qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

qcow2-cluster.c (87667B)


      1 /*
      2  * Block driver for the QCOW version 2 format
      3  *
      4  * Copyright (c) 2004-2006 Fabrice Bellard
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a copy
      7  * of this software and associated documentation files (the "Software"), to deal
      8  * in the Software without restriction, including without limitation the rights
      9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     10  * copies of the Software, and to permit persons to whom the Software is
     11  * furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice shall be included in
     14  * all copies or substantial portions of the Software.
     15  *
     16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
     19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     22  * THE SOFTWARE.
     23  */
     24 
     25 #include "qemu/osdep.h"
     26 #include <zlib.h>
     27 
     28 #include "qapi/error.h"
     29 #include "qcow2.h"
     30 #include "qemu/bswap.h"
     31 #include "qemu/memalign.h"
     32 #include "trace.h"
     33 
     34 int coroutine_fn qcow2_shrink_l1_table(BlockDriverState *bs,
     35                                        uint64_t exact_size)
     36 {
     37     BDRVQcow2State *s = bs->opaque;
     38     int new_l1_size, i, ret;
     39 
     40     if (exact_size >= s->l1_size) {
     41         return 0;
     42     }
     43 
     44     new_l1_size = exact_size;
     45 
     46 #ifdef DEBUG_ALLOC2
     47     fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size);
     48 #endif
     49 
     50     BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE);
     51     ret = bdrv_co_pwrite_zeroes(bs->file,
     52                                 s->l1_table_offset + new_l1_size * L1E_SIZE,
     53                                 (s->l1_size - new_l1_size) * L1E_SIZE, 0);
     54     if (ret < 0) {
     55         goto fail;
     56     }
     57 
     58     ret = bdrv_co_flush(bs->file->bs);
     59     if (ret < 0) {
     60         goto fail;
     61     }
     62 
     63     BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS);
     64     for (i = s->l1_size - 1; i > new_l1_size - 1; i--) {
     65         if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) {
     66             continue;
     67         }
     68         qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK,
     69                             s->cluster_size, QCOW2_DISCARD_ALWAYS);
     70         s->l1_table[i] = 0;
     71     }
     72     return 0;
     73 
     74 fail:
     75     /*
     76      * If the write in the l1_table failed the image may contain a partially
     77      * overwritten l1_table. In this case it would be better to clear the
     78      * l1_table in memory to avoid possible image corruption.
     79      */
     80     memset(s->l1_table + new_l1_size, 0,
     81            (s->l1_size - new_l1_size) * L1E_SIZE);
     82     return ret;
     83 }
     84 
     85 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
     86                         bool exact_size)
     87 {
     88     BDRVQcow2State *s = bs->opaque;
     89     int new_l1_size2, ret, i;
     90     uint64_t *new_l1_table;
     91     int64_t old_l1_table_offset, old_l1_size;
     92     int64_t new_l1_table_offset, new_l1_size;
     93     uint8_t data[12];
     94 
     95     if (min_size <= s->l1_size)
     96         return 0;
     97 
     98     /* Do a sanity check on min_size before trying to calculate new_l1_size
     99      * (this prevents overflows during the while loop for the calculation of
    100      * new_l1_size) */
    101     if (min_size > INT_MAX / L1E_SIZE) {
    102         return -EFBIG;
    103     }
    104 
    105     if (exact_size) {
    106         new_l1_size = min_size;
    107     } else {
    108         /* Bump size up to reduce the number of times we have to grow */
    109         new_l1_size = s->l1_size;
    110         if (new_l1_size == 0) {
    111             new_l1_size = 1;
    112         }
    113         while (min_size > new_l1_size) {
    114             new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
    115         }
    116     }
    117 
    118     QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
    119     if (new_l1_size > QCOW_MAX_L1_SIZE / L1E_SIZE) {
    120         return -EFBIG;
    121     }
    122 
    123 #ifdef DEBUG_ALLOC2
    124     fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
    125             s->l1_size, new_l1_size);
    126 #endif
    127 
    128     new_l1_size2 = L1E_SIZE * new_l1_size;
    129     new_l1_table = qemu_try_blockalign(bs->file->bs, new_l1_size2);
    130     if (new_l1_table == NULL) {
    131         return -ENOMEM;
    132     }
    133     memset(new_l1_table, 0, new_l1_size2);
    134 
    135     if (s->l1_size) {
    136         memcpy(new_l1_table, s->l1_table, s->l1_size * L1E_SIZE);
    137     }
    138 
    139     /* write new table (align to cluster) */
    140     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
    141     new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
    142     if (new_l1_table_offset < 0) {
    143         qemu_vfree(new_l1_table);
    144         return new_l1_table_offset;
    145     }
    146 
    147     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
    148     if (ret < 0) {
    149         goto fail;
    150     }
    151 
    152     /* the L1 position has not yet been updated, so these clusters must
    153      * indeed be completely free */
    154     ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
    155                                         new_l1_size2, false);
    156     if (ret < 0) {
    157         goto fail;
    158     }
    159 
    160     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
    161     for(i = 0; i < s->l1_size; i++)
    162         new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
    163     ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_size2,
    164                            new_l1_table, 0);
    165     if (ret < 0)
    166         goto fail;
    167     for(i = 0; i < s->l1_size; i++)
    168         new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
    169 
    170     /* set new table */
    171     BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
    172     stl_be_p(data, new_l1_size);
    173     stq_be_p(data + 4, new_l1_table_offset);
    174     ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
    175                            sizeof(data), data, 0);
    176     if (ret < 0) {
    177         goto fail;
    178     }
    179     qemu_vfree(s->l1_table);
    180     old_l1_table_offset = s->l1_table_offset;
    181     s->l1_table_offset = new_l1_table_offset;
    182     s->l1_table = new_l1_table;
    183     old_l1_size = s->l1_size;
    184     s->l1_size = new_l1_size;
    185     qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * L1E_SIZE,
    186                         QCOW2_DISCARD_OTHER);
    187     return 0;
    188  fail:
    189     qemu_vfree(new_l1_table);
    190     qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
    191                         QCOW2_DISCARD_OTHER);
    192     return ret;
    193 }
    194 
    195 /*
    196  * l2_load
    197  *
    198  * @bs: The BlockDriverState
    199  * @offset: A guest offset, used to calculate what slice of the L2
    200  *          table to load.
    201  * @l2_offset: Offset to the L2 table in the image file.
    202  * @l2_slice: Location to store the pointer to the L2 slice.
    203  *
    204  * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
    205  * that are loaded by the qcow2 cache). If the slice is in the cache,
    206  * the cache is used; otherwise the L2 slice is loaded from the image
    207  * file.
    208  */
    209 static int l2_load(BlockDriverState *bs, uint64_t offset,
    210                    uint64_t l2_offset, uint64_t **l2_slice)
    211 {
    212     BDRVQcow2State *s = bs->opaque;
    213     int start_of_slice = l2_entry_size(s) *
    214         (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset));
    215 
    216     return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice,
    217                            (void **)l2_slice);
    218 }
    219 
    220 /*
    221  * Writes an L1 entry to disk (note that depending on the alignment
    222  * requirements this function may write more that just one entry in
    223  * order to prevent bdrv_pwrite from performing a read-modify-write)
    224  */
    225 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
    226 {
    227     BDRVQcow2State *s = bs->opaque;
    228     int l1_start_index;
    229     int i, ret;
    230     int bufsize = MAX(L1E_SIZE,
    231                       MIN(bs->file->bs->bl.request_alignment, s->cluster_size));
    232     int nentries = bufsize / L1E_SIZE;
    233     g_autofree uint64_t *buf = g_try_new0(uint64_t, nentries);
    234 
    235     if (buf == NULL) {
    236         return -ENOMEM;
    237     }
    238 
    239     l1_start_index = QEMU_ALIGN_DOWN(l1_index, nentries);
    240     for (i = 0; i < MIN(nentries, s->l1_size - l1_start_index); i++) {
    241         buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
    242     }
    243 
    244     ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
    245             s->l1_table_offset + L1E_SIZE * l1_start_index, bufsize, false);
    246     if (ret < 0) {
    247         return ret;
    248     }
    249 
    250     BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
    251     ret = bdrv_pwrite_sync(bs->file,
    252                            s->l1_table_offset + L1E_SIZE * l1_start_index,
    253                            bufsize, buf, 0);
    254     if (ret < 0) {
    255         return ret;
    256     }
    257 
    258     return 0;
    259 }
    260 
    261 /*
    262  * l2_allocate
    263  *
    264  * Allocate a new l2 entry in the file. If l1_index points to an already
    265  * used entry in the L2 table (i.e. we are doing a copy on write for the L2
    266  * table) copy the contents of the old L2 table into the newly allocated one.
    267  * Otherwise the new table is initialized with zeros.
    268  *
    269  */
    270 
    271 static int l2_allocate(BlockDriverState *bs, int l1_index)
    272 {
    273     BDRVQcow2State *s = bs->opaque;
    274     uint64_t old_l2_offset;
    275     uint64_t *l2_slice = NULL;
    276     unsigned slice, slice_size2, n_slices;
    277     int64_t l2_offset;
    278     int ret;
    279 
    280     old_l2_offset = s->l1_table[l1_index];
    281 
    282     trace_qcow2_l2_allocate(bs, l1_index);
    283 
    284     /* allocate a new l2 entry */
    285 
    286     l2_offset = qcow2_alloc_clusters(bs, s->l2_size * l2_entry_size(s));
    287     if (l2_offset < 0) {
    288         ret = l2_offset;
    289         goto fail;
    290     }
    291 
    292     /* The offset must fit in the offset field of the L1 table entry */
    293     assert((l2_offset & L1E_OFFSET_MASK) == l2_offset);
    294 
    295     /* If we're allocating the table at offset 0 then something is wrong */
    296     if (l2_offset == 0) {
    297         qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
    298                                 "allocation of L2 table at offset 0");
    299         ret = -EIO;
    300         goto fail;
    301     }
    302 
    303     ret = qcow2_cache_flush(bs, s->refcount_block_cache);
    304     if (ret < 0) {
    305         goto fail;
    306     }
    307 
    308     /* allocate a new entry in the l2 cache */
    309 
    310     slice_size2 = s->l2_slice_size * l2_entry_size(s);
    311     n_slices = s->cluster_size / slice_size2;
    312 
    313     trace_qcow2_l2_allocate_get_empty(bs, l1_index);
    314     for (slice = 0; slice < n_slices; slice++) {
    315         ret = qcow2_cache_get_empty(bs, s->l2_table_cache,
    316                                     l2_offset + slice * slice_size2,
    317                                     (void **) &l2_slice);
    318         if (ret < 0) {
    319             goto fail;
    320         }
    321 
    322         if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
    323             /* if there was no old l2 table, clear the new slice */
    324             memset(l2_slice, 0, slice_size2);
    325         } else {
    326             uint64_t *old_slice;
    327             uint64_t old_l2_slice_offset =
    328                 (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2;
    329 
    330             /* if there was an old l2 table, read a slice from the disk */
    331             BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
    332             ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset,
    333                                   (void **) &old_slice);
    334             if (ret < 0) {
    335                 goto fail;
    336             }
    337 
    338             memcpy(l2_slice, old_slice, slice_size2);
    339 
    340             qcow2_cache_put(s->l2_table_cache, (void **) &old_slice);
    341         }
    342 
    343         /* write the l2 slice to the file */
    344         BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
    345 
    346         trace_qcow2_l2_allocate_write_l2(bs, l1_index);
    347         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
    348         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
    349     }
    350 
    351     ret = qcow2_cache_flush(bs, s->l2_table_cache);
    352     if (ret < 0) {
    353         goto fail;
    354     }
    355 
    356     /* update the L1 entry */
    357     trace_qcow2_l2_allocate_write_l1(bs, l1_index);
    358     s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
    359     ret = qcow2_write_l1_entry(bs, l1_index);
    360     if (ret < 0) {
    361         goto fail;
    362     }
    363 
    364     trace_qcow2_l2_allocate_done(bs, l1_index, 0);
    365     return 0;
    366 
    367 fail:
    368     trace_qcow2_l2_allocate_done(bs, l1_index, ret);
    369     if (l2_slice != NULL) {
    370         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
    371     }
    372     s->l1_table[l1_index] = old_l2_offset;
    373     if (l2_offset > 0) {
    374         qcow2_free_clusters(bs, l2_offset, s->l2_size * l2_entry_size(s),
    375                             QCOW2_DISCARD_ALWAYS);
    376     }
    377     return ret;
    378 }
    379 
    380 /*
    381  * For a given L2 entry, count the number of contiguous subclusters of
    382  * the same type starting from @sc_from. Compressed clusters are
    383  * treated as if they were divided into subclusters of size
    384  * s->subcluster_size.
    385  *
    386  * Return the number of contiguous subclusters and set @type to the
    387  * subcluster type.
    388  *
    389  * If the L2 entry is invalid return -errno and set @type to
    390  * QCOW2_SUBCLUSTER_INVALID.
    391  */
    392 static int qcow2_get_subcluster_range_type(BlockDriverState *bs,
    393                                            uint64_t l2_entry,
    394                                            uint64_t l2_bitmap,
    395                                            unsigned sc_from,
    396                                            QCow2SubclusterType *type)
    397 {
    398     BDRVQcow2State *s = bs->opaque;
    399     uint32_t val;
    400 
    401     *type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_from);
    402 
    403     if (*type == QCOW2_SUBCLUSTER_INVALID) {
    404         return -EINVAL;
    405     } else if (!has_subclusters(s) || *type == QCOW2_SUBCLUSTER_COMPRESSED) {
    406         return s->subclusters_per_cluster - sc_from;
    407     }
    408 
    409     switch (*type) {
    410     case QCOW2_SUBCLUSTER_NORMAL:
    411         val = l2_bitmap | QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from);
    412         return cto32(val) - sc_from;
    413 
    414     case QCOW2_SUBCLUSTER_ZERO_PLAIN:
    415     case QCOW2_SUBCLUSTER_ZERO_ALLOC:
    416         val = (l2_bitmap | QCOW_OFLAG_SUB_ZERO_RANGE(0, sc_from)) >> 32;
    417         return cto32(val) - sc_from;
    418 
    419     case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
    420     case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
    421         val = ((l2_bitmap >> 32) | l2_bitmap)
    422             & ~QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from);
    423         return ctz32(val) - sc_from;
    424 
    425     default:
    426         g_assert_not_reached();
    427     }
    428 }
    429 
    430 /*
    431  * Return the number of contiguous subclusters of the exact same type
    432  * in a given L2 slice, starting from cluster @l2_index, subcluster
    433  * @sc_index. Allocated subclusters are required to be contiguous in
    434  * the image file.
    435  * At most @nb_clusters are checked (note that this means clusters,
    436  * not subclusters).
    437  * Compressed clusters are always processed one by one but for the
    438  * purpose of this count they are treated as if they were divided into
    439  * subclusters of size s->subcluster_size.
    440  * On failure return -errno and update @l2_index to point to the
    441  * invalid entry.
    442  */
    443 static int count_contiguous_subclusters(BlockDriverState *bs, int nb_clusters,
    444                                         unsigned sc_index, uint64_t *l2_slice,
    445                                         unsigned *l2_index)
    446 {
    447     BDRVQcow2State *s = bs->opaque;
    448     int i, count = 0;
    449     bool check_offset = false;
    450     uint64_t expected_offset = 0;
    451     QCow2SubclusterType expected_type = QCOW2_SUBCLUSTER_NORMAL, type;
    452 
    453     assert(*l2_index + nb_clusters <= s->l2_slice_size);
    454 
    455     for (i = 0; i < nb_clusters; i++) {
    456         unsigned first_sc = (i == 0) ? sc_index : 0;
    457         uint64_t l2_entry = get_l2_entry(s, l2_slice, *l2_index + i);
    458         uint64_t l2_bitmap = get_l2_bitmap(s, l2_slice, *l2_index + i);
    459         int ret = qcow2_get_subcluster_range_type(bs, l2_entry, l2_bitmap,
    460                                                   first_sc, &type);
    461         if (ret < 0) {
    462             *l2_index += i; /* Point to the invalid entry */
    463             return -EIO;
    464         }
    465         if (i == 0) {
    466             if (type == QCOW2_SUBCLUSTER_COMPRESSED) {
    467                 /* Compressed clusters are always processed one by one */
    468                 return ret;
    469             }
    470             expected_type = type;
    471             expected_offset = l2_entry & L2E_OFFSET_MASK;
    472             check_offset = (type == QCOW2_SUBCLUSTER_NORMAL ||
    473                             type == QCOW2_SUBCLUSTER_ZERO_ALLOC ||
    474                             type == QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC);
    475         } else if (type != expected_type) {
    476             break;
    477         } else if (check_offset) {
    478             expected_offset += s->cluster_size;
    479             if (expected_offset != (l2_entry & L2E_OFFSET_MASK)) {
    480                 break;
    481             }
    482         }
    483         count += ret;
    484         /* Stop if there are type changes before the end of the cluster */
    485         if (first_sc + ret < s->subclusters_per_cluster) {
    486             break;
    487         }
    488     }
    489 
    490     return count;
    491 }
    492 
    493 static int coroutine_fn do_perform_cow_read(BlockDriverState *bs,
    494                                             uint64_t src_cluster_offset,
    495                                             unsigned offset_in_cluster,
    496                                             QEMUIOVector *qiov)
    497 {
    498     int ret;
    499 
    500     if (qiov->size == 0) {
    501         return 0;
    502     }
    503 
    504     BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
    505 
    506     if (!bs->drv) {
    507         return -ENOMEDIUM;
    508     }
    509 
    510     /*
    511      * We never deal with requests that don't satisfy
    512      * bdrv_check_qiov_request(), and aligning requests to clusters never
    513      * breaks this condition. So, do some assertions before calling
    514      * bs->drv->bdrv_co_preadv_part() which has int64_t arguments.
    515      */
    516     assert(src_cluster_offset <= INT64_MAX);
    517     assert(src_cluster_offset + offset_in_cluster <= INT64_MAX);
    518     /* Cast qiov->size to uint64_t to silence a compiler warning on -m32 */
    519     assert((uint64_t)qiov->size <= INT64_MAX);
    520     bdrv_check_qiov_request(src_cluster_offset + offset_in_cluster, qiov->size,
    521                             qiov, 0, &error_abort);
    522     /*
    523      * Call .bdrv_co_readv() directly instead of using the public block-layer
    524      * interface.  This avoids double I/O throttling and request tracking,
    525      * which can lead to deadlock when block layer copy-on-read is enabled.
    526      */
    527     ret = bs->drv->bdrv_co_preadv_part(bs,
    528                                        src_cluster_offset + offset_in_cluster,
    529                                        qiov->size, qiov, 0, 0);
    530     if (ret < 0) {
    531         return ret;
    532     }
    533 
    534     return 0;
    535 }
    536 
    537 static int coroutine_fn do_perform_cow_write(BlockDriverState *bs,
    538                                              uint64_t cluster_offset,
    539                                              unsigned offset_in_cluster,
    540                                              QEMUIOVector *qiov)
    541 {
    542     BDRVQcow2State *s = bs->opaque;
    543     int ret;
    544 
    545     if (qiov->size == 0) {
    546         return 0;
    547     }
    548 
    549     ret = qcow2_pre_write_overlap_check(bs, 0,
    550             cluster_offset + offset_in_cluster, qiov->size, true);
    551     if (ret < 0) {
    552         return ret;
    553     }
    554 
    555     BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
    556     ret = bdrv_co_pwritev(s->data_file, cluster_offset + offset_in_cluster,
    557                           qiov->size, qiov, 0);
    558     if (ret < 0) {
    559         return ret;
    560     }
    561 
    562     return 0;
    563 }
    564 
    565 
    566 /*
    567  * get_host_offset
    568  *
    569  * For a given offset of the virtual disk find the equivalent host
    570  * offset in the qcow2 file and store it in *host_offset. Neither
    571  * offset needs to be aligned to a cluster boundary.
    572  *
    573  * If the cluster is unallocated then *host_offset will be 0.
    574  * If the cluster is compressed then *host_offset will contain the l2 entry.
    575  *
    576  * On entry, *bytes is the maximum number of contiguous bytes starting at
    577  * offset that we are interested in.
    578  *
    579  * On exit, *bytes is the number of bytes starting at offset that have the same
    580  * subcluster type and (if applicable) are stored contiguously in the image
    581  * file. The subcluster type is stored in *subcluster_type.
    582  * Compressed clusters are always processed one by one.
    583  *
    584  * Returns 0 on success, -errno in error cases.
    585  */
    586 int qcow2_get_host_offset(BlockDriverState *bs, uint64_t offset,
    587                           unsigned int *bytes, uint64_t *host_offset,
    588                           QCow2SubclusterType *subcluster_type)
    589 {
    590     BDRVQcow2State *s = bs->opaque;
    591     unsigned int l2_index, sc_index;
    592     uint64_t l1_index, l2_offset, *l2_slice, l2_entry, l2_bitmap;
    593     int sc;
    594     unsigned int offset_in_cluster;
    595     uint64_t bytes_available, bytes_needed, nb_clusters;
    596     QCow2SubclusterType type;
    597     int ret;
    598 
    599     offset_in_cluster = offset_into_cluster(s, offset);
    600     bytes_needed = (uint64_t) *bytes + offset_in_cluster;
    601 
    602     /* compute how many bytes there are between the start of the cluster
    603      * containing offset and the end of the l2 slice that contains
    604      * the entry pointing to it */
    605     bytes_available =
    606         ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset)))
    607         << s->cluster_bits;
    608 
    609     if (bytes_needed > bytes_available) {
    610         bytes_needed = bytes_available;
    611     }
    612 
    613     *host_offset = 0;
    614 
    615     /* seek to the l2 offset in the l1 table */
    616 
    617     l1_index = offset_to_l1_index(s, offset);
    618     if (l1_index >= s->l1_size) {
    619         type = QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN;
    620         goto out;
    621     }
    622 
    623     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
    624     if (!l2_offset) {
    625         type = QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN;
    626         goto out;
    627     }
    628 
    629     if (offset_into_cluster(s, l2_offset)) {
    630         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
    631                                 " unaligned (L1 index: %#" PRIx64 ")",
    632                                 l2_offset, l1_index);
    633         return -EIO;
    634     }
    635 
    636     /* load the l2 slice in memory */
    637 
    638     ret = l2_load(bs, offset, l2_offset, &l2_slice);
    639     if (ret < 0) {
    640         return ret;
    641     }
    642 
    643     /* find the cluster offset for the given disk offset */
    644 
    645     l2_index = offset_to_l2_slice_index(s, offset);
    646     sc_index = offset_to_sc_index(s, offset);
    647     l2_entry = get_l2_entry(s, l2_slice, l2_index);
    648     l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
    649 
    650     nb_clusters = size_to_clusters(s, bytes_needed);
    651     /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
    652      * integers; the minimum cluster size is 512, so this assertion is always
    653      * true */
    654     assert(nb_clusters <= INT_MAX);
    655 
    656     type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
    657     if (s->qcow_version < 3 && (type == QCOW2_SUBCLUSTER_ZERO_PLAIN ||
    658                                 type == QCOW2_SUBCLUSTER_ZERO_ALLOC)) {
    659         qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
    660                                 " in pre-v3 image (L2 offset: %#" PRIx64
    661                                 ", L2 index: %#x)", l2_offset, l2_index);
    662         ret = -EIO;
    663         goto fail;
    664     }
    665     switch (type) {
    666     case QCOW2_SUBCLUSTER_INVALID:
    667         break; /* This is handled by count_contiguous_subclusters() below */
    668     case QCOW2_SUBCLUSTER_COMPRESSED:
    669         if (has_data_file(bs)) {
    670             qcow2_signal_corruption(bs, true, -1, -1, "Compressed cluster "
    671                                     "entry found in image with external data "
    672                                     "file (L2 offset: %#" PRIx64 ", L2 index: "
    673                                     "%#x)", l2_offset, l2_index);
    674             ret = -EIO;
    675             goto fail;
    676         }
    677         *host_offset = l2_entry;
    678         break;
    679     case QCOW2_SUBCLUSTER_ZERO_PLAIN:
    680     case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
    681         break;
    682     case QCOW2_SUBCLUSTER_ZERO_ALLOC:
    683     case QCOW2_SUBCLUSTER_NORMAL:
    684     case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC: {
    685         uint64_t host_cluster_offset = l2_entry & L2E_OFFSET_MASK;
    686         *host_offset = host_cluster_offset + offset_in_cluster;
    687         if (offset_into_cluster(s, host_cluster_offset)) {
    688             qcow2_signal_corruption(bs, true, -1, -1,
    689                                     "Cluster allocation offset %#"
    690                                     PRIx64 " unaligned (L2 offset: %#" PRIx64
    691                                     ", L2 index: %#x)", host_cluster_offset,
    692                                     l2_offset, l2_index);
    693             ret = -EIO;
    694             goto fail;
    695         }
    696         if (has_data_file(bs) && *host_offset != offset) {
    697             qcow2_signal_corruption(bs, true, -1, -1,
    698                                     "External data file host cluster offset %#"
    699                                     PRIx64 " does not match guest cluster "
    700                                     "offset: %#" PRIx64
    701                                     ", L2 index: %#x)", host_cluster_offset,
    702                                     offset - offset_in_cluster, l2_index);
    703             ret = -EIO;
    704             goto fail;
    705         }
    706         break;
    707     }
    708     default:
    709         abort();
    710     }
    711 
    712     sc = count_contiguous_subclusters(bs, nb_clusters, sc_index,
    713                                       l2_slice, &l2_index);
    714     if (sc < 0) {
    715         qcow2_signal_corruption(bs, true, -1, -1, "Invalid cluster entry found "
    716                                 " (L2 offset: %#" PRIx64 ", L2 index: %#x)",
    717                                 l2_offset, l2_index);
    718         ret = -EIO;
    719         goto fail;
    720     }
    721     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
    722 
    723     bytes_available = ((int64_t)sc + sc_index) << s->subcluster_bits;
    724 
    725 out:
    726     if (bytes_available > bytes_needed) {
    727         bytes_available = bytes_needed;
    728     }
    729 
    730     /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
    731      * subtracting offset_in_cluster will therefore definitely yield something
    732      * not exceeding UINT_MAX */
    733     assert(bytes_available - offset_in_cluster <= UINT_MAX);
    734     *bytes = bytes_available - offset_in_cluster;
    735 
    736     *subcluster_type = type;
    737 
    738     return 0;
    739 
    740 fail:
    741     qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice);
    742     return ret;
    743 }
    744 
    745 /*
    746  * get_cluster_table
    747  *
    748  * for a given disk offset, load (and allocate if needed)
    749  * the appropriate slice of its l2 table.
    750  *
    751  * the cluster index in the l2 slice is given to the caller.
    752  *
    753  * Returns 0 on success, -errno in failure case
    754  */
    755 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
    756                              uint64_t **new_l2_slice,
    757                              int *new_l2_index)
    758 {
    759     BDRVQcow2State *s = bs->opaque;
    760     unsigned int l2_index;
    761     uint64_t l1_index, l2_offset;
    762     uint64_t *l2_slice = NULL;
    763     int ret;
    764 
    765     /* seek to the l2 offset in the l1 table */
    766 
    767     l1_index = offset_to_l1_index(s, offset);
    768     if (l1_index >= s->l1_size) {
    769         ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
    770         if (ret < 0) {
    771             return ret;
    772         }
    773     }
    774 
    775     assert(l1_index < s->l1_size);
    776     l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
    777     if (offset_into_cluster(s, l2_offset)) {
    778         qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
    779                                 " unaligned (L1 index: %#" PRIx64 ")",
    780                                 l2_offset, l1_index);
    781         return -EIO;
    782     }
    783 
    784     if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) {
    785         /* First allocate a new L2 table (and do COW if needed) */
    786         ret = l2_allocate(bs, l1_index);
    787         if (ret < 0) {
    788             return ret;
    789         }
    790 
    791         /* Then decrease the refcount of the old table */
    792         if (l2_offset) {
    793             qcow2_free_clusters(bs, l2_offset, s->l2_size * l2_entry_size(s),
    794                                 QCOW2_DISCARD_OTHER);
    795         }
    796 
    797         /* Get the offset of the newly-allocated l2 table */
    798         l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
    799         assert(offset_into_cluster(s, l2_offset) == 0);
    800     }
    801 
    802     /* load the l2 slice in memory */
    803     ret = l2_load(bs, offset, l2_offset, &l2_slice);
    804     if (ret < 0) {
    805         return ret;
    806     }
    807 
    808     /* find the cluster offset for the given disk offset */
    809 
    810     l2_index = offset_to_l2_slice_index(s, offset);
    811 
    812     *new_l2_slice = l2_slice;
    813     *new_l2_index = l2_index;
    814 
    815     return 0;
    816 }
    817 
    818 /*
    819  * alloc_compressed_cluster_offset
    820  *
    821  * For a given offset on the virtual disk, allocate a new compressed cluster
    822  * and put the host offset of the cluster into *host_offset. If a cluster is
    823  * already allocated at the offset, return an error.
    824  *
    825  * Return 0 on success and -errno in error cases
    826  */
    827 int coroutine_fn qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
    828                                                        uint64_t offset,
    829                                                        int compressed_size,
    830                                                        uint64_t *host_offset)
    831 {
    832     BDRVQcow2State *s = bs->opaque;
    833     int l2_index, ret;
    834     uint64_t *l2_slice;
    835     int64_t cluster_offset;
    836     int nb_csectors;
    837 
    838     if (has_data_file(bs)) {
    839         return 0;
    840     }
    841 
    842     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
    843     if (ret < 0) {
    844         return ret;
    845     }
    846 
    847     /* Compression can't overwrite anything. Fail if the cluster was already
    848      * allocated. */
    849     cluster_offset = get_l2_entry(s, l2_slice, l2_index);
    850     if (cluster_offset & L2E_OFFSET_MASK) {
    851         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
    852         return -EIO;
    853     }
    854 
    855     cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
    856     if (cluster_offset < 0) {
    857         qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
    858         return cluster_offset;
    859     }
    860 
    861     nb_csectors =
    862         (cluster_offset + compressed_size - 1) / QCOW2_COMPRESSED_SECTOR_SIZE -
    863         (cluster_offset / QCOW2_COMPRESSED_SECTOR_SIZE);
    864 
    865     /* The offset and size must fit in their fields of the L2 table entry */
    866     assert((cluster_offset & s->cluster_offset_mask) == cluster_offset);
    867     assert((nb_csectors & s->csize_mask) == nb_csectors);
    868 
    869     cluster_offset |= QCOW_OFLAG_COMPRESSED |
    870                       ((uint64_t)nb_csectors << s->csize_shift);
    871 
    872     /* update L2 table */
    873 
    874     /* compressed clusters never have the copied flag */
    875 
    876     BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
    877     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
    878     set_l2_entry(s, l2_slice, l2_index, cluster_offset);
    879     if (has_subclusters(s)) {
    880         set_l2_bitmap(s, l2_slice, l2_index, 0);
    881     }
    882     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
    883 
    884     *host_offset = cluster_offset & s->cluster_offset_mask;
    885     return 0;
    886 }
    887 
    888 static int coroutine_fn perform_cow(BlockDriverState *bs, QCowL2Meta *m)
    889 {
    890     BDRVQcow2State *s = bs->opaque;
    891     Qcow2COWRegion *start = &m->cow_start;
    892     Qcow2COWRegion *end = &m->cow_end;
    893     unsigned buffer_size;
    894     unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
    895     bool merge_reads;
    896     uint8_t *start_buffer, *end_buffer;
    897     QEMUIOVector qiov;
    898     int ret;
    899 
    900     assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
    901     assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
    902     assert(start->offset + start->nb_bytes <= end->offset);
    903 
    904     if ((start->nb_bytes == 0 && end->nb_bytes == 0) || m->skip_cow) {
    905         return 0;
    906     }
    907 
    908     /* If we have to read both the start and end COW regions and the
    909      * middle region is not too large then perform just one read
    910      * operation */
    911     merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
    912     if (merge_reads) {
    913         buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
    914     } else {
    915         /* If we have to do two reads, add some padding in the middle
    916          * if necessary to make sure that the end region is optimally
    917          * aligned. */
    918         size_t align = bdrv_opt_mem_align(bs);
    919         assert(align > 0 && align <= UINT_MAX);
    920         assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
    921                UINT_MAX - end->nb_bytes);
    922         buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
    923     }
    924 
    925     /* Reserve a buffer large enough to store all the data that we're
    926      * going to read */
    927     start_buffer = qemu_try_blockalign(bs, buffer_size);
    928     if (start_buffer == NULL) {
    929         return -ENOMEM;
    930     }
    931     /* The part of the buffer where the end region is located */
    932     end_buffer = start_buffer + buffer_size - end->nb_bytes;
    933 
    934     qemu_iovec_init(&qiov, 2 + (m->data_qiov ?
    935                                 qemu_iovec_subvec_niov(m->data_qiov,
    936                                                        m->data_qiov_offset,
    937                                                        data_bytes)
    938                                 : 0));
    939 
    940     qemu_co_mutex_unlock(&s->lock);
    941     /* First we read the existing data from both COW regions. We
    942      * either read the whole region in one go, or the start and end
    943      * regions separately. */
    944     if (merge_reads) {
    945         qemu_iovec_add(&qiov, start_buffer, buffer_size);
    946         ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
    947     } else {
    948         qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
    949         ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
    950         if (ret < 0) {
    951             goto fail;
    952         }
    953 
    954         qemu_iovec_reset(&qiov);
    955         qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
    956         ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
    957     }
    958     if (ret < 0) {
    959         goto fail;
    960     }
    961 
    962     /* Encrypt the data if necessary before writing it */
    963     if (bs->encrypted) {
    964         ret = qcow2_co_encrypt(bs,
    965                                m->alloc_offset + start->offset,
    966                                m->offset + start->offset,
    967                                start_buffer, start->nb_bytes);
    968         if (ret < 0) {
    969             goto fail;
    970         }
    971 
    972         ret = qcow2_co_encrypt(bs,
    973                                m->alloc_offset + end->offset,
    974                                m->offset + end->offset,
    975                                end_buffer, end->nb_bytes);
    976         if (ret < 0) {
    977             goto fail;
    978         }
    979     }
    980 
    981     /* And now we can write everything. If we have the guest data we
    982      * can write everything in one single operation */
    983     if (m->data_qiov) {
    984         qemu_iovec_reset(&qiov);
    985         if (start->nb_bytes) {
    986             qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
    987         }
    988         qemu_iovec_concat(&qiov, m->data_qiov, m->data_qiov_offset, data_bytes);
    989         if (end->nb_bytes) {
    990             qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
    991         }
    992         /* NOTE: we have a write_aio blkdebug event here followed by
    993          * a cow_write one in do_perform_cow_write(), but there's only
    994          * one single I/O operation */
    995         BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
    996         ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
    997     } else {
    998         /* If there's no guest data then write both COW regions separately */
    999         qemu_iovec_reset(&qiov);
   1000         qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
   1001         ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
   1002         if (ret < 0) {
   1003             goto fail;
   1004         }
   1005 
   1006         qemu_iovec_reset(&qiov);
   1007         qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
   1008         ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
   1009     }
   1010 
   1011 fail:
   1012     qemu_co_mutex_lock(&s->lock);
   1013 
   1014     /*
   1015      * Before we update the L2 table to actually point to the new cluster, we
   1016      * need to be sure that the refcounts have been increased and COW was
   1017      * handled.
   1018      */
   1019     if (ret == 0) {
   1020         qcow2_cache_depends_on_flush(s->l2_table_cache);
   1021     }
   1022 
   1023     qemu_vfree(start_buffer);
   1024     qemu_iovec_destroy(&qiov);
   1025     return ret;
   1026 }
   1027 
   1028 int coroutine_fn qcow2_alloc_cluster_link_l2(BlockDriverState *bs,
   1029                                              QCowL2Meta *m)
   1030 {
   1031     BDRVQcow2State *s = bs->opaque;
   1032     int i, j = 0, l2_index, ret;
   1033     uint64_t *old_cluster, *l2_slice;
   1034     uint64_t cluster_offset = m->alloc_offset;
   1035 
   1036     trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
   1037     assert(m->nb_clusters > 0);
   1038 
   1039     old_cluster = g_try_new(uint64_t, m->nb_clusters);
   1040     if (old_cluster == NULL) {
   1041         ret = -ENOMEM;
   1042         goto err;
   1043     }
   1044 
   1045     /* copy content of unmodified sectors */
   1046     ret = perform_cow(bs, m);
   1047     if (ret < 0) {
   1048         goto err;
   1049     }
   1050 
   1051     /* Update L2 table. */
   1052     if (s->use_lazy_refcounts) {
   1053         qcow2_mark_dirty(bs);
   1054     }
   1055     if (qcow2_need_accurate_refcounts(s)) {
   1056         qcow2_cache_set_dependency(bs, s->l2_table_cache,
   1057                                    s->refcount_block_cache);
   1058     }
   1059 
   1060     ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index);
   1061     if (ret < 0) {
   1062         goto err;
   1063     }
   1064     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
   1065 
   1066     assert(l2_index + m->nb_clusters <= s->l2_slice_size);
   1067     assert(m->cow_end.offset + m->cow_end.nb_bytes <=
   1068            m->nb_clusters << s->cluster_bits);
   1069     for (i = 0; i < m->nb_clusters; i++) {
   1070         uint64_t offset = cluster_offset + ((uint64_t)i << s->cluster_bits);
   1071         /* if two concurrent writes happen to the same unallocated cluster
   1072          * each write allocates separate cluster and writes data concurrently.
   1073          * The first one to complete updates l2 table with pointer to its
   1074          * cluster the second one has to do RMW (which is done above by
   1075          * perform_cow()), update l2 table with its cluster pointer and free
   1076          * old cluster. This is what this loop does */
   1077         if (get_l2_entry(s, l2_slice, l2_index + i) != 0) {
   1078             old_cluster[j++] = get_l2_entry(s, l2_slice, l2_index + i);
   1079         }
   1080 
   1081         /* The offset must fit in the offset field of the L2 table entry */
   1082         assert((offset & L2E_OFFSET_MASK) == offset);
   1083 
   1084         set_l2_entry(s, l2_slice, l2_index + i, offset | QCOW_OFLAG_COPIED);
   1085 
   1086         /* Update bitmap with the subclusters that were just written */
   1087         if (has_subclusters(s) && !m->prealloc) {
   1088             uint64_t l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
   1089             unsigned written_from = m->cow_start.offset;
   1090             unsigned written_to = m->cow_end.offset + m->cow_end.nb_bytes;
   1091             int first_sc, last_sc;
   1092             /* Narrow written_from and written_to down to the current cluster */
   1093             written_from = MAX(written_from, i << s->cluster_bits);
   1094             written_to   = MIN(written_to, (i + 1) << s->cluster_bits);
   1095             assert(written_from < written_to);
   1096             first_sc = offset_to_sc_index(s, written_from);
   1097             last_sc  = offset_to_sc_index(s, written_to - 1);
   1098             l2_bitmap |= QCOW_OFLAG_SUB_ALLOC_RANGE(first_sc, last_sc + 1);
   1099             l2_bitmap &= ~QCOW_OFLAG_SUB_ZERO_RANGE(first_sc, last_sc + 1);
   1100             set_l2_bitmap(s, l2_slice, l2_index + i, l2_bitmap);
   1101         }
   1102      }
   1103 
   1104 
   1105     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
   1106 
   1107     /*
   1108      * If this was a COW, we need to decrease the refcount of the old cluster.
   1109      *
   1110      * Don't discard clusters that reach a refcount of 0 (e.g. compressed
   1111      * clusters), the next write will reuse them anyway.
   1112      */
   1113     if (!m->keep_old_clusters && j != 0) {
   1114         for (i = 0; i < j; i++) {
   1115             qcow2_free_any_cluster(bs, old_cluster[i], QCOW2_DISCARD_NEVER);
   1116         }
   1117     }
   1118 
   1119     ret = 0;
   1120 err:
   1121     g_free(old_cluster);
   1122     return ret;
   1123  }
   1124 
   1125 /**
   1126  * Frees the allocated clusters because the request failed and they won't
   1127  * actually be linked.
   1128  */
   1129 void qcow2_alloc_cluster_abort(BlockDriverState *bs, QCowL2Meta *m)
   1130 {
   1131     BDRVQcow2State *s = bs->opaque;
   1132     if (!has_data_file(bs) && !m->keep_old_clusters) {
   1133         qcow2_free_clusters(bs, m->alloc_offset,
   1134                             m->nb_clusters << s->cluster_bits,
   1135                             QCOW2_DISCARD_NEVER);
   1136     }
   1137 }
   1138 
   1139 /*
   1140  * For a given write request, create a new QCowL2Meta structure, add
   1141  * it to @m and the BDRVQcow2State.cluster_allocs list. If the write
   1142  * request does not need copy-on-write or changes to the L2 metadata
   1143  * then this function does nothing.
   1144  *
   1145  * @host_cluster_offset points to the beginning of the first cluster.
   1146  *
   1147  * @guest_offset and @bytes indicate the offset and length of the
   1148  * request.
   1149  *
   1150  * @l2_slice contains the L2 entries of all clusters involved in this
   1151  * write request.
   1152  *
   1153  * If @keep_old is true it means that the clusters were already
   1154  * allocated and will be overwritten. If false then the clusters are
   1155  * new and we have to decrease the reference count of the old ones.
   1156  *
   1157  * Returns 0 on success, -errno on failure.
   1158  */
   1159 static int calculate_l2_meta(BlockDriverState *bs, uint64_t host_cluster_offset,
   1160                              uint64_t guest_offset, unsigned bytes,
   1161                              uint64_t *l2_slice, QCowL2Meta **m, bool keep_old)
   1162 {
   1163     BDRVQcow2State *s = bs->opaque;
   1164     int sc_index, l2_index = offset_to_l2_slice_index(s, guest_offset);
   1165     uint64_t l2_entry, l2_bitmap;
   1166     unsigned cow_start_from, cow_end_to;
   1167     unsigned cow_start_to = offset_into_cluster(s, guest_offset);
   1168     unsigned cow_end_from = cow_start_to + bytes;
   1169     unsigned nb_clusters = size_to_clusters(s, cow_end_from);
   1170     QCowL2Meta *old_m = *m;
   1171     QCow2SubclusterType type;
   1172     int i;
   1173     bool skip_cow = keep_old;
   1174 
   1175     assert(nb_clusters <= s->l2_slice_size - l2_index);
   1176 
   1177     /* Check the type of all affected subclusters */
   1178     for (i = 0; i < nb_clusters; i++) {
   1179         l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
   1180         l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
   1181         if (skip_cow) {
   1182             unsigned write_from = MAX(cow_start_to, i << s->cluster_bits);
   1183             unsigned write_to = MIN(cow_end_from, (i + 1) << s->cluster_bits);
   1184             int first_sc = offset_to_sc_index(s, write_from);
   1185             int last_sc = offset_to_sc_index(s, write_to - 1);
   1186             int cnt = qcow2_get_subcluster_range_type(bs, l2_entry, l2_bitmap,
   1187                                                       first_sc, &type);
   1188             /* Is any of the subclusters of type != QCOW2_SUBCLUSTER_NORMAL ? */
   1189             if (type != QCOW2_SUBCLUSTER_NORMAL || first_sc + cnt <= last_sc) {
   1190                 skip_cow = false;
   1191             }
   1192         } else {
   1193             /* If we can't skip the cow we can still look for invalid entries */
   1194             type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, 0);
   1195         }
   1196         if (type == QCOW2_SUBCLUSTER_INVALID) {
   1197             int l1_index = offset_to_l1_index(s, guest_offset);
   1198             uint64_t l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
   1199             qcow2_signal_corruption(bs, true, -1, -1, "Invalid cluster "
   1200                                     "entry found (L2 offset: %#" PRIx64
   1201                                     ", L2 index: %#x)",
   1202                                     l2_offset, l2_index + i);
   1203             return -EIO;
   1204         }
   1205     }
   1206 
   1207     if (skip_cow) {
   1208         return 0;
   1209     }
   1210 
   1211     /* Get the L2 entry of the first cluster */
   1212     l2_entry = get_l2_entry(s, l2_slice, l2_index);
   1213     l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
   1214     sc_index = offset_to_sc_index(s, guest_offset);
   1215     type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
   1216 
   1217     if (!keep_old) {
   1218         switch (type) {
   1219         case QCOW2_SUBCLUSTER_COMPRESSED:
   1220             cow_start_from = 0;
   1221             break;
   1222         case QCOW2_SUBCLUSTER_NORMAL:
   1223         case QCOW2_SUBCLUSTER_ZERO_ALLOC:
   1224         case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
   1225             if (has_subclusters(s)) {
   1226                 /* Skip all leading zero and unallocated subclusters */
   1227                 uint32_t alloc_bitmap = l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC;
   1228                 cow_start_from =
   1229                     MIN(sc_index, ctz32(alloc_bitmap)) << s->subcluster_bits;
   1230             } else {
   1231                 cow_start_from = 0;
   1232             }
   1233             break;
   1234         case QCOW2_SUBCLUSTER_ZERO_PLAIN:
   1235         case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
   1236             cow_start_from = sc_index << s->subcluster_bits;
   1237             break;
   1238         default:
   1239             g_assert_not_reached();
   1240         }
   1241     } else {
   1242         switch (type) {
   1243         case QCOW2_SUBCLUSTER_NORMAL:
   1244             cow_start_from = cow_start_to;
   1245             break;
   1246         case QCOW2_SUBCLUSTER_ZERO_ALLOC:
   1247         case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
   1248             cow_start_from = sc_index << s->subcluster_bits;
   1249             break;
   1250         default:
   1251             g_assert_not_reached();
   1252         }
   1253     }
   1254 
   1255     /* Get the L2 entry of the last cluster */
   1256     l2_index += nb_clusters - 1;
   1257     l2_entry = get_l2_entry(s, l2_slice, l2_index);
   1258     l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
   1259     sc_index = offset_to_sc_index(s, guest_offset + bytes - 1);
   1260     type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
   1261 
   1262     if (!keep_old) {
   1263         switch (type) {
   1264         case QCOW2_SUBCLUSTER_COMPRESSED:
   1265             cow_end_to = ROUND_UP(cow_end_from, s->cluster_size);
   1266             break;
   1267         case QCOW2_SUBCLUSTER_NORMAL:
   1268         case QCOW2_SUBCLUSTER_ZERO_ALLOC:
   1269         case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
   1270             cow_end_to = ROUND_UP(cow_end_from, s->cluster_size);
   1271             if (has_subclusters(s)) {
   1272                 /* Skip all trailing zero and unallocated subclusters */
   1273                 uint32_t alloc_bitmap = l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC;
   1274                 cow_end_to -=
   1275                     MIN(s->subclusters_per_cluster - sc_index - 1,
   1276                         clz32(alloc_bitmap)) << s->subcluster_bits;
   1277             }
   1278             break;
   1279         case QCOW2_SUBCLUSTER_ZERO_PLAIN:
   1280         case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
   1281             cow_end_to = ROUND_UP(cow_end_from, s->subcluster_size);
   1282             break;
   1283         default:
   1284             g_assert_not_reached();
   1285         }
   1286     } else {
   1287         switch (type) {
   1288         case QCOW2_SUBCLUSTER_NORMAL:
   1289             cow_end_to = cow_end_from;
   1290             break;
   1291         case QCOW2_SUBCLUSTER_ZERO_ALLOC:
   1292         case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
   1293             cow_end_to = ROUND_UP(cow_end_from, s->subcluster_size);
   1294             break;
   1295         default:
   1296             g_assert_not_reached();
   1297         }
   1298     }
   1299 
   1300     *m = g_malloc0(sizeof(**m));
   1301     **m = (QCowL2Meta) {
   1302         .next           = old_m,
   1303 
   1304         .alloc_offset   = host_cluster_offset,
   1305         .offset         = start_of_cluster(s, guest_offset),
   1306         .nb_clusters    = nb_clusters,
   1307 
   1308         .keep_old_clusters = keep_old,
   1309 
   1310         .cow_start = {
   1311             .offset     = cow_start_from,
   1312             .nb_bytes   = cow_start_to - cow_start_from,
   1313         },
   1314         .cow_end = {
   1315             .offset     = cow_end_from,
   1316             .nb_bytes   = cow_end_to - cow_end_from,
   1317         },
   1318     };
   1319 
   1320     qemu_co_queue_init(&(*m)->dependent_requests);
   1321     QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
   1322 
   1323     return 0;
   1324 }
   1325 
   1326 /*
   1327  * Returns true if writing to the cluster pointed to by @l2_entry
   1328  * requires a new allocation (that is, if the cluster is unallocated
   1329  * or has refcount > 1 and therefore cannot be written in-place).
   1330  */
   1331 static bool cluster_needs_new_alloc(BlockDriverState *bs, uint64_t l2_entry)
   1332 {
   1333     switch (qcow2_get_cluster_type(bs, l2_entry)) {
   1334     case QCOW2_CLUSTER_NORMAL:
   1335     case QCOW2_CLUSTER_ZERO_ALLOC:
   1336         if (l2_entry & QCOW_OFLAG_COPIED) {
   1337             return false;
   1338         }
   1339         /* fallthrough */
   1340     case QCOW2_CLUSTER_UNALLOCATED:
   1341     case QCOW2_CLUSTER_COMPRESSED:
   1342     case QCOW2_CLUSTER_ZERO_PLAIN:
   1343         return true;
   1344     default:
   1345         abort();
   1346     }
   1347 }
   1348 
   1349 /*
   1350  * Returns the number of contiguous clusters that can be written to
   1351  * using one single write request, starting from @l2_index.
   1352  * At most @nb_clusters are checked.
   1353  *
   1354  * If @new_alloc is true this counts clusters that are either
   1355  * unallocated, or allocated but with refcount > 1 (so they need to be
   1356  * newly allocated and COWed).
   1357  *
   1358  * If @new_alloc is false this counts clusters that are already
   1359  * allocated and can be overwritten in-place (this includes clusters
   1360  * of type QCOW2_CLUSTER_ZERO_ALLOC).
   1361  */
   1362 static int count_single_write_clusters(BlockDriverState *bs, int nb_clusters,
   1363                                        uint64_t *l2_slice, int l2_index,
   1364                                        bool new_alloc)
   1365 {
   1366     BDRVQcow2State *s = bs->opaque;
   1367     uint64_t l2_entry = get_l2_entry(s, l2_slice, l2_index);
   1368     uint64_t expected_offset = l2_entry & L2E_OFFSET_MASK;
   1369     int i;
   1370 
   1371     for (i = 0; i < nb_clusters; i++) {
   1372         l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
   1373         if (cluster_needs_new_alloc(bs, l2_entry) != new_alloc) {
   1374             break;
   1375         }
   1376         if (!new_alloc) {
   1377             if (expected_offset != (l2_entry & L2E_OFFSET_MASK)) {
   1378                 break;
   1379             }
   1380             expected_offset += s->cluster_size;
   1381         }
   1382     }
   1383 
   1384     assert(i <= nb_clusters);
   1385     return i;
   1386 }
   1387 
   1388 /*
   1389  * Check if there already is an AIO write request in flight which allocates
   1390  * the same cluster. In this case we need to wait until the previous
   1391  * request has completed and updated the L2 table accordingly.
   1392  *
   1393  * Returns:
   1394  *   0       if there was no dependency. *cur_bytes indicates the number of
   1395  *           bytes from guest_offset that can be read before the next
   1396  *           dependency must be processed (or the request is complete)
   1397  *
   1398  *   -EAGAIN if we had to wait for another request, previously gathered
   1399  *           information on cluster allocation may be invalid now. The caller
   1400  *           must start over anyway, so consider *cur_bytes undefined.
   1401  */
   1402 static int coroutine_fn handle_dependencies(BlockDriverState *bs,
   1403                                             uint64_t guest_offset,
   1404                                             uint64_t *cur_bytes, QCowL2Meta **m)
   1405 {
   1406     BDRVQcow2State *s = bs->opaque;
   1407     QCowL2Meta *old_alloc;
   1408     uint64_t bytes = *cur_bytes;
   1409 
   1410     QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
   1411 
   1412         uint64_t start = guest_offset;
   1413         uint64_t end = start + bytes;
   1414         uint64_t old_start = start_of_cluster(s, l2meta_cow_start(old_alloc));
   1415         uint64_t old_end = ROUND_UP(l2meta_cow_end(old_alloc), s->cluster_size);
   1416 
   1417         if (end <= old_start || start >= old_end) {
   1418             /* No intersection */
   1419             continue;
   1420         }
   1421 
   1422         if (old_alloc->keep_old_clusters &&
   1423             (end <= l2meta_cow_start(old_alloc) ||
   1424              start >= l2meta_cow_end(old_alloc)))
   1425         {
   1426             /*
   1427              * Clusters intersect but COW areas don't. And cluster itself is
   1428              * already allocated. So, there is no actual conflict.
   1429              */
   1430             continue;
   1431         }
   1432 
   1433         /* Conflict */
   1434 
   1435         if (start < old_start) {
   1436             /* Stop at the start of a running allocation */
   1437             bytes = old_start - start;
   1438         } else {
   1439             bytes = 0;
   1440         }
   1441 
   1442         /*
   1443          * Stop if an l2meta already exists. After yielding, it wouldn't
   1444          * be valid any more, so we'd have to clean up the old L2Metas
   1445          * and deal with requests depending on them before starting to
   1446          * gather new ones. Not worth the trouble.
   1447          */
   1448         if (bytes == 0 && *m) {
   1449             *cur_bytes = 0;
   1450             return 0;
   1451         }
   1452 
   1453         if (bytes == 0) {
   1454             /*
   1455              * Wait for the dependency to complete. We need to recheck
   1456              * the free/allocated clusters when we continue.
   1457              */
   1458             qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
   1459             return -EAGAIN;
   1460         }
   1461     }
   1462 
   1463     /* Make sure that existing clusters and new allocations are only used up to
   1464      * the next dependency if we shortened the request above */
   1465     *cur_bytes = bytes;
   1466 
   1467     return 0;
   1468 }
   1469 
   1470 /*
   1471  * Checks how many already allocated clusters that don't require a new
   1472  * allocation there are at the given guest_offset (up to *bytes).
   1473  * If *host_offset is not INV_OFFSET, only physically contiguous clusters
   1474  * beginning at this host offset are counted.
   1475  *
   1476  * Note that guest_offset may not be cluster aligned. In this case, the
   1477  * returned *host_offset points to exact byte referenced by guest_offset and
   1478  * therefore isn't cluster aligned as well.
   1479  *
   1480  * Returns:
   1481  *   0:     if no allocated clusters are available at the given offset.
   1482  *          *bytes is normally unchanged. It is set to 0 if the cluster
   1483  *          is allocated and can be overwritten in-place but doesn't have
   1484  *          the right physical offset.
   1485  *
   1486  *   1:     if allocated clusters that can be overwritten in place are
   1487  *          available at the requested offset. *bytes may have decreased
   1488  *          and describes the length of the area that can be written to.
   1489  *
   1490  *  -errno: in error cases
   1491  */
   1492 static int coroutine_fn handle_copied(BlockDriverState *bs,
   1493     uint64_t guest_offset, uint64_t *host_offset, uint64_t *bytes,
   1494     QCowL2Meta **m)
   1495 {
   1496     BDRVQcow2State *s = bs->opaque;
   1497     int l2_index;
   1498     uint64_t l2_entry, cluster_offset;
   1499     uint64_t *l2_slice;
   1500     uint64_t nb_clusters;
   1501     unsigned int keep_clusters;
   1502     int ret;
   1503 
   1504     trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
   1505                               *bytes);
   1506 
   1507     assert(*host_offset == INV_OFFSET || offset_into_cluster(s, guest_offset)
   1508                                       == offset_into_cluster(s, *host_offset));
   1509 
   1510     /*
   1511      * Calculate the number of clusters to look for. We stop at L2 slice
   1512      * boundaries to keep things simple.
   1513      */
   1514     nb_clusters =
   1515         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
   1516 
   1517     l2_index = offset_to_l2_slice_index(s, guest_offset);
   1518     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
   1519     /* Limit total byte count to BDRV_REQUEST_MAX_BYTES */
   1520     nb_clusters = MIN(nb_clusters, BDRV_REQUEST_MAX_BYTES >> s->cluster_bits);
   1521 
   1522     /* Find L2 entry for the first involved cluster */
   1523     ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
   1524     if (ret < 0) {
   1525         return ret;
   1526     }
   1527 
   1528     l2_entry = get_l2_entry(s, l2_slice, l2_index);
   1529     cluster_offset = l2_entry & L2E_OFFSET_MASK;
   1530 
   1531     if (!cluster_needs_new_alloc(bs, l2_entry)) {
   1532         if (offset_into_cluster(s, cluster_offset)) {
   1533             qcow2_signal_corruption(bs, true, -1, -1, "%s cluster offset "
   1534                                     "%#" PRIx64 " unaligned (guest offset: %#"
   1535                                     PRIx64 ")", l2_entry & QCOW_OFLAG_ZERO ?
   1536                                     "Preallocated zero" : "Data",
   1537                                     cluster_offset, guest_offset);
   1538             ret = -EIO;
   1539             goto out;
   1540         }
   1541 
   1542         /* If a specific host_offset is required, check it */
   1543         if (*host_offset != INV_OFFSET && cluster_offset != *host_offset) {
   1544             *bytes = 0;
   1545             ret = 0;
   1546             goto out;
   1547         }
   1548 
   1549         /* We keep all QCOW_OFLAG_COPIED clusters */
   1550         keep_clusters = count_single_write_clusters(bs, nb_clusters, l2_slice,
   1551                                                     l2_index, false);
   1552         assert(keep_clusters <= nb_clusters);
   1553 
   1554         *bytes = MIN(*bytes,
   1555                  keep_clusters * s->cluster_size
   1556                  - offset_into_cluster(s, guest_offset));
   1557         assert(*bytes != 0);
   1558 
   1559         ret = calculate_l2_meta(bs, cluster_offset, guest_offset,
   1560                                 *bytes, l2_slice, m, true);
   1561         if (ret < 0) {
   1562             goto out;
   1563         }
   1564 
   1565         ret = 1;
   1566     } else {
   1567         ret = 0;
   1568     }
   1569 
   1570     /* Cleanup */
   1571 out:
   1572     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
   1573 
   1574     /* Only return a host offset if we actually made progress. Otherwise we
   1575      * would make requirements for handle_alloc() that it can't fulfill */
   1576     if (ret > 0) {
   1577         *host_offset = cluster_offset + offset_into_cluster(s, guest_offset);
   1578     }
   1579 
   1580     return ret;
   1581 }
   1582 
   1583 /*
   1584  * Allocates new clusters for the given guest_offset.
   1585  *
   1586  * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
   1587  * contain the number of clusters that have been allocated and are contiguous
   1588  * in the image file.
   1589  *
   1590  * If *host_offset is not INV_OFFSET, it specifies the offset in the image file
   1591  * at which the new clusters must start. *nb_clusters can be 0 on return in
   1592  * this case if the cluster at host_offset is already in use. If *host_offset
   1593  * is INV_OFFSET, the clusters can be allocated anywhere in the image file.
   1594  *
   1595  * *host_offset is updated to contain the offset into the image file at which
   1596  * the first allocated cluster starts.
   1597  *
   1598  * Return 0 on success and -errno in error cases. -EAGAIN means that the
   1599  * function has been waiting for another request and the allocation must be
   1600  * restarted, but the whole request should not be failed.
   1601  */
   1602 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
   1603                                    uint64_t *host_offset, uint64_t *nb_clusters)
   1604 {
   1605     BDRVQcow2State *s = bs->opaque;
   1606 
   1607     trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
   1608                                          *host_offset, *nb_clusters);
   1609 
   1610     if (has_data_file(bs)) {
   1611         assert(*host_offset == INV_OFFSET ||
   1612                *host_offset == start_of_cluster(s, guest_offset));
   1613         *host_offset = start_of_cluster(s, guest_offset);
   1614         return 0;
   1615     }
   1616 
   1617     /* Allocate new clusters */
   1618     trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
   1619     if (*host_offset == INV_OFFSET) {
   1620         int64_t cluster_offset =
   1621             qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
   1622         if (cluster_offset < 0) {
   1623             return cluster_offset;
   1624         }
   1625         *host_offset = cluster_offset;
   1626         return 0;
   1627     } else {
   1628         int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
   1629         if (ret < 0) {
   1630             return ret;
   1631         }
   1632         *nb_clusters = ret;
   1633         return 0;
   1634     }
   1635 }
   1636 
   1637 /*
   1638  * Allocates new clusters for an area that is either still unallocated or
   1639  * cannot be overwritten in-place. If *host_offset is not INV_OFFSET,
   1640  * clusters are only allocated if the new allocation can match the specified
   1641  * host offset.
   1642  *
   1643  * Note that guest_offset may not be cluster aligned. In this case, the
   1644  * returned *host_offset points to exact byte referenced by guest_offset and
   1645  * therefore isn't cluster aligned as well.
   1646  *
   1647  * Returns:
   1648  *   0:     if no clusters could be allocated. *bytes is set to 0,
   1649  *          *host_offset is left unchanged.
   1650  *
   1651  *   1:     if new clusters were allocated. *bytes may be decreased if the
   1652  *          new allocation doesn't cover all of the requested area.
   1653  *          *host_offset is updated to contain the host offset of the first
   1654  *          newly allocated cluster.
   1655  *
   1656  *  -errno: in error cases
   1657  */
   1658 static int coroutine_fn handle_alloc(BlockDriverState *bs,
   1659     uint64_t guest_offset, uint64_t *host_offset, uint64_t *bytes,
   1660     QCowL2Meta **m)
   1661 {
   1662     BDRVQcow2State *s = bs->opaque;
   1663     int l2_index;
   1664     uint64_t *l2_slice;
   1665     uint64_t nb_clusters;
   1666     int ret;
   1667 
   1668     uint64_t alloc_cluster_offset;
   1669 
   1670     trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
   1671                              *bytes);
   1672     assert(*bytes > 0);
   1673 
   1674     /*
   1675      * Calculate the number of clusters to look for. We stop at L2 slice
   1676      * boundaries to keep things simple.
   1677      */
   1678     nb_clusters =
   1679         size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
   1680 
   1681     l2_index = offset_to_l2_slice_index(s, guest_offset);
   1682     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
   1683     /* Limit total allocation byte count to BDRV_REQUEST_MAX_BYTES */
   1684     nb_clusters = MIN(nb_clusters, BDRV_REQUEST_MAX_BYTES >> s->cluster_bits);
   1685 
   1686     /* Find L2 entry for the first involved cluster */
   1687     ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
   1688     if (ret < 0) {
   1689         return ret;
   1690     }
   1691 
   1692     nb_clusters = count_single_write_clusters(bs, nb_clusters,
   1693                                               l2_slice, l2_index, true);
   1694 
   1695     /* This function is only called when there were no non-COW clusters, so if
   1696      * we can't find any unallocated or COW clusters either, something is
   1697      * wrong with our code. */
   1698     assert(nb_clusters > 0);
   1699 
   1700     /* Allocate at a given offset in the image file */
   1701     alloc_cluster_offset = *host_offset == INV_OFFSET ? INV_OFFSET :
   1702         start_of_cluster(s, *host_offset);
   1703     ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
   1704                                   &nb_clusters);
   1705     if (ret < 0) {
   1706         goto out;
   1707     }
   1708 
   1709     /* Can't extend contiguous allocation */
   1710     if (nb_clusters == 0) {
   1711         *bytes = 0;
   1712         ret = 0;
   1713         goto out;
   1714     }
   1715 
   1716     assert(alloc_cluster_offset != INV_OFFSET);
   1717 
   1718     /*
   1719      * Save info needed for meta data update.
   1720      *
   1721      * requested_bytes: Number of bytes from the start of the first
   1722      * newly allocated cluster to the end of the (possibly shortened
   1723      * before) write request.
   1724      *
   1725      * avail_bytes: Number of bytes from the start of the first
   1726      * newly allocated to the end of the last newly allocated cluster.
   1727      *
   1728      * nb_bytes: The number of bytes from the start of the first
   1729      * newly allocated cluster to the end of the area that the write
   1730      * request actually writes to (excluding COW at the end)
   1731      */
   1732     uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
   1733     int avail_bytes = nb_clusters << s->cluster_bits;
   1734     int nb_bytes = MIN(requested_bytes, avail_bytes);
   1735 
   1736     *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
   1737     *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
   1738     assert(*bytes != 0);
   1739 
   1740     ret = calculate_l2_meta(bs, alloc_cluster_offset, guest_offset, *bytes,
   1741                             l2_slice, m, false);
   1742     if (ret < 0) {
   1743         goto out;
   1744     }
   1745 
   1746     ret = 1;
   1747 
   1748 out:
   1749     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
   1750     return ret;
   1751 }
   1752 
   1753 /*
   1754  * For a given area on the virtual disk defined by @offset and @bytes,
   1755  * find the corresponding area on the qcow2 image, allocating new
   1756  * clusters (or subclusters) if necessary. The result can span a
   1757  * combination of allocated and previously unallocated clusters.
   1758  *
   1759  * Note that offset may not be cluster aligned. In this case, the returned
   1760  * *host_offset points to exact byte referenced by offset and therefore
   1761  * isn't cluster aligned as well.
   1762  *
   1763  * On return, @host_offset is set to the beginning of the requested
   1764  * area. This area is guaranteed to be contiguous on the qcow2 file
   1765  * but it can be smaller than initially requested. In this case @bytes
   1766  * is updated with the actual size.
   1767  *
   1768  * If any clusters or subclusters were allocated then @m contains a
   1769  * list with the information of all the affected regions. Note that
   1770  * this can happen regardless of whether this function succeeds or
   1771  * not. The caller is responsible for updating the L2 metadata of the
   1772  * allocated clusters (on success) or freeing them (on failure), and
   1773  * for clearing the contents of @m afterwards in both cases.
   1774  *
   1775  * If the request conflicts with another write request in flight, the coroutine
   1776  * is queued and will be reentered when the dependency has completed.
   1777  *
   1778  * Return 0 on success and -errno in error cases
   1779  */
   1780 int coroutine_fn qcow2_alloc_host_offset(BlockDriverState *bs, uint64_t offset,
   1781                                          unsigned int *bytes,
   1782                                          uint64_t *host_offset,
   1783                                          QCowL2Meta **m)
   1784 {
   1785     BDRVQcow2State *s = bs->opaque;
   1786     uint64_t start, remaining;
   1787     uint64_t cluster_offset;
   1788     uint64_t cur_bytes;
   1789     int ret;
   1790 
   1791     trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
   1792 
   1793 again:
   1794     start = offset;
   1795     remaining = *bytes;
   1796     cluster_offset = INV_OFFSET;
   1797     *host_offset = INV_OFFSET;
   1798     cur_bytes = 0;
   1799     *m = NULL;
   1800 
   1801     while (true) {
   1802 
   1803         if (*host_offset == INV_OFFSET && cluster_offset != INV_OFFSET) {
   1804             *host_offset = cluster_offset;
   1805         }
   1806 
   1807         assert(remaining >= cur_bytes);
   1808 
   1809         start           += cur_bytes;
   1810         remaining       -= cur_bytes;
   1811 
   1812         if (cluster_offset != INV_OFFSET) {
   1813             cluster_offset += cur_bytes;
   1814         }
   1815 
   1816         if (remaining == 0) {
   1817             break;
   1818         }
   1819 
   1820         cur_bytes = remaining;
   1821 
   1822         /*
   1823          * Now start gathering as many contiguous clusters as possible:
   1824          *
   1825          * 1. Check for overlaps with in-flight allocations
   1826          *
   1827          *      a) Overlap not in the first cluster -> shorten this request and
   1828          *         let the caller handle the rest in its next loop iteration.
   1829          *
   1830          *      b) Real overlaps of two requests. Yield and restart the search
   1831          *         for contiguous clusters (the situation could have changed
   1832          *         while we were sleeping)
   1833          *
   1834          *      c) TODO: Request starts in the same cluster as the in-flight
   1835          *         allocation ends. Shorten the COW of the in-fight allocation,
   1836          *         set cluster_offset to write to the same cluster and set up
   1837          *         the right synchronisation between the in-flight request and
   1838          *         the new one.
   1839          */
   1840         ret = handle_dependencies(bs, start, &cur_bytes, m);
   1841         if (ret == -EAGAIN) {
   1842             /* Currently handle_dependencies() doesn't yield if we already had
   1843              * an allocation. If it did, we would have to clean up the L2Meta
   1844              * structs before starting over. */
   1845             assert(*m == NULL);
   1846             goto again;
   1847         } else if (ret < 0) {
   1848             return ret;
   1849         } else if (cur_bytes == 0) {
   1850             break;
   1851         } else {
   1852             /* handle_dependencies() may have decreased cur_bytes (shortened
   1853              * the allocations below) so that the next dependency is processed
   1854              * correctly during the next loop iteration. */
   1855         }
   1856 
   1857         /*
   1858          * 2. Count contiguous COPIED clusters.
   1859          */
   1860         ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
   1861         if (ret < 0) {
   1862             return ret;
   1863         } else if (ret) {
   1864             continue;
   1865         } else if (cur_bytes == 0) {
   1866             break;
   1867         }
   1868 
   1869         /*
   1870          * 3. If the request still hasn't completed, allocate new clusters,
   1871          *    considering any cluster_offset of steps 1c or 2.
   1872          */
   1873         ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
   1874         if (ret < 0) {
   1875             return ret;
   1876         } else if (ret) {
   1877             continue;
   1878         } else {
   1879             assert(cur_bytes == 0);
   1880             break;
   1881         }
   1882     }
   1883 
   1884     *bytes -= remaining;
   1885     assert(*bytes > 0);
   1886     assert(*host_offset != INV_OFFSET);
   1887     assert(offset_into_cluster(s, *host_offset) ==
   1888            offset_into_cluster(s, offset));
   1889 
   1890     return 0;
   1891 }
   1892 
   1893 /*
   1894  * This discards as many clusters of nb_clusters as possible at once (i.e.
   1895  * all clusters in the same L2 slice) and returns the number of discarded
   1896  * clusters.
   1897  */
   1898 static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset,
   1899                                uint64_t nb_clusters,
   1900                                enum qcow2_discard_type type, bool full_discard)
   1901 {
   1902     BDRVQcow2State *s = bs->opaque;
   1903     uint64_t *l2_slice;
   1904     int l2_index;
   1905     int ret;
   1906     int i;
   1907 
   1908     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
   1909     if (ret < 0) {
   1910         return ret;
   1911     }
   1912 
   1913     /* Limit nb_clusters to one L2 slice */
   1914     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
   1915     assert(nb_clusters <= INT_MAX);
   1916 
   1917     for (i = 0; i < nb_clusters; i++) {
   1918         uint64_t old_l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
   1919         uint64_t old_l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
   1920         uint64_t new_l2_entry = old_l2_entry;
   1921         uint64_t new_l2_bitmap = old_l2_bitmap;
   1922         QCow2ClusterType cluster_type =
   1923             qcow2_get_cluster_type(bs, old_l2_entry);
   1924 
   1925         /*
   1926          * If full_discard is true, the cluster should not read back as zeroes,
   1927          * but rather fall through to the backing file.
   1928          *
   1929          * If full_discard is false, make sure that a discarded area reads back
   1930          * as zeroes for v3 images (we cannot do it for v2 without actually
   1931          * writing a zero-filled buffer). We can skip the operation if the
   1932          * cluster is already marked as zero, or if it's unallocated and we
   1933          * don't have a backing file.
   1934          *
   1935          * TODO We might want to use bdrv_block_status(bs) here, but we're
   1936          * holding s->lock, so that doesn't work today.
   1937          */
   1938         if (full_discard) {
   1939             new_l2_entry = new_l2_bitmap = 0;
   1940         } else if (bs->backing || qcow2_cluster_is_allocated(cluster_type)) {
   1941             if (has_subclusters(s)) {
   1942                 new_l2_entry = 0;
   1943                 new_l2_bitmap = QCOW_L2_BITMAP_ALL_ZEROES;
   1944             } else {
   1945                 new_l2_entry = s->qcow_version >= 3 ? QCOW_OFLAG_ZERO : 0;
   1946             }
   1947         }
   1948 
   1949         if (old_l2_entry == new_l2_entry && old_l2_bitmap == new_l2_bitmap) {
   1950             continue;
   1951         }
   1952 
   1953         /* First remove L2 entries */
   1954         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
   1955         set_l2_entry(s, l2_slice, l2_index + i, new_l2_entry);
   1956         if (has_subclusters(s)) {
   1957             set_l2_bitmap(s, l2_slice, l2_index + i, new_l2_bitmap);
   1958         }
   1959         /* Then decrease the refcount */
   1960         qcow2_free_any_cluster(bs, old_l2_entry, type);
   1961     }
   1962 
   1963     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
   1964 
   1965     return nb_clusters;
   1966 }
   1967 
   1968 int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
   1969                           uint64_t bytes, enum qcow2_discard_type type,
   1970                           bool full_discard)
   1971 {
   1972     BDRVQcow2State *s = bs->opaque;
   1973     uint64_t end_offset = offset + bytes;
   1974     uint64_t nb_clusters;
   1975     int64_t cleared;
   1976     int ret;
   1977 
   1978     /* Caller must pass aligned values, except at image end */
   1979     assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
   1980     assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
   1981            end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
   1982 
   1983     nb_clusters = size_to_clusters(s, bytes);
   1984 
   1985     s->cache_discards = true;
   1986 
   1987     /* Each L2 slice is handled by its own loop iteration */
   1988     while (nb_clusters > 0) {
   1989         cleared = discard_in_l2_slice(bs, offset, nb_clusters, type,
   1990                                       full_discard);
   1991         if (cleared < 0) {
   1992             ret = cleared;
   1993             goto fail;
   1994         }
   1995 
   1996         nb_clusters -= cleared;
   1997         offset += (cleared * s->cluster_size);
   1998     }
   1999 
   2000     ret = 0;
   2001 fail:
   2002     s->cache_discards = false;
   2003     qcow2_process_discards(bs, ret);
   2004 
   2005     return ret;
   2006 }
   2007 
   2008 /*
   2009  * This zeroes as many clusters of nb_clusters as possible at once (i.e.
   2010  * all clusters in the same L2 slice) and returns the number of zeroed
   2011  * clusters.
   2012  */
   2013 static int zero_in_l2_slice(BlockDriverState *bs, uint64_t offset,
   2014                             uint64_t nb_clusters, int flags)
   2015 {
   2016     BDRVQcow2State *s = bs->opaque;
   2017     uint64_t *l2_slice;
   2018     int l2_index;
   2019     int ret;
   2020     int i;
   2021 
   2022     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
   2023     if (ret < 0) {
   2024         return ret;
   2025     }
   2026 
   2027     /* Limit nb_clusters to one L2 slice */
   2028     nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
   2029     assert(nb_clusters <= INT_MAX);
   2030 
   2031     for (i = 0; i < nb_clusters; i++) {
   2032         uint64_t old_l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
   2033         uint64_t old_l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
   2034         QCow2ClusterType type = qcow2_get_cluster_type(bs, old_l2_entry);
   2035         bool unmap = (type == QCOW2_CLUSTER_COMPRESSED) ||
   2036             ((flags & BDRV_REQ_MAY_UNMAP) && qcow2_cluster_is_allocated(type));
   2037         uint64_t new_l2_entry = unmap ? 0 : old_l2_entry;
   2038         uint64_t new_l2_bitmap = old_l2_bitmap;
   2039 
   2040         if (has_subclusters(s)) {
   2041             new_l2_bitmap = QCOW_L2_BITMAP_ALL_ZEROES;
   2042         } else {
   2043             new_l2_entry |= QCOW_OFLAG_ZERO;
   2044         }
   2045 
   2046         if (old_l2_entry == new_l2_entry && old_l2_bitmap == new_l2_bitmap) {
   2047             continue;
   2048         }
   2049 
   2050         /* First update L2 entries */
   2051         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
   2052         set_l2_entry(s, l2_slice, l2_index + i, new_l2_entry);
   2053         if (has_subclusters(s)) {
   2054             set_l2_bitmap(s, l2_slice, l2_index + i, new_l2_bitmap);
   2055         }
   2056 
   2057         /* Then decrease the refcount */
   2058         if (unmap) {
   2059             qcow2_free_any_cluster(bs, old_l2_entry, QCOW2_DISCARD_REQUEST);
   2060         }
   2061     }
   2062 
   2063     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
   2064 
   2065     return nb_clusters;
   2066 }
   2067 
   2068 static int zero_l2_subclusters(BlockDriverState *bs, uint64_t offset,
   2069                                unsigned nb_subclusters)
   2070 {
   2071     BDRVQcow2State *s = bs->opaque;
   2072     uint64_t *l2_slice;
   2073     uint64_t old_l2_bitmap, l2_bitmap;
   2074     int l2_index, ret, sc = offset_to_sc_index(s, offset);
   2075 
   2076     /* For full clusters use zero_in_l2_slice() instead */
   2077     assert(nb_subclusters > 0 && nb_subclusters < s->subclusters_per_cluster);
   2078     assert(sc + nb_subclusters <= s->subclusters_per_cluster);
   2079     assert(offset_into_subcluster(s, offset) == 0);
   2080 
   2081     ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
   2082     if (ret < 0) {
   2083         return ret;
   2084     }
   2085 
   2086     switch (qcow2_get_cluster_type(bs, get_l2_entry(s, l2_slice, l2_index))) {
   2087     case QCOW2_CLUSTER_COMPRESSED:
   2088         ret = -ENOTSUP; /* We cannot partially zeroize compressed clusters */
   2089         goto out;
   2090     case QCOW2_CLUSTER_NORMAL:
   2091     case QCOW2_CLUSTER_UNALLOCATED:
   2092         break;
   2093     default:
   2094         g_assert_not_reached();
   2095     }
   2096 
   2097     old_l2_bitmap = l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
   2098 
   2099     l2_bitmap |=  QCOW_OFLAG_SUB_ZERO_RANGE(sc, sc + nb_subclusters);
   2100     l2_bitmap &= ~QCOW_OFLAG_SUB_ALLOC_RANGE(sc, sc + nb_subclusters);
   2101 
   2102     if (old_l2_bitmap != l2_bitmap) {
   2103         set_l2_bitmap(s, l2_slice, l2_index, l2_bitmap);
   2104         qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
   2105     }
   2106 
   2107     ret = 0;
   2108 out:
   2109     qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
   2110 
   2111     return ret;
   2112 }
   2113 
   2114 int coroutine_fn qcow2_subcluster_zeroize(BlockDriverState *bs, uint64_t offset,
   2115                                           uint64_t bytes, int flags)
   2116 {
   2117     BDRVQcow2State *s = bs->opaque;
   2118     uint64_t end_offset = offset + bytes;
   2119     uint64_t nb_clusters;
   2120     unsigned head, tail;
   2121     int64_t cleared;
   2122     int ret;
   2123 
   2124     /* If we have to stay in sync with an external data file, zero out
   2125      * s->data_file first. */
   2126     if (data_file_is_raw(bs)) {
   2127         assert(has_data_file(bs));
   2128         ret = bdrv_co_pwrite_zeroes(s->data_file, offset, bytes, flags);
   2129         if (ret < 0) {
   2130             return ret;
   2131         }
   2132     }
   2133 
   2134     /* Caller must pass aligned values, except at image end */
   2135     assert(offset_into_subcluster(s, offset) == 0);
   2136     assert(offset_into_subcluster(s, end_offset) == 0 ||
   2137            end_offset >= bs->total_sectors << BDRV_SECTOR_BITS);
   2138 
   2139     /*
   2140      * The zero flag is only supported by version 3 and newer. However, if we
   2141      * have no backing file, we can resort to discard in version 2.
   2142      */
   2143     if (s->qcow_version < 3) {
   2144         if (!bs->backing) {
   2145             return qcow2_cluster_discard(bs, offset, bytes,
   2146                                          QCOW2_DISCARD_REQUEST, false);
   2147         }
   2148         return -ENOTSUP;
   2149     }
   2150 
   2151     head = MIN(end_offset, ROUND_UP(offset, s->cluster_size)) - offset;
   2152     offset += head;
   2153 
   2154     tail = (end_offset >= bs->total_sectors << BDRV_SECTOR_BITS) ? 0 :
   2155         end_offset - MAX(offset, start_of_cluster(s, end_offset));
   2156     end_offset -= tail;
   2157 
   2158     s->cache_discards = true;
   2159 
   2160     if (head) {
   2161         ret = zero_l2_subclusters(bs, offset - head,
   2162                                   size_to_subclusters(s, head));
   2163         if (ret < 0) {
   2164             goto fail;
   2165         }
   2166     }
   2167 
   2168     /* Each L2 slice is handled by its own loop iteration */
   2169     nb_clusters = size_to_clusters(s, end_offset - offset);
   2170 
   2171     while (nb_clusters > 0) {
   2172         cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags);
   2173         if (cleared < 0) {
   2174             ret = cleared;
   2175             goto fail;
   2176         }
   2177 
   2178         nb_clusters -= cleared;
   2179         offset += (cleared * s->cluster_size);
   2180     }
   2181 
   2182     if (tail) {
   2183         ret = zero_l2_subclusters(bs, end_offset, size_to_subclusters(s, tail));
   2184         if (ret < 0) {
   2185             goto fail;
   2186         }
   2187     }
   2188 
   2189     ret = 0;
   2190 fail:
   2191     s->cache_discards = false;
   2192     qcow2_process_discards(bs, ret);
   2193 
   2194     return ret;
   2195 }
   2196 
   2197 /*
   2198  * Expands all zero clusters in a specific L1 table (or deallocates them, for
   2199  * non-backed non-pre-allocated zero clusters).
   2200  *
   2201  * l1_entries and *visited_l1_entries are used to keep track of progress for
   2202  * status_cb(). l1_entries contains the total number of L1 entries and
   2203  * *visited_l1_entries counts all visited L1 entries.
   2204  */
   2205 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
   2206                                       int l1_size, int64_t *visited_l1_entries,
   2207                                       int64_t l1_entries,
   2208                                       BlockDriverAmendStatusCB *status_cb,
   2209                                       void *cb_opaque)
   2210 {
   2211     BDRVQcow2State *s = bs->opaque;
   2212     bool is_active_l1 = (l1_table == s->l1_table);
   2213     uint64_t *l2_slice = NULL;
   2214     unsigned slice, slice_size2, n_slices;
   2215     int ret;
   2216     int i, j;
   2217 
   2218     /* qcow2_downgrade() is not allowed in images with subclusters */
   2219     assert(!has_subclusters(s));
   2220 
   2221     slice_size2 = s->l2_slice_size * l2_entry_size(s);
   2222     n_slices = s->cluster_size / slice_size2;
   2223 
   2224     if (!is_active_l1) {
   2225         /* inactive L2 tables require a buffer to be stored in when loading
   2226          * them from disk */
   2227         l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2);
   2228         if (l2_slice == NULL) {
   2229             return -ENOMEM;
   2230         }
   2231     }
   2232 
   2233     for (i = 0; i < l1_size; i++) {
   2234         uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
   2235         uint64_t l2_refcount;
   2236 
   2237         if (!l2_offset) {
   2238             /* unallocated */
   2239             (*visited_l1_entries)++;
   2240             if (status_cb) {
   2241                 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
   2242             }
   2243             continue;
   2244         }
   2245 
   2246         if (offset_into_cluster(s, l2_offset)) {
   2247             qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
   2248                                     PRIx64 " unaligned (L1 index: %#x)",
   2249                                     l2_offset, i);
   2250             ret = -EIO;
   2251             goto fail;
   2252         }
   2253 
   2254         ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
   2255                                  &l2_refcount);
   2256         if (ret < 0) {
   2257             goto fail;
   2258         }
   2259 
   2260         for (slice = 0; slice < n_slices; slice++) {
   2261             uint64_t slice_offset = l2_offset + slice * slice_size2;
   2262             bool l2_dirty = false;
   2263             if (is_active_l1) {
   2264                 /* get active L2 tables from cache */
   2265                 ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset,
   2266                                       (void **)&l2_slice);
   2267             } else {
   2268                 /* load inactive L2 tables from disk */
   2269                 ret = bdrv_pread(bs->file, slice_offset, slice_size2,
   2270                                  l2_slice, 0);
   2271             }
   2272             if (ret < 0) {
   2273                 goto fail;
   2274             }
   2275 
   2276             for (j = 0; j < s->l2_slice_size; j++) {
   2277                 uint64_t l2_entry = get_l2_entry(s, l2_slice, j);
   2278                 int64_t offset = l2_entry & L2E_OFFSET_MASK;
   2279                 QCow2ClusterType cluster_type =
   2280                     qcow2_get_cluster_type(bs, l2_entry);
   2281 
   2282                 if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
   2283                     cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
   2284                     continue;
   2285                 }
   2286 
   2287                 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
   2288                     if (!bs->backing) {
   2289                         /*
   2290                          * not backed; therefore we can simply deallocate the
   2291                          * cluster. No need to call set_l2_bitmap(), this
   2292                          * function doesn't support images with subclusters.
   2293                          */
   2294                         set_l2_entry(s, l2_slice, j, 0);
   2295                         l2_dirty = true;
   2296                         continue;
   2297                     }
   2298 
   2299                     offset = qcow2_alloc_clusters(bs, s->cluster_size);
   2300                     if (offset < 0) {
   2301                         ret = offset;
   2302                         goto fail;
   2303                     }
   2304 
   2305                     /* The offset must fit in the offset field */
   2306                     assert((offset & L2E_OFFSET_MASK) == offset);
   2307 
   2308                     if (l2_refcount > 1) {
   2309                         /* For shared L2 tables, set the refcount accordingly
   2310                          * (it is already 1 and needs to be l2_refcount) */
   2311                         ret = qcow2_update_cluster_refcount(
   2312                             bs, offset >> s->cluster_bits,
   2313                             refcount_diff(1, l2_refcount), false,
   2314                             QCOW2_DISCARD_OTHER);
   2315                         if (ret < 0) {
   2316                             qcow2_free_clusters(bs, offset, s->cluster_size,
   2317                                                 QCOW2_DISCARD_OTHER);
   2318                             goto fail;
   2319                         }
   2320                     }
   2321                 }
   2322 
   2323                 if (offset_into_cluster(s, offset)) {
   2324                     int l2_index = slice * s->l2_slice_size + j;
   2325                     qcow2_signal_corruption(
   2326                         bs, true, -1, -1,
   2327                         "Cluster allocation offset "
   2328                         "%#" PRIx64 " unaligned (L2 offset: %#"
   2329                         PRIx64 ", L2 index: %#x)", offset,
   2330                         l2_offset, l2_index);
   2331                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
   2332                         qcow2_free_clusters(bs, offset, s->cluster_size,
   2333                                             QCOW2_DISCARD_ALWAYS);
   2334                     }
   2335                     ret = -EIO;
   2336                     goto fail;
   2337                 }
   2338 
   2339                 ret = qcow2_pre_write_overlap_check(bs, 0, offset,
   2340                                                     s->cluster_size, true);
   2341                 if (ret < 0) {
   2342                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
   2343                         qcow2_free_clusters(bs, offset, s->cluster_size,
   2344                                             QCOW2_DISCARD_ALWAYS);
   2345                     }
   2346                     goto fail;
   2347                 }
   2348 
   2349                 ret = bdrv_pwrite_zeroes(s->data_file, offset,
   2350                                          s->cluster_size, 0);
   2351                 if (ret < 0) {
   2352                     if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
   2353                         qcow2_free_clusters(bs, offset, s->cluster_size,
   2354                                             QCOW2_DISCARD_ALWAYS);
   2355                     }
   2356                     goto fail;
   2357                 }
   2358 
   2359                 if (l2_refcount == 1) {
   2360                     set_l2_entry(s, l2_slice, j, offset | QCOW_OFLAG_COPIED);
   2361                 } else {
   2362                     set_l2_entry(s, l2_slice, j, offset);
   2363                 }
   2364                 /*
   2365                  * No need to call set_l2_bitmap() after set_l2_entry() because
   2366                  * this function doesn't support images with subclusters.
   2367                  */
   2368                 l2_dirty = true;
   2369             }
   2370 
   2371             if (is_active_l1) {
   2372                 if (l2_dirty) {
   2373                     qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
   2374                     qcow2_cache_depends_on_flush(s->l2_table_cache);
   2375                 }
   2376                 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
   2377             } else {
   2378                 if (l2_dirty) {
   2379                     ret = qcow2_pre_write_overlap_check(
   2380                         bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2,
   2381                         slice_offset, slice_size2, false);
   2382                     if (ret < 0) {
   2383                         goto fail;
   2384                     }
   2385 
   2386                     ret = bdrv_pwrite(bs->file, slice_offset, slice_size2,
   2387                                       l2_slice, 0);
   2388                     if (ret < 0) {
   2389                         goto fail;
   2390                     }
   2391                 }
   2392             }
   2393         }
   2394 
   2395         (*visited_l1_entries)++;
   2396         if (status_cb) {
   2397             status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
   2398         }
   2399     }
   2400 
   2401     ret = 0;
   2402 
   2403 fail:
   2404     if (l2_slice) {
   2405         if (!is_active_l1) {
   2406             qemu_vfree(l2_slice);
   2407         } else {
   2408             qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
   2409         }
   2410     }
   2411     return ret;
   2412 }
   2413 
   2414 /*
   2415  * For backed images, expands all zero clusters on the image. For non-backed
   2416  * images, deallocates all non-pre-allocated zero clusters (and claims the
   2417  * allocation for pre-allocated ones). This is important for downgrading to a
   2418  * qcow2 version which doesn't yet support metadata zero clusters.
   2419  */
   2420 int qcow2_expand_zero_clusters(BlockDriverState *bs,
   2421                                BlockDriverAmendStatusCB *status_cb,
   2422                                void *cb_opaque)
   2423 {
   2424     BDRVQcow2State *s = bs->opaque;
   2425     uint64_t *l1_table = NULL;
   2426     int64_t l1_entries = 0, visited_l1_entries = 0;
   2427     int ret;
   2428     int i, j;
   2429 
   2430     if (status_cb) {
   2431         l1_entries = s->l1_size;
   2432         for (i = 0; i < s->nb_snapshots; i++) {
   2433             l1_entries += s->snapshots[i].l1_size;
   2434         }
   2435     }
   2436 
   2437     ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
   2438                                      &visited_l1_entries, l1_entries,
   2439                                      status_cb, cb_opaque);
   2440     if (ret < 0) {
   2441         goto fail;
   2442     }
   2443 
   2444     /* Inactive L1 tables may point to active L2 tables - therefore it is
   2445      * necessary to flush the L2 table cache before trying to access the L2
   2446      * tables pointed to by inactive L1 entries (else we might try to expand
   2447      * zero clusters that have already been expanded); furthermore, it is also
   2448      * necessary to empty the L2 table cache, since it may contain tables which
   2449      * are now going to be modified directly on disk, bypassing the cache.
   2450      * qcow2_cache_empty() does both for us. */
   2451     ret = qcow2_cache_empty(bs, s->l2_table_cache);
   2452     if (ret < 0) {
   2453         goto fail;
   2454     }
   2455 
   2456     for (i = 0; i < s->nb_snapshots; i++) {
   2457         int l1_size2;
   2458         uint64_t *new_l1_table;
   2459         Error *local_err = NULL;
   2460 
   2461         ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset,
   2462                                    s->snapshots[i].l1_size, L1E_SIZE,
   2463                                    QCOW_MAX_L1_SIZE, "Snapshot L1 table",
   2464                                    &local_err);
   2465         if (ret < 0) {
   2466             error_report_err(local_err);
   2467             goto fail;
   2468         }
   2469 
   2470         l1_size2 = s->snapshots[i].l1_size * L1E_SIZE;
   2471         new_l1_table = g_try_realloc(l1_table, l1_size2);
   2472 
   2473         if (!new_l1_table) {
   2474             ret = -ENOMEM;
   2475             goto fail;
   2476         }
   2477 
   2478         l1_table = new_l1_table;
   2479 
   2480         ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset, l1_size2,
   2481                          l1_table, 0);
   2482         if (ret < 0) {
   2483             goto fail;
   2484         }
   2485 
   2486         for (j = 0; j < s->snapshots[i].l1_size; j++) {
   2487             be64_to_cpus(&l1_table[j]);
   2488         }
   2489 
   2490         ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
   2491                                          &visited_l1_entries, l1_entries,
   2492                                          status_cb, cb_opaque);
   2493         if (ret < 0) {
   2494             goto fail;
   2495         }
   2496     }
   2497 
   2498     ret = 0;
   2499 
   2500 fail:
   2501     g_free(l1_table);
   2502     return ret;
   2503 }
   2504 
   2505 void qcow2_parse_compressed_l2_entry(BlockDriverState *bs, uint64_t l2_entry,
   2506                                      uint64_t *coffset, int *csize)
   2507 {
   2508     BDRVQcow2State *s = bs->opaque;
   2509     int nb_csectors;
   2510 
   2511     assert(qcow2_get_cluster_type(bs, l2_entry) == QCOW2_CLUSTER_COMPRESSED);
   2512 
   2513     *coffset = l2_entry & s->cluster_offset_mask;
   2514 
   2515     nb_csectors = ((l2_entry >> s->csize_shift) & s->csize_mask) + 1;
   2516     *csize = nb_csectors * QCOW2_COMPRESSED_SECTOR_SIZE -
   2517         (*coffset & (QCOW2_COMPRESSED_SECTOR_SIZE - 1));
   2518 }