* XXX VM86 on x86 ??? */
    951 
    952         code = k->info.si_code; /* From host, so no si_type */
    953         /* prepare the stack frame of the virtual CPU */
    954         if (sa->sa_flags & TARGET_SA_SIGINFO) {
    955             tswap_siginfo(&tinfo, &k->info);
    956             setup_frame(sig, code, sa, &target_old_set, &tinfo, env);
    957         } else {
    958             setup_frame(sig, code, sa, &target_old_set, NULL, env);
    959         }
    960         if (sa->sa_flags & TARGET_SA_RESETHAND) {
    961             sa->_sa_handler = TARGET_SIG_DFL;
    962         }
    963     }
    964 }
    965 
    966 void process_pending_signals(CPUArchState *env)
    967 {
    968     CPUState *cpu = env_cpu(env);
    969     int sig;
    970     sigset_t *blocked_set, set;
    971     struct emulated_sigtable *k;
    972     TaskState *ts = cpu->opaque;
    973 
    974     while (qatomic_read(&ts->signal_pending)) {
    975         sigfillset(&set);
    976         sigprocmask(SIG_SETMASK, &set, 0);
    977 
    978     restart_scan:
    979         sig = ts->sync_signal.pending;
    980         if (sig) {
    981             /*
    982              * Synchronous signals are forced by the emulated CPU in some way.
    983              * If they are set to ignore, restore the default handler (see
    984              * sys/kern_sig.c trapsignal() and execsigs() for this behavior)
    985              * though maybe this is done only when forcing exit for non SIGCHLD.
    986              */
    987             if (sigismember(&ts->signal_mask, target_to_host_signal(sig)) ||
    988                 sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) {
    989                 sigdelset(&ts->signal_mask, target_to_host_signal(sig));
    990                 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL;
    991             }
    992             handle_pending_signal(env, sig, &ts->sync_signal);
    993         }
    994 
    995         k = ts->sigtab;
    996         for (sig = 1; sig <= TARGET_NSIG; sig++, k++) {
    997             blocked_set = ts->in_sigsuspend ?
    998                 &ts->sigsuspend_mask : &ts->signal_mask;
    999             if (k->pending &&
   1000                 !sigismember(blocked_set, target_to_host_signal(sig))) {
   1001                 handle_pending_signal(env, sig, k);
   1002                 /*
   1003                  * Restart scan from the beginning, as handle_pending_signal
   1004                  * might have resulted in a new synchronous signal (eg SIGSEGV).
   1005                  */
   1006                 goto restart_scan;
   1007             }
   1008         }
   1009 
   1010         /*
   1011          * Unblock signals and check one more time. Unblocking signals may cause
   1012          * us to take another host signal, which will set signal_pending again.
   1013          */
   1014         qatomic_set(&ts->signal_pending, 0);
   1015         ts->in_sigsuspend = false;
   1016         set = ts->signal_mask;
   1017         sigdelset(&set, SIGSEGV);
   1018         sigdelset(&set, SIGBUS);
   1019         sigprocmask(SIG_SETMASK, &set, 0);
   1020     }
   1021     ts->in_sigsuspend = false;
   1022 }
   1023 
   1024 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
   1025                            MMUAccessType access_type, bool maperr, uintptr_t ra)
   1026 {
   1027     const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
   1028 
   1029     if (tcg_ops->record_sigsegv) {
   1030         tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
   1031     }
   1032 
   1033     force_sig_fault(TARGET_SIGSEGV,
   1034                     maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
   1035                     addr);
   1036     cpu->exception_index = EXCP_INTERRUPT;
   1037     cpu_loop_exit_restore(cpu, ra);
   1038 }
   1039 
   1040 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
   1041                           MMUAccessType access_type, uintptr_t ra)
   1042 {
   1043     const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
   1044 
   1045     if (tcg_ops->record_sigbus) {
   1046         tcg_ops->record_sigbus(cpu, addr, access_type, ra);
   1047     }
   1048 
   1049     force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
   1050     cpu->exception_index = EXCP_INTERRUPT;
   1051     cpu_loop_exit_restore(cpu, ra);
   1052 }