qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

qed.c (49645B)


      1 /*
      2  * QEMU Enhanced Disk Format
      3  *
      4  * Copyright IBM, Corp. 2010
      5  *
      6  * Authors:
      7  *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
      8  *  Anthony Liguori   <aliguori@us.ibm.com>
      9  *
     10  * This work is licensed under the terms of the GNU LGPL, version 2 or later.
     11  * See the COPYING.LIB file in the top-level directory.
     12  *
     13  */
     14 
     15 #include "qemu/osdep.h"
     16 #include "block/qdict.h"
     17 #include "qapi/error.h"
     18 #include "qemu/timer.h"
     19 #include "qemu/bswap.h"
     20 #include "qemu/main-loop.h"
     21 #include "qemu/module.h"
     22 #include "qemu/option.h"
     23 #include "qemu/memalign.h"
     24 #include "trace.h"
     25 #include "qed.h"
     26 #include "sysemu/block-backend.h"
     27 #include "qapi/qmp/qdict.h"
     28 #include "qapi/qobject-input-visitor.h"
     29 #include "qapi/qapi-visit-block-core.h"
     30 
     31 static QemuOptsList qed_create_opts;
     32 
     33 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
     34                           const char *filename)
     35 {
     36     const QEDHeader *header = (const QEDHeader *)buf;
     37 
     38     if (buf_size < sizeof(*header)) {
     39         return 0;
     40     }
     41     if (le32_to_cpu(header->magic) != QED_MAGIC) {
     42         return 0;
     43     }
     44     return 100;
     45 }
     46 
     47 /**
     48  * Check whether an image format is raw
     49  *
     50  * @fmt:    Backing file format, may be NULL
     51  */
     52 static bool qed_fmt_is_raw(const char *fmt)
     53 {
     54     return fmt && strcmp(fmt, "raw") == 0;
     55 }
     56 
     57 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
     58 {
     59     cpu->magic = le32_to_cpu(le->magic);
     60     cpu->cluster_size = le32_to_cpu(le->cluster_size);
     61     cpu->table_size = le32_to_cpu(le->table_size);
     62     cpu->header_size = le32_to_cpu(le->header_size);
     63     cpu->features = le64_to_cpu(le->features);
     64     cpu->compat_features = le64_to_cpu(le->compat_features);
     65     cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
     66     cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
     67     cpu->image_size = le64_to_cpu(le->image_size);
     68     cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
     69     cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
     70 }
     71 
     72 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
     73 {
     74     le->magic = cpu_to_le32(cpu->magic);
     75     le->cluster_size = cpu_to_le32(cpu->cluster_size);
     76     le->table_size = cpu_to_le32(cpu->table_size);
     77     le->header_size = cpu_to_le32(cpu->header_size);
     78     le->features = cpu_to_le64(cpu->features);
     79     le->compat_features = cpu_to_le64(cpu->compat_features);
     80     le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
     81     le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
     82     le->image_size = cpu_to_le64(cpu->image_size);
     83     le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
     84     le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
     85 }
     86 
     87 int qed_write_header_sync(BDRVQEDState *s)
     88 {
     89     QEDHeader le;
     90 
     91     qed_header_cpu_to_le(&s->header, &le);
     92     return bdrv_pwrite(s->bs->file, 0, sizeof(le), &le, 0);
     93 }
     94 
     95 /**
     96  * Update header in-place (does not rewrite backing filename or other strings)
     97  *
     98  * This function only updates known header fields in-place and does not affect
     99  * extra data after the QED header.
    100  *
    101  * No new allocating reqs can start while this function runs.
    102  */
    103 static int coroutine_fn qed_write_header(BDRVQEDState *s)
    104 {
    105     /* We must write full sectors for O_DIRECT but cannot necessarily generate
    106      * the data following the header if an unrecognized compat feature is
    107      * active.  Therefore, first read the sectors containing the header, update
    108      * them, and write back.
    109      */
    110 
    111     int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
    112     size_t len = nsectors * BDRV_SECTOR_SIZE;
    113     uint8_t *buf;
    114     int ret;
    115 
    116     assert(s->allocating_acb || s->allocating_write_reqs_plugged);
    117 
    118     buf = qemu_blockalign(s->bs, len);
    119 
    120     ret = bdrv_co_pread(s->bs->file, 0, len, buf, 0);
    121     if (ret < 0) {
    122         goto out;
    123     }
    124 
    125     /* Update header */
    126     qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
    127 
    128     ret = bdrv_co_pwrite(s->bs->file, 0, len,  buf, 0);
    129     if (ret < 0) {
    130         goto out;
    131     }
    132 
    133     ret = 0;
    134 out:
    135     qemu_vfree(buf);
    136     return ret;
    137 }
    138 
    139 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
    140 {
    141     uint64_t table_entries;
    142     uint64_t l2_size;
    143 
    144     table_entries = (table_size * cluster_size) / sizeof(uint64_t);
    145     l2_size = table_entries * cluster_size;
    146 
    147     return l2_size * table_entries;
    148 }
    149 
    150 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
    151 {
    152     if (cluster_size < QED_MIN_CLUSTER_SIZE ||
    153         cluster_size > QED_MAX_CLUSTER_SIZE) {
    154         return false;
    155     }
    156     if (cluster_size & (cluster_size - 1)) {
    157         return false; /* not power of 2 */
    158     }
    159     return true;
    160 }
    161 
    162 static bool qed_is_table_size_valid(uint32_t table_size)
    163 {
    164     if (table_size < QED_MIN_TABLE_SIZE ||
    165         table_size > QED_MAX_TABLE_SIZE) {
    166         return false;
    167     }
    168     if (table_size & (table_size - 1)) {
    169         return false; /* not power of 2 */
    170     }
    171     return true;
    172 }
    173 
    174 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
    175                                     uint32_t table_size)
    176 {
    177     if (image_size % BDRV_SECTOR_SIZE != 0) {
    178         return false; /* not multiple of sector size */
    179     }
    180     if (image_size > qed_max_image_size(cluster_size, table_size)) {
    181         return false; /* image is too large */
    182     }
    183     return true;
    184 }
    185 
    186 /**
    187  * Read a string of known length from the image file
    188  *
    189  * @file:       Image file
    190  * @offset:     File offset to start of string, in bytes
    191  * @n:          String length in bytes
    192  * @buf:        Destination buffer
    193  * @buflen:     Destination buffer length in bytes
    194  * @ret:        0 on success, -errno on failure
    195  *
    196  * The string is NUL-terminated.
    197  */
    198 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
    199                            char *buf, size_t buflen)
    200 {
    201     int ret;
    202     if (n >= buflen) {
    203         return -EINVAL;
    204     }
    205     ret = bdrv_pread(file, offset, n, buf, 0);
    206     if (ret < 0) {
    207         return ret;
    208     }
    209     buf[n] = '\0';
    210     return 0;
    211 }
    212 
    213 /**
    214  * Allocate new clusters
    215  *
    216  * @s:          QED state
    217  * @n:          Number of contiguous clusters to allocate
    218  * @ret:        Offset of first allocated cluster
    219  *
    220  * This function only produces the offset where the new clusters should be
    221  * written.  It updates BDRVQEDState but does not make any changes to the image
    222  * file.
    223  *
    224  * Called with table_lock held.
    225  */
    226 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
    227 {
    228     uint64_t offset = s->file_size;
    229     s->file_size += n * s->header.cluster_size;
    230     return offset;
    231 }
    232 
    233 QEDTable *qed_alloc_table(BDRVQEDState *s)
    234 {
    235     /* Honor O_DIRECT memory alignment requirements */
    236     return qemu_blockalign(s->bs,
    237                            s->header.cluster_size * s->header.table_size);
    238 }
    239 
    240 /**
    241  * Allocate a new zeroed L2 table
    242  *
    243  * Called with table_lock held.
    244  */
    245 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
    246 {
    247     CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
    248 
    249     l2_table->table = qed_alloc_table(s);
    250     l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
    251 
    252     memset(l2_table->table->offsets, 0,
    253            s->header.cluster_size * s->header.table_size);
    254     return l2_table;
    255 }
    256 
    257 static bool coroutine_fn qed_plug_allocating_write_reqs(BDRVQEDState *s)
    258 {
    259     qemu_co_mutex_lock(&s->table_lock);
    260 
    261     /* No reentrancy is allowed.  */
    262     assert(!s->allocating_write_reqs_plugged);
    263     if (s->allocating_acb != NULL) {
    264         /* Another allocating write came concurrently.  This cannot happen
    265          * from bdrv_qed_co_drain_begin, but it can happen when the timer runs.
    266          */
    267         qemu_co_mutex_unlock(&s->table_lock);
    268         return false;
    269     }
    270 
    271     s->allocating_write_reqs_plugged = true;
    272     qemu_co_mutex_unlock(&s->table_lock);
    273     return true;
    274 }
    275 
    276 static void coroutine_fn qed_unplug_allocating_write_reqs(BDRVQEDState *s)
    277 {
    278     qemu_co_mutex_lock(&s->table_lock);
    279     assert(s->allocating_write_reqs_plugged);
    280     s->allocating_write_reqs_plugged = false;
    281     qemu_co_queue_next(&s->allocating_write_reqs);
    282     qemu_co_mutex_unlock(&s->table_lock);
    283 }
    284 
    285 static void coroutine_fn qed_need_check_timer_entry(void *opaque)
    286 {
    287     BDRVQEDState *s = opaque;
    288     int ret;
    289 
    290     trace_qed_need_check_timer_cb(s);
    291 
    292     if (!qed_plug_allocating_write_reqs(s)) {
    293         return;
    294     }
    295 
    296     /* Ensure writes are on disk before clearing flag */
    297     ret = bdrv_co_flush(s->bs->file->bs);
    298     if (ret < 0) {
    299         qed_unplug_allocating_write_reqs(s);
    300         return;
    301     }
    302 
    303     s->header.features &= ~QED_F_NEED_CHECK;
    304     ret = qed_write_header(s);
    305     (void) ret;
    306 
    307     qed_unplug_allocating_write_reqs(s);
    308 
    309     ret = bdrv_co_flush(s->bs);
    310     (void) ret;
    311 }
    312 
    313 static void qed_need_check_timer_cb(void *opaque)
    314 {
    315     Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque);
    316     qemu_coroutine_enter(co);
    317 }
    318 
    319 static void qed_start_need_check_timer(BDRVQEDState *s)
    320 {
    321     trace_qed_start_need_check_timer(s);
    322 
    323     /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
    324      * migration.
    325      */
    326     timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
    327                    NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
    328 }
    329 
    330 /* It's okay to call this multiple times or when no timer is started */
    331 static void qed_cancel_need_check_timer(BDRVQEDState *s)
    332 {
    333     trace_qed_cancel_need_check_timer(s);
    334     timer_del(s->need_check_timer);
    335 }
    336 
    337 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
    338 {
    339     BDRVQEDState *s = bs->opaque;
    340 
    341     qed_cancel_need_check_timer(s);
    342     timer_free(s->need_check_timer);
    343 }
    344 
    345 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
    346                                         AioContext *new_context)
    347 {
    348     BDRVQEDState *s = bs->opaque;
    349 
    350     s->need_check_timer = aio_timer_new(new_context,
    351                                         QEMU_CLOCK_VIRTUAL, SCALE_NS,
    352                                         qed_need_check_timer_cb, s);
    353     if (s->header.features & QED_F_NEED_CHECK) {
    354         qed_start_need_check_timer(s);
    355     }
    356 }
    357 
    358 static void coroutine_fn bdrv_qed_co_drain_begin(BlockDriverState *bs)
    359 {
    360     BDRVQEDState *s = bs->opaque;
    361 
    362     /* Fire the timer immediately in order to start doing I/O as soon as the
    363      * header is flushed.
    364      */
    365     if (s->need_check_timer && timer_pending(s->need_check_timer)) {
    366         qed_cancel_need_check_timer(s);
    367         qed_need_check_timer_entry(s);
    368     }
    369 }
    370 
    371 static void bdrv_qed_init_state(BlockDriverState *bs)
    372 {
    373     BDRVQEDState *s = bs->opaque;
    374 
    375     memset(s, 0, sizeof(BDRVQEDState));
    376     s->bs = bs;
    377     qemu_co_mutex_init(&s->table_lock);
    378     qemu_co_queue_init(&s->allocating_write_reqs);
    379 }
    380 
    381 /* Called with table_lock held.  */
    382 static int coroutine_fn bdrv_qed_do_open(BlockDriverState *bs, QDict *options,
    383                                          int flags, Error **errp)
    384 {
    385     BDRVQEDState *s = bs->opaque;
    386     QEDHeader le_header;
    387     int64_t file_size;
    388     int ret;
    389 
    390     ret = bdrv_co_pread(bs->file, 0, sizeof(le_header), &le_header, 0);
    391     if (ret < 0) {
    392         error_setg(errp, "Failed to read QED header");
    393         return ret;
    394     }
    395     qed_header_le_to_cpu(&le_header, &s->header);
    396 
    397     if (s->header.magic != QED_MAGIC) {
    398         error_setg(errp, "Image not in QED format");
    399         return -EINVAL;
    400     }
    401     if (s->header.features & ~QED_FEATURE_MASK) {
    402         /* image uses unsupported feature bits */
    403         error_setg(errp, "Unsupported QED features: %" PRIx64,
    404                    s->header.features & ~QED_FEATURE_MASK);
    405         return -ENOTSUP;
    406     }
    407     if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
    408         error_setg(errp, "QED cluster size is invalid");
    409         return -EINVAL;
    410     }
    411 
    412     /* Round down file size to the last cluster */
    413     file_size = bdrv_getlength(bs->file->bs);
    414     if (file_size < 0) {
    415         error_setg(errp, "Failed to get file length");
    416         return file_size;
    417     }
    418     s->file_size = qed_start_of_cluster(s, file_size);
    419 
    420     if (!qed_is_table_size_valid(s->header.table_size)) {
    421         error_setg(errp, "QED table size is invalid");
    422         return -EINVAL;
    423     }
    424     if (!qed_is_image_size_valid(s->header.image_size,
    425                                  s->header.cluster_size,
    426                                  s->header.table_size)) {
    427         error_setg(errp, "QED image size is invalid");
    428         return -EINVAL;
    429     }
    430     if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
    431         error_setg(errp, "QED table offset is invalid");
    432         return -EINVAL;
    433     }
    434 
    435     s->table_nelems = (s->header.cluster_size * s->header.table_size) /
    436                       sizeof(uint64_t);
    437     s->l2_shift = ctz32(s->header.cluster_size);
    438     s->l2_mask = s->table_nelems - 1;
    439     s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
    440 
    441     /* Header size calculation must not overflow uint32_t */
    442     if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
    443         error_setg(errp, "QED header size is too large");
    444         return -EINVAL;
    445     }
    446 
    447     if ((s->header.features & QED_F_BACKING_FILE)) {
    448         g_autofree char *backing_file_str = NULL;
    449 
    450         if ((uint64_t)s->header.backing_filename_offset +
    451             s->header.backing_filename_size >
    452             s->header.cluster_size * s->header.header_size) {
    453             error_setg(errp, "QED backing filename offset is invalid");
    454             return -EINVAL;
    455         }
    456 
    457         backing_file_str = g_malloc(sizeof(bs->backing_file));
    458         ret = qed_read_string(bs->file, s->header.backing_filename_offset,
    459                               s->header.backing_filename_size,
    460                               backing_file_str, sizeof(bs->backing_file));
    461         if (ret < 0) {
    462             error_setg(errp, "Failed to read backing filename");
    463             return ret;
    464         }
    465 
    466         if (!g_str_equal(backing_file_str, bs->backing_file)) {
    467             pstrcpy(bs->backing_file, sizeof(bs->backing_file),
    468                     backing_file_str);
    469             pstrcpy(bs->auto_backing_file, sizeof(bs->auto_backing_file),
    470                     backing_file_str);
    471         }
    472 
    473         if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
    474             pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
    475         }
    476     }
    477 
    478     /* Reset unknown autoclear feature bits.  This is a backwards
    479      * compatibility mechanism that allows images to be opened by older
    480      * programs, which "knock out" unknown feature bits.  When an image is
    481      * opened by a newer program again it can detect that the autoclear
    482      * feature is no longer valid.
    483      */
    484     if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
    485         !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
    486         s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
    487 
    488         ret = qed_write_header_sync(s);
    489         if (ret) {
    490             error_setg(errp, "Failed to update header");
    491             return ret;
    492         }
    493 
    494         /* From here on only known autoclear feature bits are valid */
    495         bdrv_co_flush(bs->file->bs);
    496     }
    497 
    498     s->l1_table = qed_alloc_table(s);
    499     qed_init_l2_cache(&s->l2_cache);
    500 
    501     ret = qed_read_l1_table_sync(s);
    502     if (ret) {
    503         error_setg(errp, "Failed to read L1 table");
    504         goto out;
    505     }
    506 
    507     /* If image was not closed cleanly, check consistency */
    508     if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
    509         /* Read-only images cannot be fixed.  There is no risk of corruption
    510          * since write operations are not possible.  Therefore, allow
    511          * potentially inconsistent images to be opened read-only.  This can
    512          * aid data recovery from an otherwise inconsistent image.
    513          */
    514         if (!bdrv_is_read_only(bs->file->bs) &&
    515             !(flags & BDRV_O_INACTIVE)) {
    516             BdrvCheckResult result = {0};
    517 
    518             ret = qed_check(s, &result, true);
    519             if (ret) {
    520                 error_setg(errp, "Image corrupted");
    521                 goto out;
    522             }
    523         }
    524     }
    525 
    526     bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
    527 
    528 out:
    529     if (ret) {
    530         qed_free_l2_cache(&s->l2_cache);
    531         qemu_vfree(s->l1_table);
    532     }
    533     return ret;
    534 }
    535 
    536 typedef struct QEDOpenCo {
    537     BlockDriverState *bs;
    538     QDict *options;
    539     int flags;
    540     Error **errp;
    541     int ret;
    542 } QEDOpenCo;
    543 
    544 static void coroutine_fn bdrv_qed_open_entry(void *opaque)
    545 {
    546     QEDOpenCo *qoc = opaque;
    547     BDRVQEDState *s = qoc->bs->opaque;
    548 
    549     qemu_co_mutex_lock(&s->table_lock);
    550     qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp);
    551     qemu_co_mutex_unlock(&s->table_lock);
    552 }
    553 
    554 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
    555                          Error **errp)
    556 {
    557     QEDOpenCo qoc = {
    558         .bs = bs,
    559         .options = options,
    560         .flags = flags,
    561         .errp = errp,
    562         .ret = -EINPROGRESS
    563     };
    564     int ret;
    565 
    566     ret = bdrv_open_file_child(NULL, options, "file", bs, errp);
    567     if (ret < 0) {
    568         return ret;
    569     }
    570 
    571     bdrv_qed_init_state(bs);
    572     if (qemu_in_coroutine()) {
    573         bdrv_qed_open_entry(&qoc);
    574     } else {
    575         assert(qemu_get_current_aio_context() == qemu_get_aio_context());
    576         qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc));
    577         BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
    578     }
    579     BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
    580     return qoc.ret;
    581 }
    582 
    583 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
    584 {
    585     BDRVQEDState *s = bs->opaque;
    586 
    587     bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
    588     bs->bl.max_pwrite_zeroes = QEMU_ALIGN_DOWN(INT_MAX, s->header.cluster_size);
    589 }
    590 
    591 /* We have nothing to do for QED reopen, stubs just return
    592  * success */
    593 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
    594                                    BlockReopenQueue *queue, Error **errp)
    595 {
    596     return 0;
    597 }
    598 
    599 static void bdrv_qed_close(BlockDriverState *bs)
    600 {
    601     BDRVQEDState *s = bs->opaque;
    602 
    603     bdrv_qed_detach_aio_context(bs);
    604 
    605     /* Ensure writes reach stable storage */
    606     bdrv_flush(bs->file->bs);
    607 
    608     /* Clean shutdown, no check required on next open */
    609     if (s->header.features & QED_F_NEED_CHECK) {
    610         s->header.features &= ~QED_F_NEED_CHECK;
    611         qed_write_header_sync(s);
    612     }
    613 
    614     qed_free_l2_cache(&s->l2_cache);
    615     qemu_vfree(s->l1_table);
    616 }
    617 
    618 static int coroutine_fn bdrv_qed_co_create(BlockdevCreateOptions *opts,
    619                                            Error **errp)
    620 {
    621     BlockdevCreateOptionsQed *qed_opts;
    622     BlockBackend *blk = NULL;
    623     BlockDriverState *bs = NULL;
    624 
    625     QEDHeader header;
    626     QEDHeader le_header;
    627     uint8_t *l1_table = NULL;
    628     size_t l1_size;
    629     int ret = 0;
    630 
    631     assert(opts->driver == BLOCKDEV_DRIVER_QED);
    632     qed_opts = &opts->u.qed;
    633 
    634     /* Validate options and set default values */
    635     if (!qed_opts->has_cluster_size) {
    636         qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE;
    637     }
    638     if (!qed_opts->has_table_size) {
    639         qed_opts->table_size = QED_DEFAULT_TABLE_SIZE;
    640     }
    641 
    642     if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) {
    643         error_setg(errp, "QED cluster size must be within range [%u, %u] "
    644                          "and power of 2",
    645                    QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
    646         return -EINVAL;
    647     }
    648     if (!qed_is_table_size_valid(qed_opts->table_size)) {
    649         error_setg(errp, "QED table size must be within range [%u, %u] "
    650                          "and power of 2",
    651                    QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
    652         return -EINVAL;
    653     }
    654     if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size,
    655                                  qed_opts->table_size))
    656     {
    657         error_setg(errp, "QED image size must be a non-zero multiple of "
    658                          "cluster size and less than %" PRIu64 " bytes",
    659                    qed_max_image_size(qed_opts->cluster_size,
    660                                       qed_opts->table_size));
    661         return -EINVAL;
    662     }
    663 
    664     /* Create BlockBackend to write to the image */
    665     bs = bdrv_open_blockdev_ref(qed_opts->file, errp);
    666     if (bs == NULL) {
    667         return -EIO;
    668     }
    669 
    670     blk = blk_new_with_bs(bs, BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL,
    671                           errp);
    672     if (!blk) {
    673         ret = -EPERM;
    674         goto out;
    675     }
    676     blk_set_allow_write_beyond_eof(blk, true);
    677 
    678     /* Prepare image format */
    679     header = (QEDHeader) {
    680         .magic = QED_MAGIC,
    681         .cluster_size = qed_opts->cluster_size,
    682         .table_size = qed_opts->table_size,
    683         .header_size = 1,
    684         .features = 0,
    685         .compat_features = 0,
    686         .l1_table_offset = qed_opts->cluster_size,
    687         .image_size = qed_opts->size,
    688     };
    689 
    690     l1_size = header.cluster_size * header.table_size;
    691 
    692     /*
    693      * The QED format associates file length with allocation status,
    694      * so a new file (which is empty) must have a length of 0.
    695      */
    696     ret = blk_co_truncate(blk, 0, true, PREALLOC_MODE_OFF, 0, errp);
    697     if (ret < 0) {
    698         goto out;
    699     }
    700 
    701     if (qed_opts->has_backing_file) {
    702         header.features |= QED_F_BACKING_FILE;
    703         header.backing_filename_offset = sizeof(le_header);
    704         header.backing_filename_size = strlen(qed_opts->backing_file);
    705 
    706         if (qed_opts->has_backing_fmt) {
    707             const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt);
    708             if (qed_fmt_is_raw(backing_fmt)) {
    709                 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
    710             }
    711         }
    712     }
    713 
    714     qed_header_cpu_to_le(&header, &le_header);
    715     ret = blk_co_pwrite(blk, 0, sizeof(le_header), &le_header, 0);
    716     if (ret < 0) {
    717         goto out;
    718     }
    719     ret = blk_co_pwrite(blk, sizeof(le_header), header.backing_filename_size,
    720                      qed_opts->backing_file, 0);
    721     if (ret < 0) {
    722         goto out;
    723     }
    724 
    725     l1_table = g_malloc0(l1_size);
    726     ret = blk_co_pwrite(blk, header.l1_table_offset, l1_size, l1_table, 0);
    727     if (ret < 0) {
    728         goto out;
    729     }
    730 
    731     ret = 0; /* success */
    732 out:
    733     g_free(l1_table);
    734     blk_unref(blk);
    735     bdrv_unref(bs);
    736     return ret;
    737 }
    738 
    739 static int coroutine_fn bdrv_qed_co_create_opts(BlockDriver *drv,
    740                                                 const char *filename,
    741                                                 QemuOpts *opts,
    742                                                 Error **errp)
    743 {
    744     BlockdevCreateOptions *create_options = NULL;
    745     QDict *qdict;
    746     Visitor *v;
    747     BlockDriverState *bs = NULL;
    748     int ret;
    749 
    750     static const QDictRenames opt_renames[] = {
    751         { BLOCK_OPT_BACKING_FILE,       "backing-file" },
    752         { BLOCK_OPT_BACKING_FMT,        "backing-fmt" },
    753         { BLOCK_OPT_CLUSTER_SIZE,       "cluster-size" },
    754         { BLOCK_OPT_TABLE_SIZE,         "table-size" },
    755         { NULL, NULL },
    756     };
    757 
    758     /* Parse options and convert legacy syntax */
    759     qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true);
    760 
    761     if (!qdict_rename_keys(qdict, opt_renames, errp)) {
    762         ret = -EINVAL;
    763         goto fail;
    764     }
    765 
    766     /* Create and open the file (protocol layer) */
    767     ret = bdrv_create_file(filename, opts, errp);
    768     if (ret < 0) {
    769         goto fail;
    770     }
    771 
    772     bs = bdrv_open(filename, NULL, NULL,
    773                    BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp);
    774     if (bs == NULL) {
    775         ret = -EIO;
    776         goto fail;
    777     }
    778 
    779     /* Now get the QAPI type BlockdevCreateOptions */
    780     qdict_put_str(qdict, "driver", "qed");
    781     qdict_put_str(qdict, "file", bs->node_name);
    782 
    783     v = qobject_input_visitor_new_flat_confused(qdict, errp);
    784     if (!v) {
    785         ret = -EINVAL;
    786         goto fail;
    787     }
    788 
    789     visit_type_BlockdevCreateOptions(v, NULL, &create_options, errp);
    790     visit_free(v);
    791     if (!create_options) {
    792         ret = -EINVAL;
    793         goto fail;
    794     }
    795 
    796     /* Silently round up size */
    797     assert(create_options->driver == BLOCKDEV_DRIVER_QED);
    798     create_options->u.qed.size =
    799         ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE);
    800 
    801     /* Create the qed image (format layer) */
    802     ret = bdrv_qed_co_create(create_options, errp);
    803 
    804 fail:
    805     qobject_unref(qdict);
    806     bdrv_unref(bs);
    807     qapi_free_BlockdevCreateOptions(create_options);
    808     return ret;
    809 }
    810 
    811 static int coroutine_fn bdrv_qed_co_block_status(BlockDriverState *bs,
    812                                                  bool want_zero,
    813                                                  int64_t pos, int64_t bytes,
    814                                                  int64_t *pnum, int64_t *map,
    815                                                  BlockDriverState **file)
    816 {
    817     BDRVQEDState *s = bs->opaque;
    818     size_t len = MIN(bytes, SIZE_MAX);
    819     int status;
    820     QEDRequest request = { .l2_table = NULL };
    821     uint64_t offset;
    822     int ret;
    823 
    824     qemu_co_mutex_lock(&s->table_lock);
    825     ret = qed_find_cluster(s, &request, pos, &len, &offset);
    826 
    827     *pnum = len;
    828     switch (ret) {
    829     case QED_CLUSTER_FOUND:
    830         *map = offset | qed_offset_into_cluster(s, pos);
    831         status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
    832         *file = bs->file->bs;
    833         break;
    834     case QED_CLUSTER_ZERO:
    835         status = BDRV_BLOCK_ZERO;
    836         break;
    837     case QED_CLUSTER_L2:
    838     case QED_CLUSTER_L1:
    839         status = 0;
    840         break;
    841     default:
    842         assert(ret < 0);
    843         status = ret;
    844         break;
    845     }
    846 
    847     qed_unref_l2_cache_entry(request.l2_table);
    848     qemu_co_mutex_unlock(&s->table_lock);
    849 
    850     return status;
    851 }
    852 
    853 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
    854 {
    855     return acb->bs->opaque;
    856 }
    857 
    858 /**
    859  * Read from the backing file or zero-fill if no backing file
    860  *
    861  * @s:              QED state
    862  * @pos:            Byte position in device
    863  * @qiov:           Destination I/O vector
    864  *
    865  * This function reads qiov->size bytes starting at pos from the backing file.
    866  * If there is no backing file then zeroes are read.
    867  */
    868 static int coroutine_fn qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
    869                                               QEMUIOVector *qiov)
    870 {
    871     if (s->bs->backing) {
    872         BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
    873         return bdrv_co_preadv(s->bs->backing, pos, qiov->size, qiov, 0);
    874     }
    875     qemu_iovec_memset(qiov, 0, 0, qiov->size);
    876     return 0;
    877 }
    878 
    879 /**
    880  * Copy data from backing file into the image
    881  *
    882  * @s:          QED state
    883  * @pos:        Byte position in device
    884  * @len:        Number of bytes
    885  * @offset:     Byte offset in image file
    886  */
    887 static int coroutine_fn qed_copy_from_backing_file(BDRVQEDState *s,
    888                                                    uint64_t pos, uint64_t len,
    889                                                    uint64_t offset)
    890 {
    891     QEMUIOVector qiov;
    892     int ret;
    893 
    894     /* Skip copy entirely if there is no work to do */
    895     if (len == 0) {
    896         return 0;
    897     }
    898 
    899     qemu_iovec_init_buf(&qiov, qemu_blockalign(s->bs, len), len);
    900 
    901     ret = qed_read_backing_file(s, pos, &qiov);
    902 
    903     if (ret) {
    904         goto out;
    905     }
    906 
    907     BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
    908     ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0);
    909     if (ret < 0) {
    910         goto out;
    911     }
    912     ret = 0;
    913 out:
    914     qemu_vfree(qemu_iovec_buf(&qiov));
    915     return ret;
    916 }
    917 
    918 /**
    919  * Link one or more contiguous clusters into a table
    920  *
    921  * @s:              QED state
    922  * @table:          L2 table
    923  * @index:          First cluster index
    924  * @n:              Number of contiguous clusters
    925  * @cluster:        First cluster offset
    926  *
    927  * The cluster offset may be an allocated byte offset in the image file, the
    928  * zero cluster marker, or the unallocated cluster marker.
    929  *
    930  * Called with table_lock held.
    931  */
    932 static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table,
    933                                              int index, unsigned int n,
    934                                              uint64_t cluster)
    935 {
    936     int i;
    937     for (i = index; i < index + n; i++) {
    938         table->offsets[i] = cluster;
    939         if (!qed_offset_is_unalloc_cluster(cluster) &&
    940             !qed_offset_is_zero_cluster(cluster)) {
    941             cluster += s->header.cluster_size;
    942         }
    943     }
    944 }
    945 
    946 /* Called with table_lock held.  */
    947 static void coroutine_fn qed_aio_complete(QEDAIOCB *acb)
    948 {
    949     BDRVQEDState *s = acb_to_s(acb);
    950 
    951     /* Free resources */
    952     qemu_iovec_destroy(&acb->cur_qiov);
    953     qed_unref_l2_cache_entry(acb->request.l2_table);
    954 
    955     /* Free the buffer we may have allocated for zero writes */
    956     if (acb->flags & QED_AIOCB_ZERO) {
    957         qemu_vfree(acb->qiov->iov[0].iov_base);
    958         acb->qiov->iov[0].iov_base = NULL;
    959     }
    960 
    961     /* Start next allocating write request waiting behind this one.  Note that
    962      * requests enqueue themselves when they first hit an unallocated cluster
    963      * but they wait until the entire request is finished before waking up the
    964      * next request in the queue.  This ensures that we don't cycle through
    965      * requests multiple times but rather finish one at a time completely.
    966      */
    967     if (acb == s->allocating_acb) {
    968         s->allocating_acb = NULL;
    969         if (!qemu_co_queue_empty(&s->allocating_write_reqs)) {
    970             qemu_co_queue_next(&s->allocating_write_reqs);
    971         } else if (s->header.features & QED_F_NEED_CHECK) {
    972             qed_start_need_check_timer(s);
    973         }
    974     }
    975 }
    976 
    977 /**
    978  * Update L1 table with new L2 table offset and write it out
    979  *
    980  * Called with table_lock held.
    981  */
    982 static int coroutine_fn qed_aio_write_l1_update(QEDAIOCB *acb)
    983 {
    984     BDRVQEDState *s = acb_to_s(acb);
    985     CachedL2Table *l2_table = acb->request.l2_table;
    986     uint64_t l2_offset = l2_table->offset;
    987     int index, ret;
    988 
    989     index = qed_l1_index(s, acb->cur_pos);
    990     s->l1_table->offsets[index] = l2_table->offset;
    991 
    992     ret = qed_write_l1_table(s, index, 1);
    993 
    994     /* Commit the current L2 table to the cache */
    995     qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
    996 
    997     /* This is guaranteed to succeed because we just committed the entry to the
    998      * cache.
    999      */
   1000     acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
   1001     assert(acb->request.l2_table != NULL);
   1002 
   1003     return ret;
   1004 }
   1005 
   1006 
   1007 /**
   1008  * Update L2 table with new cluster offsets and write them out
   1009  *
   1010  * Called with table_lock held.
   1011  */
   1012 static int coroutine_fn qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
   1013 {
   1014     BDRVQEDState *s = acb_to_s(acb);
   1015     bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
   1016     int index, ret;
   1017 
   1018     if (need_alloc) {
   1019         qed_unref_l2_cache_entry(acb->request.l2_table);
   1020         acb->request.l2_table = qed_new_l2_table(s);
   1021     }
   1022 
   1023     index = qed_l2_index(s, acb->cur_pos);
   1024     qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
   1025                          offset);
   1026 
   1027     if (need_alloc) {
   1028         /* Write out the whole new L2 table */
   1029         ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
   1030         if (ret) {
   1031             return ret;
   1032         }
   1033         return qed_aio_write_l1_update(acb);
   1034     } else {
   1035         /* Write out only the updated part of the L2 table */
   1036         ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
   1037                                  false);
   1038         if (ret) {
   1039             return ret;
   1040         }
   1041     }
   1042     return 0;
   1043 }
   1044 
   1045 /**
   1046  * Write data to the image file
   1047  *
   1048  * Called with table_lock *not* held.
   1049  */
   1050 static int coroutine_fn qed_aio_write_main(QEDAIOCB *acb)
   1051 {
   1052     BDRVQEDState *s = acb_to_s(acb);
   1053     uint64_t offset = acb->cur_cluster +
   1054                       qed_offset_into_cluster(s, acb->cur_pos);
   1055 
   1056     trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size);
   1057 
   1058     BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
   1059     return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size,
   1060                            &acb->cur_qiov, 0);
   1061 }
   1062 
   1063 /**
   1064  * Populate untouched regions of new data cluster
   1065  *
   1066  * Called with table_lock held.
   1067  */
   1068 static int coroutine_fn qed_aio_write_cow(QEDAIOCB *acb)
   1069 {
   1070     BDRVQEDState *s = acb_to_s(acb);
   1071     uint64_t start, len, offset;
   1072     int ret;
   1073 
   1074     qemu_co_mutex_unlock(&s->table_lock);
   1075 
   1076     /* Populate front untouched region of new data cluster */
   1077     start = qed_start_of_cluster(s, acb->cur_pos);
   1078     len = qed_offset_into_cluster(s, acb->cur_pos);
   1079 
   1080     trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
   1081     ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
   1082     if (ret < 0) {
   1083         goto out;
   1084     }
   1085 
   1086     /* Populate back untouched region of new data cluster */
   1087     start = acb->cur_pos + acb->cur_qiov.size;
   1088     len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
   1089     offset = acb->cur_cluster +
   1090              qed_offset_into_cluster(s, acb->cur_pos) +
   1091              acb->cur_qiov.size;
   1092 
   1093     trace_qed_aio_write_postfill(s, acb, start, len, offset);
   1094     ret = qed_copy_from_backing_file(s, start, len, offset);
   1095     if (ret < 0) {
   1096         goto out;
   1097     }
   1098 
   1099     ret = qed_aio_write_main(acb);
   1100     if (ret < 0) {
   1101         goto out;
   1102     }
   1103 
   1104     if (s->bs->backing) {
   1105         /*
   1106          * Flush new data clusters before updating the L2 table
   1107          *
   1108          * This flush is necessary when a backing file is in use.  A crash
   1109          * during an allocating write could result in empty clusters in the
   1110          * image.  If the write only touched a subregion of the cluster,
   1111          * then backing image sectors have been lost in the untouched
   1112          * region.  The solution is to flush after writing a new data
   1113          * cluster and before updating the L2 table.
   1114          */
   1115         ret = bdrv_co_flush(s->bs->file->bs);
   1116     }
   1117 
   1118 out:
   1119     qemu_co_mutex_lock(&s->table_lock);
   1120     return ret;
   1121 }
   1122 
   1123 /**
   1124  * Check if the QED_F_NEED_CHECK bit should be set during allocating write
   1125  */
   1126 static bool qed_should_set_need_check(BDRVQEDState *s)
   1127 {
   1128     /* The flush before L2 update path ensures consistency */
   1129     if (s->bs->backing) {
   1130         return false;
   1131     }
   1132 
   1133     return !(s->header.features & QED_F_NEED_CHECK);
   1134 }
   1135 
   1136 /**
   1137  * Write new data cluster
   1138  *
   1139  * @acb:        Write request
   1140  * @len:        Length in bytes
   1141  *
   1142  * This path is taken when writing to previously unallocated clusters.
   1143  *
   1144  * Called with table_lock held.
   1145  */
   1146 static int coroutine_fn qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
   1147 {
   1148     BDRVQEDState *s = acb_to_s(acb);
   1149     int ret;
   1150 
   1151     /* Cancel timer when the first allocating request comes in */
   1152     if (s->allocating_acb == NULL) {
   1153         qed_cancel_need_check_timer(s);
   1154     }
   1155 
   1156     /* Freeze this request if another allocating write is in progress */
   1157     if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) {
   1158         if (s->allocating_acb != NULL) {
   1159             qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock);
   1160             assert(s->allocating_acb == NULL);
   1161         }
   1162         s->allocating_acb = acb;
   1163         return -EAGAIN; /* start over with looking up table entries */
   1164     }
   1165 
   1166     acb->cur_nclusters = qed_bytes_to_clusters(s,
   1167             qed_offset_into_cluster(s, acb->cur_pos) + len);
   1168     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
   1169 
   1170     if (acb->flags & QED_AIOCB_ZERO) {
   1171         /* Skip ahead if the clusters are already zero */
   1172         if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
   1173             return 0;
   1174         }
   1175         acb->cur_cluster = 1;
   1176     } else {
   1177         acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
   1178     }
   1179 
   1180     if (qed_should_set_need_check(s)) {
   1181         s->header.features |= QED_F_NEED_CHECK;
   1182         ret = qed_write_header(s);
   1183         if (ret < 0) {
   1184             return ret;
   1185         }
   1186     }
   1187 
   1188     if (!(acb->flags & QED_AIOCB_ZERO)) {
   1189         ret = qed_aio_write_cow(acb);
   1190         if (ret < 0) {
   1191             return ret;
   1192         }
   1193     }
   1194 
   1195     return qed_aio_write_l2_update(acb, acb->cur_cluster);
   1196 }
   1197 
   1198 /**
   1199  * Write data cluster in place
   1200  *
   1201  * @acb:        Write request
   1202  * @offset:     Cluster offset in bytes
   1203  * @len:        Length in bytes
   1204  *
   1205  * This path is taken when writing to already allocated clusters.
   1206  *
   1207  * Called with table_lock held.
   1208  */
   1209 static int coroutine_fn qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset,
   1210                                               size_t len)
   1211 {
   1212     BDRVQEDState *s = acb_to_s(acb);
   1213     int r;
   1214 
   1215     qemu_co_mutex_unlock(&s->table_lock);
   1216 
   1217     /* Allocate buffer for zero writes */
   1218     if (acb->flags & QED_AIOCB_ZERO) {
   1219         struct iovec *iov = acb->qiov->iov;
   1220 
   1221         if (!iov->iov_base) {
   1222             iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len);
   1223             if (iov->iov_base == NULL) {
   1224                 r = -ENOMEM;
   1225                 goto out;
   1226             }
   1227             memset(iov->iov_base, 0, iov->iov_len);
   1228         }
   1229     }
   1230 
   1231     /* Calculate the I/O vector */
   1232     acb->cur_cluster = offset;
   1233     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
   1234 
   1235     /* Do the actual write.  */
   1236     r = qed_aio_write_main(acb);
   1237 out:
   1238     qemu_co_mutex_lock(&s->table_lock);
   1239     return r;
   1240 }
   1241 
   1242 /**
   1243  * Write data cluster
   1244  *
   1245  * @opaque:     Write request
   1246  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
   1247  * @offset:     Cluster offset in bytes
   1248  * @len:        Length in bytes
   1249  *
   1250  * Called with table_lock held.
   1251  */
   1252 static int coroutine_fn qed_aio_write_data(void *opaque, int ret,
   1253                                            uint64_t offset, size_t len)
   1254 {
   1255     QEDAIOCB *acb = opaque;
   1256 
   1257     trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
   1258 
   1259     acb->find_cluster_ret = ret;
   1260 
   1261     switch (ret) {
   1262     case QED_CLUSTER_FOUND:
   1263         return qed_aio_write_inplace(acb, offset, len);
   1264 
   1265     case QED_CLUSTER_L2:
   1266     case QED_CLUSTER_L1:
   1267     case QED_CLUSTER_ZERO:
   1268         return qed_aio_write_alloc(acb, len);
   1269 
   1270     default:
   1271         g_assert_not_reached();
   1272     }
   1273 }
   1274 
   1275 /**
   1276  * Read data cluster
   1277  *
   1278  * @opaque:     Read request
   1279  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
   1280  * @offset:     Cluster offset in bytes
   1281  * @len:        Length in bytes
   1282  *
   1283  * Called with table_lock held.
   1284  */
   1285 static int coroutine_fn qed_aio_read_data(void *opaque, int ret,
   1286                                           uint64_t offset, size_t len)
   1287 {
   1288     QEDAIOCB *acb = opaque;
   1289     BDRVQEDState *s = acb_to_s(acb);
   1290     BlockDriverState *bs = acb->bs;
   1291     int r;
   1292 
   1293     qemu_co_mutex_unlock(&s->table_lock);
   1294 
   1295     /* Adjust offset into cluster */
   1296     offset += qed_offset_into_cluster(s, acb->cur_pos);
   1297 
   1298     trace_qed_aio_read_data(s, acb, ret, offset, len);
   1299 
   1300     qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
   1301 
   1302     /* Handle zero cluster and backing file reads, otherwise read
   1303      * data cluster directly.
   1304      */
   1305     if (ret == QED_CLUSTER_ZERO) {
   1306         qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
   1307         r = 0;
   1308     } else if (ret != QED_CLUSTER_FOUND) {
   1309         r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov);
   1310     } else {
   1311         BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
   1312         r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size,
   1313                            &acb->cur_qiov, 0);
   1314     }
   1315 
   1316     qemu_co_mutex_lock(&s->table_lock);
   1317     return r;
   1318 }
   1319 
   1320 /**
   1321  * Begin next I/O or complete the request
   1322  */
   1323 static int coroutine_fn qed_aio_next_io(QEDAIOCB *acb)
   1324 {
   1325     BDRVQEDState *s = acb_to_s(acb);
   1326     uint64_t offset;
   1327     size_t len;
   1328     int ret;
   1329 
   1330     qemu_co_mutex_lock(&s->table_lock);
   1331     while (1) {
   1332         trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size);
   1333 
   1334         acb->qiov_offset += acb->cur_qiov.size;
   1335         acb->cur_pos += acb->cur_qiov.size;
   1336         qemu_iovec_reset(&acb->cur_qiov);
   1337 
   1338         /* Complete request */
   1339         if (acb->cur_pos >= acb->end_pos) {
   1340             ret = 0;
   1341             break;
   1342         }
   1343 
   1344         /* Find next cluster and start I/O */
   1345         len = acb->end_pos - acb->cur_pos;
   1346         ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
   1347         if (ret < 0) {
   1348             break;
   1349         }
   1350 
   1351         if (acb->flags & QED_AIOCB_WRITE) {
   1352             ret = qed_aio_write_data(acb, ret, offset, len);
   1353         } else {
   1354             ret = qed_aio_read_data(acb, ret, offset, len);
   1355         }
   1356 
   1357         if (ret < 0 && ret != -EAGAIN) {
   1358             break;
   1359         }
   1360     }
   1361 
   1362     trace_qed_aio_complete(s, acb, ret);
   1363     qed_aio_complete(acb);
   1364     qemu_co_mutex_unlock(&s->table_lock);
   1365     return ret;
   1366 }
   1367 
   1368 static int coroutine_fn qed_co_request(BlockDriverState *bs, int64_t sector_num,
   1369                                        QEMUIOVector *qiov, int nb_sectors,
   1370                                        int flags)
   1371 {
   1372     QEDAIOCB acb = {
   1373         .bs         = bs,
   1374         .cur_pos    = (uint64_t) sector_num * BDRV_SECTOR_SIZE,
   1375         .end_pos    = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE,
   1376         .qiov       = qiov,
   1377         .flags      = flags,
   1378     };
   1379     qemu_iovec_init(&acb.cur_qiov, qiov->niov);
   1380 
   1381     trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags);
   1382 
   1383     /* Start request */
   1384     return qed_aio_next_io(&acb);
   1385 }
   1386 
   1387 static int coroutine_fn bdrv_qed_co_readv(BlockDriverState *bs,
   1388                                           int64_t sector_num, int nb_sectors,
   1389                                           QEMUIOVector *qiov)
   1390 {
   1391     return qed_co_request(bs, sector_num, qiov, nb_sectors, 0);
   1392 }
   1393 
   1394 static int coroutine_fn bdrv_qed_co_writev(BlockDriverState *bs,
   1395                                            int64_t sector_num, int nb_sectors,
   1396                                            QEMUIOVector *qiov, int flags)
   1397 {
   1398     return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE);
   1399 }
   1400 
   1401 static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs,
   1402                                                   int64_t offset,
   1403                                                   int64_t bytes,
   1404                                                   BdrvRequestFlags flags)
   1405 {
   1406     BDRVQEDState *s = bs->opaque;
   1407 
   1408     /*
   1409      * Zero writes start without an I/O buffer.  If a buffer becomes necessary
   1410      * then it will be allocated during request processing.
   1411      */
   1412     QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
   1413 
   1414     /*
   1415      * QED is not prepared for 63bit write-zero requests, so rely on
   1416      * max_pwrite_zeroes.
   1417      */
   1418     assert(bytes <= INT_MAX);
   1419 
   1420     /* Fall back if the request is not aligned */
   1421     if (qed_offset_into_cluster(s, offset) ||
   1422         qed_offset_into_cluster(s, bytes)) {
   1423         return -ENOTSUP;
   1424     }
   1425 
   1426     return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov,
   1427                           bytes >> BDRV_SECTOR_BITS,
   1428                           QED_AIOCB_WRITE | QED_AIOCB_ZERO);
   1429 }
   1430 
   1431 static int coroutine_fn bdrv_qed_co_truncate(BlockDriverState *bs,
   1432                                              int64_t offset,
   1433                                              bool exact,
   1434                                              PreallocMode prealloc,
   1435                                              BdrvRequestFlags flags,
   1436                                              Error **errp)
   1437 {
   1438     BDRVQEDState *s = bs->opaque;
   1439     uint64_t old_image_size;
   1440     int ret;
   1441 
   1442     if (prealloc != PREALLOC_MODE_OFF) {
   1443         error_setg(errp, "Unsupported preallocation mode '%s'",
   1444                    PreallocMode_str(prealloc));
   1445         return -ENOTSUP;
   1446     }
   1447 
   1448     if (!qed_is_image_size_valid(offset, s->header.cluster_size,
   1449                                  s->header.table_size)) {
   1450         error_setg(errp, "Invalid image size specified");
   1451         return -EINVAL;
   1452     }
   1453 
   1454     if ((uint64_t)offset < s->header.image_size) {
   1455         error_setg(errp, "Shrinking images is currently not supported");
   1456         return -ENOTSUP;
   1457     }
   1458 
   1459     old_image_size = s->header.image_size;
   1460     s->header.image_size = offset;
   1461     ret = qed_write_header_sync(s);
   1462     if (ret < 0) {
   1463         s->header.image_size = old_image_size;
   1464         error_setg_errno(errp, -ret, "Failed to update the image size");
   1465     }
   1466     return ret;
   1467 }
   1468 
   1469 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
   1470 {
   1471     BDRVQEDState *s = bs->opaque;
   1472     return s->header.image_size;
   1473 }
   1474 
   1475 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
   1476 {
   1477     BDRVQEDState *s = bs->opaque;
   1478 
   1479     memset(bdi, 0, sizeof(*bdi));
   1480     bdi->cluster_size = s->header.cluster_size;
   1481     bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
   1482     return 0;
   1483 }
   1484 
   1485 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
   1486                                         const char *backing_file,
   1487                                         const char *backing_fmt)
   1488 {
   1489     BDRVQEDState *s = bs->opaque;
   1490     QEDHeader new_header, le_header;
   1491     void *buffer;
   1492     size_t buffer_len, backing_file_len;
   1493     int ret;
   1494 
   1495     /* Refuse to set backing filename if unknown compat feature bits are
   1496      * active.  If the image uses an unknown compat feature then we may not
   1497      * know the layout of data following the header structure and cannot safely
   1498      * add a new string.
   1499      */
   1500     if (backing_file && (s->header.compat_features &
   1501                          ~QED_COMPAT_FEATURE_MASK)) {
   1502         return -ENOTSUP;
   1503     }
   1504 
   1505     memcpy(&new_header, &s->header, sizeof(new_header));
   1506 
   1507     new_header.features &= ~(QED_F_BACKING_FILE |
   1508                              QED_F_BACKING_FORMAT_NO_PROBE);
   1509 
   1510     /* Adjust feature flags */
   1511     if (backing_file) {
   1512         new_header.features |= QED_F_BACKING_FILE;
   1513 
   1514         if (qed_fmt_is_raw(backing_fmt)) {
   1515             new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
   1516         }
   1517     }
   1518 
   1519     /* Calculate new header size */
   1520     backing_file_len = 0;
   1521 
   1522     if (backing_file) {
   1523         backing_file_len = strlen(backing_file);
   1524     }
   1525 
   1526     buffer_len = sizeof(new_header);
   1527     new_header.backing_filename_offset = buffer_len;
   1528     new_header.backing_filename_size = backing_file_len;
   1529     buffer_len += backing_file_len;
   1530 
   1531     /* Make sure we can rewrite header without failing */
   1532     if (buffer_len > new_header.header_size * new_header.cluster_size) {
   1533         return -ENOSPC;
   1534     }
   1535 
   1536     /* Prepare new header */
   1537     buffer = g_malloc(buffer_len);
   1538 
   1539     qed_header_cpu_to_le(&new_header, &le_header);
   1540     memcpy(buffer, &le_header, sizeof(le_header));
   1541     buffer_len = sizeof(le_header);
   1542 
   1543     if (backing_file) {
   1544         memcpy(buffer + buffer_len, backing_file, backing_file_len);
   1545         buffer_len += backing_file_len;
   1546     }
   1547 
   1548     /* Write new header */
   1549     ret = bdrv_pwrite_sync(bs->file, 0, buffer_len, buffer, 0);
   1550     g_free(buffer);
   1551     if (ret == 0) {
   1552         memcpy(&s->header, &new_header, sizeof(new_header));
   1553     }
   1554     return ret;
   1555 }
   1556 
   1557 static void coroutine_fn bdrv_qed_co_invalidate_cache(BlockDriverState *bs,
   1558                                                       Error **errp)
   1559 {
   1560     BDRVQEDState *s = bs->opaque;
   1561     int ret;
   1562 
   1563     bdrv_qed_close(bs);
   1564 
   1565     bdrv_qed_init_state(bs);
   1566     qemu_co_mutex_lock(&s->table_lock);
   1567     ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, errp);
   1568     qemu_co_mutex_unlock(&s->table_lock);
   1569     if (ret < 0) {
   1570         error_prepend(errp, "Could not reopen qed layer: ");
   1571     }
   1572 }
   1573 
   1574 static int coroutine_fn bdrv_qed_co_check(BlockDriverState *bs,
   1575                                           BdrvCheckResult *result,
   1576                                           BdrvCheckMode fix)
   1577 {
   1578     BDRVQEDState *s = bs->opaque;
   1579     int ret;
   1580 
   1581     qemu_co_mutex_lock(&s->table_lock);
   1582     ret = qed_check(s, result, !!fix);
   1583     qemu_co_mutex_unlock(&s->table_lock);
   1584 
   1585     return ret;
   1586 }
   1587 
   1588 static QemuOptsList qed_create_opts = {
   1589     .name = "qed-create-opts",
   1590     .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
   1591     .desc = {
   1592         {
   1593             .name = BLOCK_OPT_SIZE,
   1594             .type = QEMU_OPT_SIZE,
   1595             .help = "Virtual disk size"
   1596         },
   1597         {
   1598             .name = BLOCK_OPT_BACKING_FILE,
   1599             .type = QEMU_OPT_STRING,
   1600             .help = "File name of a base image"
   1601         },
   1602         {
   1603             .name = BLOCK_OPT_BACKING_FMT,
   1604             .type = QEMU_OPT_STRING,
   1605             .help = "Image format of the base image"
   1606         },
   1607         {
   1608             .name = BLOCK_OPT_CLUSTER_SIZE,
   1609             .type = QEMU_OPT_SIZE,
   1610             .help = "Cluster size (in bytes)",
   1611             .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
   1612         },
   1613         {
   1614             .name = BLOCK_OPT_TABLE_SIZE,
   1615             .type = QEMU_OPT_SIZE,
   1616             .help = "L1/L2 table size (in clusters)"
   1617         },
   1618         { /* end of list */ }
   1619     }
   1620 };
   1621 
   1622 static BlockDriver bdrv_qed = {
   1623     .format_name              = "qed",
   1624     .instance_size            = sizeof(BDRVQEDState),
   1625     .create_opts              = &qed_create_opts,
   1626     .is_format                = true,
   1627     .supports_backing         = true,
   1628 
   1629     .bdrv_probe               = bdrv_qed_probe,
   1630     .bdrv_open                = bdrv_qed_open,
   1631     .bdrv_close               = bdrv_qed_close,
   1632     .bdrv_reopen_prepare      = bdrv_qed_reopen_prepare,
   1633     .bdrv_child_perm          = bdrv_default_perms,
   1634     .bdrv_co_create           = bdrv_qed_co_create,
   1635     .bdrv_co_create_opts      = bdrv_qed_co_create_opts,
   1636     .bdrv_has_zero_init       = bdrv_has_zero_init_1,
   1637     .bdrv_co_block_status     = bdrv_qed_co_block_status,
   1638     .bdrv_co_readv            = bdrv_qed_co_readv,
   1639     .bdrv_co_writev           = bdrv_qed_co_writev,
   1640     .bdrv_co_pwrite_zeroes    = bdrv_qed_co_pwrite_zeroes,
   1641     .bdrv_co_truncate         = bdrv_qed_co_truncate,
   1642     .bdrv_getlength           = bdrv_qed_getlength,
   1643     .bdrv_get_info            = bdrv_qed_get_info,
   1644     .bdrv_refresh_limits      = bdrv_qed_refresh_limits,
   1645     .bdrv_change_backing_file = bdrv_qed_change_backing_file,
   1646     .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache,
   1647     .bdrv_co_check            = bdrv_qed_co_check,
   1648     .bdrv_detach_aio_context  = bdrv_qed_detach_aio_context,
   1649     .bdrv_attach_aio_context  = bdrv_qed_attach_aio_context,
   1650     .bdrv_co_drain_begin      = bdrv_qed_co_drain_begin,
   1651 };
   1652 
   1653 static void bdrv_qed_init(void)
   1654 {
   1655     bdrv_register(&bdrv_qed);
   1656 }
   1657 
   1658 block_init(bdrv_qed_init);