qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

cputlb.c (87887B)


      1 /*
      2  *  Common CPU TLB handling
      3  *
      4  *  Copyright (c) 2003 Fabrice Bellard
      5  *
      6  * This library is free software; you can redistribute it and/or
      7  * modify it under the terms of the GNU Lesser General Public
      8  * License as published by the Free Software Foundation; either
      9  * version 2.1 of the License, or (at your option) any later version.
     10  *
     11  * This library is distributed in the hope that it will be useful,
     12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     14  * Lesser General Public License for more details.
     15  *
     16  * You should have received a copy of the GNU Lesser General Public
     17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
     18  */
     19 
     20 #include "qemu/osdep.h"
     21 #include "qemu/main-loop.h"
     22 #include "hw/core/tcg-cpu-ops.h"
     23 #include "exec/exec-all.h"
     24 #include "exec/memory.h"
     25 #include "exec/cpu_ldst.h"
     26 #include "exec/cputlb.h"
     27 #include "exec/memory-internal.h"
     28 #include "exec/ram_addr.h"
     29 #include "tcg/tcg.h"
     30 #include "qemu/error-report.h"
     31 #include "exec/log.h"
     32 #include "exec/helper-proto.h"
     33 #include "qemu/atomic.h"
     34 #include "qemu/atomic128.h"
     35 #include "exec/translate-all.h"
     36 #include "trace/trace-root.h"
     37 #include "tb-hash.h"
     38 #include "internal.h"
     39 #ifdef CONFIG_PLUGIN
     40 #include "qemu/plugin-memory.h"
     41 #endif
     42 #include "tcg/tcg-ldst.h"
     43 
     44 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
     45 /* #define DEBUG_TLB */
     46 /* #define DEBUG_TLB_LOG */
     47 
     48 #ifdef DEBUG_TLB
     49 # define DEBUG_TLB_GATE 1
     50 # ifdef DEBUG_TLB_LOG
     51 #  define DEBUG_TLB_LOG_GATE 1
     52 # else
     53 #  define DEBUG_TLB_LOG_GATE 0
     54 # endif
     55 #else
     56 # define DEBUG_TLB_GATE 0
     57 # define DEBUG_TLB_LOG_GATE 0
     58 #endif
     59 
     60 #define tlb_debug(fmt, ...) do { \
     61     if (DEBUG_TLB_LOG_GATE) { \
     62         qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
     63                       ## __VA_ARGS__); \
     64     } else if (DEBUG_TLB_GATE) { \
     65         fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
     66     } \
     67 } while (0)
     68 
     69 #define assert_cpu_is_self(cpu) do {                              \
     70         if (DEBUG_TLB_GATE) {                                     \
     71             g_assert(!(cpu)->created || qemu_cpu_is_self(cpu));   \
     72         }                                                         \
     73     } while (0)
     74 
     75 /* run_on_cpu_data.target_ptr should always be big enough for a
     76  * target_ulong even on 32 bit builds */
     77 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
     78 
     79 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
     80  */
     81 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
     82 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
     83 
     84 static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
     85 {
     86     return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
     87 }
     88 
     89 static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
     90 {
     91     return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
     92 }
     93 
     94 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
     95                              size_t max_entries)
     96 {
     97     desc->window_begin_ns = ns;
     98     desc->window_max_entries = max_entries;
     99 }
    100 
    101 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
    102 {
    103     int i, i0 = tb_jmp_cache_hash_page(page_addr);
    104     CPUJumpCache *jc = cpu->tb_jmp_cache;
    105 
    106     for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
    107         qatomic_set(&jc->array[i0 + i].tb, NULL);
    108     }
    109 }
    110 
    111 /**
    112  * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
    113  * @desc: The CPUTLBDesc portion of the TLB
    114  * @fast: The CPUTLBDescFast portion of the same TLB
    115  *
    116  * Called with tlb_lock_held.
    117  *
    118  * We have two main constraints when resizing a TLB: (1) we only resize it
    119  * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
    120  * the array or unnecessarily flushing it), which means we do not control how
    121  * frequently the resizing can occur; (2) we don't have access to the guest's
    122  * future scheduling decisions, and therefore have to decide the magnitude of
    123  * the resize based on past observations.
    124  *
    125  * In general, a memory-hungry process can benefit greatly from an appropriately
    126  * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
    127  * we just have to make the TLB as large as possible; while an oversized TLB
    128  * results in minimal TLB miss rates, it also takes longer to be flushed
    129  * (flushes can be _very_ frequent), and the reduced locality can also hurt
    130  * performance.
    131  *
    132  * To achieve near-optimal performance for all kinds of workloads, we:
    133  *
    134  * 1. Aggressively increase the size of the TLB when the use rate of the
    135  * TLB being flushed is high, since it is likely that in the near future this
    136  * memory-hungry process will execute again, and its memory hungriness will
    137  * probably be similar.
    138  *
    139  * 2. Slowly reduce the size of the TLB as the use rate declines over a
    140  * reasonably large time window. The rationale is that if in such a time window
    141  * we have not observed a high TLB use rate, it is likely that we won't observe
    142  * it in the near future. In that case, once a time window expires we downsize
    143  * the TLB to match the maximum use rate observed in the window.
    144  *
    145  * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
    146  * since in that range performance is likely near-optimal. Recall that the TLB
    147  * is direct mapped, so we want the use rate to be low (or at least not too
    148  * high), since otherwise we are likely to have a significant amount of
    149  * conflict misses.
    150  */
    151 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
    152                                   int64_t now)
    153 {
    154     size_t old_size = tlb_n_entries(fast);
    155     size_t rate;
    156     size_t new_size = old_size;
    157     int64_t window_len_ms = 100;
    158     int64_t window_len_ns = window_len_ms * 1000 * 1000;
    159     bool window_expired = now > desc->window_begin_ns + window_len_ns;
    160 
    161     if (desc->n_used_entries > desc->window_max_entries) {
    162         desc->window_max_entries = desc->n_used_entries;
    163     }
    164     rate = desc->window_max_entries * 100 / old_size;
    165 
    166     if (rate > 70) {
    167         new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
    168     } else if (rate < 30 && window_expired) {
    169         size_t ceil = pow2ceil(desc->window_max_entries);
    170         size_t expected_rate = desc->window_max_entries * 100 / ceil;
    171 
    172         /*
    173          * Avoid undersizing when the max number of entries seen is just below
    174          * a pow2. For instance, if max_entries == 1025, the expected use rate
    175          * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
    176          * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
    177          * later. Thus, make sure that the expected use rate remains below 70%.
    178          * (and since we double the size, that means the lowest rate we'd
    179          * expect to get is 35%, which is still in the 30-70% range where
    180          * we consider that the size is appropriate.)
    181          */
    182         if (expected_rate > 70) {
    183             ceil *= 2;
    184         }
    185         new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
    186     }
    187 
    188     if (new_size == old_size) {
    189         if (window_expired) {
    190             tlb_window_reset(desc, now, desc->n_used_entries);
    191         }
    192         return;
    193     }
    194 
    195     g_free(fast->table);
    196     g_free(desc->fulltlb);
    197 
    198     tlb_window_reset(desc, now, 0);
    199     /* desc->n_used_entries is cleared by the caller */
    200     fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
    201     fast->table = g_try_new(CPUTLBEntry, new_size);
    202     desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
    203 
    204     /*
    205      * If the allocations fail, try smaller sizes. We just freed some
    206      * memory, so going back to half of new_size has a good chance of working.
    207      * Increased memory pressure elsewhere in the system might cause the
    208      * allocations to fail though, so we progressively reduce the allocation
    209      * size, aborting if we cannot even allocate the smallest TLB we support.
    210      */
    211     while (fast->table == NULL || desc->fulltlb == NULL) {
    212         if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
    213             error_report("%s: %s", __func__, strerror(errno));
    214             abort();
    215         }
    216         new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
    217         fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
    218 
    219         g_free(fast->table);
    220         g_free(desc->fulltlb);
    221         fast->table = g_try_new(CPUTLBEntry, new_size);
    222         desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
    223     }
    224 }
    225 
    226 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
    227 {
    228     desc->n_used_entries = 0;
    229     desc->large_page_addr = -1;
    230     desc->large_page_mask = -1;
    231     desc->vindex = 0;
    232     memset(fast->table, -1, sizeof_tlb(fast));
    233     memset(desc->vtable, -1, sizeof(desc->vtable));
    234 }
    235 
    236 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx,
    237                                         int64_t now)
    238 {
    239     CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
    240     CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx];
    241 
    242     tlb_mmu_resize_locked(desc, fast, now);
    243     tlb_mmu_flush_locked(desc, fast);
    244 }
    245 
    246 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
    247 {
    248     size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
    249 
    250     tlb_window_reset(desc, now, 0);
    251     desc->n_used_entries = 0;
    252     fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
    253     fast->table = g_new(CPUTLBEntry, n_entries);
    254     desc->fulltlb = g_new(CPUTLBEntryFull, n_entries);
    255     tlb_mmu_flush_locked(desc, fast);
    256 }
    257 
    258 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
    259 {
    260     env_tlb(env)->d[mmu_idx].n_used_entries++;
    261 }
    262 
    263 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
    264 {
    265     env_tlb(env)->d[mmu_idx].n_used_entries--;
    266 }
    267 
    268 void tlb_init(CPUState *cpu)
    269 {
    270     CPUArchState *env = cpu->env_ptr;
    271     int64_t now = get_clock_realtime();
    272     int i;
    273 
    274     qemu_spin_init(&env_tlb(env)->c.lock);
    275 
    276     /* All tlbs are initialized flushed. */
    277     env_tlb(env)->c.dirty = 0;
    278 
    279     for (i = 0; i < NB_MMU_MODES; i++) {
    280         tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now);
    281     }
    282 }
    283 
    284 void tlb_destroy(CPUState *cpu)
    285 {
    286     CPUArchState *env = cpu->env_ptr;
    287     int i;
    288 
    289     qemu_spin_destroy(&env_tlb(env)->c.lock);
    290     for (i = 0; i < NB_MMU_MODES; i++) {
    291         CPUTLBDesc *desc = &env_tlb(env)->d[i];
    292         CPUTLBDescFast *fast = &env_tlb(env)->f[i];
    293 
    294         g_free(fast->table);
    295         g_free(desc->fulltlb);
    296     }
    297 }
    298 
    299 /* flush_all_helper: run fn across all cpus
    300  *
    301  * If the wait flag is set then the src cpu's helper will be queued as
    302  * "safe" work and the loop exited creating a synchronisation point
    303  * where all queued work will be finished before execution starts
    304  * again.
    305  */
    306 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
    307                              run_on_cpu_data d)
    308 {
    309     CPUState *cpu;
    310 
    311     CPU_FOREACH(cpu) {
    312         if (cpu != src) {
    313             async_run_on_cpu(cpu, fn, d);
    314         }
    315     }
    316 }
    317 
    318 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
    319 {
    320     CPUState *cpu;
    321     size_t full = 0, part = 0, elide = 0;
    322 
    323     CPU_FOREACH(cpu) {
    324         CPUArchState *env = cpu->env_ptr;
    325 
    326         full += qatomic_read(&env_tlb(env)->c.full_flush_count);
    327         part += qatomic_read(&env_tlb(env)->c.part_flush_count);
    328         elide += qatomic_read(&env_tlb(env)->c.elide_flush_count);
    329     }
    330     *pfull = full;
    331     *ppart = part;
    332     *pelide = elide;
    333 }
    334 
    335 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
    336 {
    337     CPUArchState *env = cpu->env_ptr;
    338     uint16_t asked = data.host_int;
    339     uint16_t all_dirty, work, to_clean;
    340     int64_t now = get_clock_realtime();
    341 
    342     assert_cpu_is_self(cpu);
    343 
    344     tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
    345 
    346     qemu_spin_lock(&env_tlb(env)->c.lock);
    347 
    348     all_dirty = env_tlb(env)->c.dirty;
    349     to_clean = asked & all_dirty;
    350     all_dirty &= ~to_clean;
    351     env_tlb(env)->c.dirty = all_dirty;
    352 
    353     for (work = to_clean; work != 0; work &= work - 1) {
    354         int mmu_idx = ctz32(work);
    355         tlb_flush_one_mmuidx_locked(env, mmu_idx, now);
    356     }
    357 
    358     qemu_spin_unlock(&env_tlb(env)->c.lock);
    359 
    360     tcg_flush_jmp_cache(cpu);
    361 
    362     if (to_clean == ALL_MMUIDX_BITS) {
    363         qatomic_set(&env_tlb(env)->c.full_flush_count,
    364                    env_tlb(env)->c.full_flush_count + 1);
    365     } else {
    366         qatomic_set(&env_tlb(env)->c.part_flush_count,
    367                    env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
    368         if (to_clean != asked) {
    369             qatomic_set(&env_tlb(env)->c.elide_flush_count,
    370                        env_tlb(env)->c.elide_flush_count +
    371                        ctpop16(asked & ~to_clean));
    372         }
    373     }
    374 }
    375 
    376 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
    377 {
    378     tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
    379 
    380     if (cpu->created && !qemu_cpu_is_self(cpu)) {
    381         async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
    382                          RUN_ON_CPU_HOST_INT(idxmap));
    383     } else {
    384         tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
    385     }
    386 }
    387 
    388 void tlb_flush(CPUState *cpu)
    389 {
    390     tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
    391 }
    392 
    393 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
    394 {
    395     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
    396 
    397     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
    398 
    399     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
    400     fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
    401 }
    402 
    403 void tlb_flush_all_cpus(CPUState *src_cpu)
    404 {
    405     tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
    406 }
    407 
    408 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
    409 {
    410     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
    411 
    412     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
    413 
    414     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
    415     async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
    416 }
    417 
    418 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
    419 {
    420     tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
    421 }
    422 
    423 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
    424                                       target_ulong page, target_ulong mask)
    425 {
    426     page &= mask;
    427     mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
    428 
    429     return (page == (tlb_entry->addr_read & mask) ||
    430             page == (tlb_addr_write(tlb_entry) & mask) ||
    431             page == (tlb_entry->addr_code & mask));
    432 }
    433 
    434 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry,
    435                                         target_ulong page)
    436 {
    437     return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
    438 }
    439 
    440 /**
    441  * tlb_entry_is_empty - return true if the entry is not in use
    442  * @te: pointer to CPUTLBEntry
    443  */
    444 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
    445 {
    446     return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
    447 }
    448 
    449 /* Called with tlb_c.lock held */
    450 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
    451                                         target_ulong page,
    452                                         target_ulong mask)
    453 {
    454     if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
    455         memset(tlb_entry, -1, sizeof(*tlb_entry));
    456         return true;
    457     }
    458     return false;
    459 }
    460 
    461 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry,
    462                                           target_ulong page)
    463 {
    464     return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
    465 }
    466 
    467 /* Called with tlb_c.lock held */
    468 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx,
    469                                             target_ulong page,
    470                                             target_ulong mask)
    471 {
    472     CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
    473     int k;
    474 
    475     assert_cpu_is_self(env_cpu(env));
    476     for (k = 0; k < CPU_VTLB_SIZE; k++) {
    477         if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
    478             tlb_n_used_entries_dec(env, mmu_idx);
    479         }
    480     }
    481 }
    482 
    483 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
    484                                               target_ulong page)
    485 {
    486     tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1);
    487 }
    488 
    489 static void tlb_flush_page_locked(CPUArchState *env, int midx,
    490                                   target_ulong page)
    491 {
    492     target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr;
    493     target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask;
    494 
    495     /* Check if we need to flush due to large pages.  */
    496     if ((page & lp_mask) == lp_addr) {
    497         tlb_debug("forcing full flush midx %d ("
    498                   TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
    499                   midx, lp_addr, lp_mask);
    500         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
    501     } else {
    502         if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
    503             tlb_n_used_entries_dec(env, midx);
    504         }
    505         tlb_flush_vtlb_page_locked(env, midx, page);
    506     }
    507 }
    508 
    509 /**
    510  * tlb_flush_page_by_mmuidx_async_0:
    511  * @cpu: cpu on which to flush
    512  * @addr: page of virtual address to flush
    513  * @idxmap: set of mmu_idx to flush
    514  *
    515  * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
    516  * at @addr from the tlbs indicated by @idxmap from @cpu.
    517  */
    518 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
    519                                              target_ulong addr,
    520                                              uint16_t idxmap)
    521 {
    522     CPUArchState *env = cpu->env_ptr;
    523     int mmu_idx;
    524 
    525     assert_cpu_is_self(cpu);
    526 
    527     tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%x\n", addr, idxmap);
    528 
    529     qemu_spin_lock(&env_tlb(env)->c.lock);
    530     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
    531         if ((idxmap >> mmu_idx) & 1) {
    532             tlb_flush_page_locked(env, mmu_idx, addr);
    533         }
    534     }
    535     qemu_spin_unlock(&env_tlb(env)->c.lock);
    536 
    537     /*
    538      * Discard jump cache entries for any tb which might potentially
    539      * overlap the flushed page, which includes the previous.
    540      */
    541     tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
    542     tb_jmp_cache_clear_page(cpu, addr);
    543 }
    544 
    545 /**
    546  * tlb_flush_page_by_mmuidx_async_1:
    547  * @cpu: cpu on which to flush
    548  * @data: encoded addr + idxmap
    549  *
    550  * Helper for tlb_flush_page_by_mmuidx and friends, called through
    551  * async_run_on_cpu.  The idxmap parameter is encoded in the page
    552  * offset of the target_ptr field.  This limits the set of mmu_idx
    553  * that can be passed via this method.
    554  */
    555 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
    556                                              run_on_cpu_data data)
    557 {
    558     target_ulong addr_and_idxmap = (target_ulong) data.target_ptr;
    559     target_ulong addr = addr_and_idxmap & TARGET_PAGE_MASK;
    560     uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
    561 
    562     tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
    563 }
    564 
    565 typedef struct {
    566     target_ulong addr;
    567     uint16_t idxmap;
    568 } TLBFlushPageByMMUIdxData;
    569 
    570 /**
    571  * tlb_flush_page_by_mmuidx_async_2:
    572  * @cpu: cpu on which to flush
    573  * @data: allocated addr + idxmap
    574  *
    575  * Helper for tlb_flush_page_by_mmuidx and friends, called through
    576  * async_run_on_cpu.  The addr+idxmap parameters are stored in a
    577  * TLBFlushPageByMMUIdxData structure that has been allocated
    578  * specifically for this helper.  Free the structure when done.
    579  */
    580 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
    581                                              run_on_cpu_data data)
    582 {
    583     TLBFlushPageByMMUIdxData *d = data.host_ptr;
    584 
    585     tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
    586     g_free(d);
    587 }
    588 
    589 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
    590 {
    591     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
    592 
    593     /* This should already be page aligned */
    594     addr &= TARGET_PAGE_MASK;
    595 
    596     if (qemu_cpu_is_self(cpu)) {
    597         tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
    598     } else if (idxmap < TARGET_PAGE_SIZE) {
    599         /*
    600          * Most targets have only a few mmu_idx.  In the case where
    601          * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
    602          * allocating memory for this operation.
    603          */
    604         async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
    605                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
    606     } else {
    607         TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
    608 
    609         /* Otherwise allocate a structure, freed by the worker.  */
    610         d->addr = addr;
    611         d->idxmap = idxmap;
    612         async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
    613                          RUN_ON_CPU_HOST_PTR(d));
    614     }
    615 }
    616 
    617 void tlb_flush_page(CPUState *cpu, target_ulong addr)
    618 {
    619     tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
    620 }
    621 
    622 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
    623                                        uint16_t idxmap)
    624 {
    625     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
    626 
    627     /* This should already be page aligned */
    628     addr &= TARGET_PAGE_MASK;
    629 
    630     /*
    631      * Allocate memory to hold addr+idxmap only when needed.
    632      * See tlb_flush_page_by_mmuidx for details.
    633      */
    634     if (idxmap < TARGET_PAGE_SIZE) {
    635         flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
    636                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
    637     } else {
    638         CPUState *dst_cpu;
    639 
    640         /* Allocate a separate data block for each destination cpu.  */
    641         CPU_FOREACH(dst_cpu) {
    642             if (dst_cpu != src_cpu) {
    643                 TLBFlushPageByMMUIdxData *d
    644                     = g_new(TLBFlushPageByMMUIdxData, 1);
    645 
    646                 d->addr = addr;
    647                 d->idxmap = idxmap;
    648                 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
    649                                  RUN_ON_CPU_HOST_PTR(d));
    650             }
    651         }
    652     }
    653 
    654     tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
    655 }
    656 
    657 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
    658 {
    659     tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
    660 }
    661 
    662 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
    663                                               target_ulong addr,
    664                                               uint16_t idxmap)
    665 {
    666     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
    667 
    668     /* This should already be page aligned */
    669     addr &= TARGET_PAGE_MASK;
    670 
    671     /*
    672      * Allocate memory to hold addr+idxmap only when needed.
    673      * See tlb_flush_page_by_mmuidx for details.
    674      */
    675     if (idxmap < TARGET_PAGE_SIZE) {
    676         flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
    677                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
    678         async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
    679                               RUN_ON_CPU_TARGET_PTR(addr | idxmap));
    680     } else {
    681         CPUState *dst_cpu;
    682         TLBFlushPageByMMUIdxData *d;
    683 
    684         /* Allocate a separate data block for each destination cpu.  */
    685         CPU_FOREACH(dst_cpu) {
    686             if (dst_cpu != src_cpu) {
    687                 d = g_new(TLBFlushPageByMMUIdxData, 1);
    688                 d->addr = addr;
    689                 d->idxmap = idxmap;
    690                 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
    691                                  RUN_ON_CPU_HOST_PTR(d));
    692             }
    693         }
    694 
    695         d = g_new(TLBFlushPageByMMUIdxData, 1);
    696         d->addr = addr;
    697         d->idxmap = idxmap;
    698         async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
    699                               RUN_ON_CPU_HOST_PTR(d));
    700     }
    701 }
    702 
    703 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr)
    704 {
    705     tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
    706 }
    707 
    708 static void tlb_flush_range_locked(CPUArchState *env, int midx,
    709                                    target_ulong addr, target_ulong len,
    710                                    unsigned bits)
    711 {
    712     CPUTLBDesc *d = &env_tlb(env)->d[midx];
    713     CPUTLBDescFast *f = &env_tlb(env)->f[midx];
    714     target_ulong mask = MAKE_64BIT_MASK(0, bits);
    715 
    716     /*
    717      * If @bits is smaller than the tlb size, there may be multiple entries
    718      * within the TLB; otherwise all addresses that match under @mask hit
    719      * the same TLB entry.
    720      * TODO: Perhaps allow bits to be a few bits less than the size.
    721      * For now, just flush the entire TLB.
    722      *
    723      * If @len is larger than the tlb size, then it will take longer to
    724      * test all of the entries in the TLB than it will to flush it all.
    725      */
    726     if (mask < f->mask || len > f->mask) {
    727         tlb_debug("forcing full flush midx %d ("
    728                   TARGET_FMT_lx "/" TARGET_FMT_lx "+" TARGET_FMT_lx ")\n",
    729                   midx, addr, mask, len);
    730         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
    731         return;
    732     }
    733 
    734     /*
    735      * Check if we need to flush due to large pages.
    736      * Because large_page_mask contains all 1's from the msb,
    737      * we only need to test the end of the range.
    738      */
    739     if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
    740         tlb_debug("forcing full flush midx %d ("
    741                   TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
    742                   midx, d->large_page_addr, d->large_page_mask);
    743         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
    744         return;
    745     }
    746 
    747     for (target_ulong i = 0; i < len; i += TARGET_PAGE_SIZE) {
    748         target_ulong page = addr + i;
    749         CPUTLBEntry *entry = tlb_entry(env, midx, page);
    750 
    751         if (tlb_flush_entry_mask_locked(entry, page, mask)) {
    752             tlb_n_used_entries_dec(env, midx);
    753         }
    754         tlb_flush_vtlb_page_mask_locked(env, midx, page, mask);
    755     }
    756 }
    757 
    758 typedef struct {
    759     target_ulong addr;
    760     target_ulong len;
    761     uint16_t idxmap;
    762     uint16_t bits;
    763 } TLBFlushRangeData;
    764 
    765 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
    766                                               TLBFlushRangeData d)
    767 {
    768     CPUArchState *env = cpu->env_ptr;
    769     int mmu_idx;
    770 
    771     assert_cpu_is_self(cpu);
    772 
    773     tlb_debug("range:" TARGET_FMT_lx "/%u+" TARGET_FMT_lx " mmu_map:0x%x\n",
    774               d.addr, d.bits, d.len, d.idxmap);
    775 
    776     qemu_spin_lock(&env_tlb(env)->c.lock);
    777     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
    778         if ((d.idxmap >> mmu_idx) & 1) {
    779             tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits);
    780         }
    781     }
    782     qemu_spin_unlock(&env_tlb(env)->c.lock);
    783 
    784     /*
    785      * If the length is larger than the jump cache size, then it will take
    786      * longer to clear each entry individually than it will to clear it all.
    787      */
    788     if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) {
    789         tcg_flush_jmp_cache(cpu);
    790         return;
    791     }
    792 
    793     /*
    794      * Discard jump cache entries for any tb which might potentially
    795      * overlap the flushed pages, which includes the previous.
    796      */
    797     d.addr -= TARGET_PAGE_SIZE;
    798     for (target_ulong i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) {
    799         tb_jmp_cache_clear_page(cpu, d.addr);
    800         d.addr += TARGET_PAGE_SIZE;
    801     }
    802 }
    803 
    804 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
    805                                               run_on_cpu_data data)
    806 {
    807     TLBFlushRangeData *d = data.host_ptr;
    808     tlb_flush_range_by_mmuidx_async_0(cpu, *d);
    809     g_free(d);
    810 }
    811 
    812 void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr,
    813                                target_ulong len, uint16_t idxmap,
    814                                unsigned bits)
    815 {
    816     TLBFlushRangeData d;
    817 
    818     /*
    819      * If all bits are significant, and len is small,
    820      * this devolves to tlb_flush_page.
    821      */
    822     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
    823         tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
    824         return;
    825     }
    826     /* If no page bits are significant, this devolves to tlb_flush. */
    827     if (bits < TARGET_PAGE_BITS) {
    828         tlb_flush_by_mmuidx(cpu, idxmap);
    829         return;
    830     }
    831 
    832     /* This should already be page aligned */
    833     d.addr = addr & TARGET_PAGE_MASK;
    834     d.len = len;
    835     d.idxmap = idxmap;
    836     d.bits = bits;
    837 
    838     if (qemu_cpu_is_self(cpu)) {
    839         tlb_flush_range_by_mmuidx_async_0(cpu, d);
    840     } else {
    841         /* Otherwise allocate a structure, freed by the worker.  */
    842         TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
    843         async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
    844                          RUN_ON_CPU_HOST_PTR(p));
    845     }
    846 }
    847 
    848 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr,
    849                                    uint16_t idxmap, unsigned bits)
    850 {
    851     tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
    852 }
    853 
    854 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
    855                                         target_ulong addr, target_ulong len,
    856                                         uint16_t idxmap, unsigned bits)
    857 {
    858     TLBFlushRangeData d;
    859     CPUState *dst_cpu;
    860 
    861     /*
    862      * If all bits are significant, and len is small,
    863      * this devolves to tlb_flush_page.
    864      */
    865     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
    866         tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
    867         return;
    868     }
    869     /* If no page bits are significant, this devolves to tlb_flush. */
    870     if (bits < TARGET_PAGE_BITS) {
    871         tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
    872         return;
    873     }
    874 
    875     /* This should already be page aligned */
    876     d.addr = addr & TARGET_PAGE_MASK;
    877     d.len = len;
    878     d.idxmap = idxmap;
    879     d.bits = bits;
    880 
    881     /* Allocate a separate data block for each destination cpu.  */
    882     CPU_FOREACH(dst_cpu) {
    883         if (dst_cpu != src_cpu) {
    884             TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
    885             async_run_on_cpu(dst_cpu,
    886                              tlb_flush_range_by_mmuidx_async_1,
    887                              RUN_ON_CPU_HOST_PTR(p));
    888         }
    889     }
    890 
    891     tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
    892 }
    893 
    894 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
    895                                             target_ulong addr,
    896                                             uint16_t idxmap, unsigned bits)
    897 {
    898     tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
    899                                        idxmap, bits);
    900 }
    901 
    902 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
    903                                                target_ulong addr,
    904                                                target_ulong len,
    905                                                uint16_t idxmap,
    906                                                unsigned bits)
    907 {
    908     TLBFlushRangeData d, *p;
    909     CPUState *dst_cpu;
    910 
    911     /*
    912      * If all bits are significant, and len is small,
    913      * this devolves to tlb_flush_page.
    914      */
    915     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
    916         tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
    917         return;
    918     }
    919     /* If no page bits are significant, this devolves to tlb_flush. */
    920     if (bits < TARGET_PAGE_BITS) {
    921         tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
    922         return;
    923     }
    924 
    925     /* This should already be page aligned */
    926     d.addr = addr & TARGET_PAGE_MASK;
    927     d.len = len;
    928     d.idxmap = idxmap;
    929     d.bits = bits;
    930 
    931     /* Allocate a separate data block for each destination cpu.  */
    932     CPU_FOREACH(dst_cpu) {
    933         if (dst_cpu != src_cpu) {
    934             p = g_memdup(&d, sizeof(d));
    935             async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
    936                              RUN_ON_CPU_HOST_PTR(p));
    937         }
    938     }
    939 
    940     p = g_memdup(&d, sizeof(d));
    941     async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
    942                           RUN_ON_CPU_HOST_PTR(p));
    943 }
    944 
    945 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
    946                                                    target_ulong addr,
    947                                                    uint16_t idxmap,
    948                                                    unsigned bits)
    949 {
    950     tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
    951                                               idxmap, bits);
    952 }
    953 
    954 /* update the TLBs so that writes to code in the virtual page 'addr'
    955    can be detected */
    956 void tlb_protect_code(ram_addr_t ram_addr)
    957 {
    958     cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK,
    959                                              TARGET_PAGE_SIZE,
    960                                              DIRTY_MEMORY_CODE);
    961 }
    962 
    963 /* update the TLB so that writes in physical page 'phys_addr' are no longer
    964    tested for self modifying code */
    965 void tlb_unprotect_code(ram_addr_t ram_addr)
    966 {
    967     cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
    968 }
    969 
    970 
    971 /*
    972  * Dirty write flag handling
    973  *
    974  * When the TCG code writes to a location it looks up the address in
    975  * the TLB and uses that data to compute the final address. If any of
    976  * the lower bits of the address are set then the slow path is forced.
    977  * There are a number of reasons to do this but for normal RAM the
    978  * most usual is detecting writes to code regions which may invalidate
    979  * generated code.
    980  *
    981  * Other vCPUs might be reading their TLBs during guest execution, so we update
    982  * te->addr_write with qatomic_set. We don't need to worry about this for
    983  * oversized guests as MTTCG is disabled for them.
    984  *
    985  * Called with tlb_c.lock held.
    986  */
    987 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
    988                                          uintptr_t start, uintptr_t length)
    989 {
    990     uintptr_t addr = tlb_entry->addr_write;
    991 
    992     if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
    993                  TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
    994         addr &= TARGET_PAGE_MASK;
    995         addr += tlb_entry->addend;
    996         if ((addr - start) < length) {
    997 #if TCG_OVERSIZED_GUEST
    998             tlb_entry->addr_write |= TLB_NOTDIRTY;
    999 #else
   1000             qatomic_set(&tlb_entry->addr_write,
   1001                        tlb_entry->addr_write | TLB_NOTDIRTY);
   1002 #endif
   1003         }
   1004     }
   1005 }
   1006 
   1007 /*
   1008  * Called with tlb_c.lock held.
   1009  * Called only from the vCPU context, i.e. the TLB's owner thread.
   1010  */
   1011 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
   1012 {
   1013     *d = *s;
   1014 }
   1015 
   1016 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
   1017  * the target vCPU).
   1018  * We must take tlb_c.lock to avoid racing with another vCPU update. The only
   1019  * thing actually updated is the target TLB entry ->addr_write flags.
   1020  */
   1021 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
   1022 {
   1023     CPUArchState *env;
   1024 
   1025     int mmu_idx;
   1026 
   1027     env = cpu->env_ptr;
   1028     qemu_spin_lock(&env_tlb(env)->c.lock);
   1029     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
   1030         unsigned int i;
   1031         unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]);
   1032 
   1033         for (i = 0; i < n; i++) {
   1034             tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
   1035                                          start1, length);
   1036         }
   1037 
   1038         for (i = 0; i < CPU_VTLB_SIZE; i++) {
   1039             tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
   1040                                          start1, length);
   1041         }
   1042     }
   1043     qemu_spin_unlock(&env_tlb(env)->c.lock);
   1044 }
   1045 
   1046 /* Called with tlb_c.lock held */
   1047 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
   1048                                          target_ulong vaddr)
   1049 {
   1050     if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
   1051         tlb_entry->addr_write = vaddr;
   1052     }
   1053 }
   1054 
   1055 /* update the TLB corresponding to virtual page vaddr
   1056    so that it is no longer dirty */
   1057 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
   1058 {
   1059     CPUArchState *env = cpu->env_ptr;
   1060     int mmu_idx;
   1061 
   1062     assert_cpu_is_self(cpu);
   1063 
   1064     vaddr &= TARGET_PAGE_MASK;
   1065     qemu_spin_lock(&env_tlb(env)->c.lock);
   1066     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
   1067         tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr);
   1068     }
   1069 
   1070     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
   1071         int k;
   1072         for (k = 0; k < CPU_VTLB_SIZE; k++) {
   1073             tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr);
   1074         }
   1075     }
   1076     qemu_spin_unlock(&env_tlb(env)->c.lock);
   1077 }
   1078 
   1079 /* Our TLB does not support large pages, so remember the area covered by
   1080    large pages and trigger a full TLB flush if these are invalidated.  */
   1081 static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
   1082                                target_ulong vaddr, target_ulong size)
   1083 {
   1084     target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
   1085     target_ulong lp_mask = ~(size - 1);
   1086 
   1087     if (lp_addr == (target_ulong)-1) {
   1088         /* No previous large page.  */
   1089         lp_addr = vaddr;
   1090     } else {
   1091         /* Extend the existing region to include the new page.
   1092            This is a compromise between unnecessary flushes and
   1093            the cost of maintaining a full variable size TLB.  */
   1094         lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
   1095         while (((lp_addr ^ vaddr) & lp_mask) != 0) {
   1096             lp_mask <<= 1;
   1097         }
   1098     }
   1099     env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
   1100     env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
   1101 }
   1102 
   1103 /*
   1104  * Add a new TLB entry. At most one entry for a given virtual address
   1105  * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
   1106  * supplied size is only used by tlb_flush_page.
   1107  *
   1108  * Called from TCG-generated code, which is under an RCU read-side
   1109  * critical section.
   1110  */
   1111 void tlb_set_page_full(CPUState *cpu, int mmu_idx,
   1112                        target_ulong vaddr, CPUTLBEntryFull *full)
   1113 {
   1114     CPUArchState *env = cpu->env_ptr;
   1115     CPUTLB *tlb = env_tlb(env);
   1116     CPUTLBDesc *desc = &tlb->d[mmu_idx];
   1117     MemoryRegionSection *section;
   1118     unsigned int index;
   1119     target_ulong address;
   1120     target_ulong write_address;
   1121     uintptr_t addend;
   1122     CPUTLBEntry *te, tn;
   1123     hwaddr iotlb, xlat, sz, paddr_page;
   1124     target_ulong vaddr_page;
   1125     int asidx, wp_flags, prot;
   1126     bool is_ram, is_romd;
   1127 
   1128     assert_cpu_is_self(cpu);
   1129 
   1130     if (full->lg_page_size <= TARGET_PAGE_BITS) {
   1131         sz = TARGET_PAGE_SIZE;
   1132     } else {
   1133         sz = (hwaddr)1 << full->lg_page_size;
   1134         tlb_add_large_page(env, mmu_idx, vaddr, sz);
   1135     }
   1136     vaddr_page = vaddr & TARGET_PAGE_MASK;
   1137     paddr_page = full->phys_addr & TARGET_PAGE_MASK;
   1138 
   1139     prot = full->prot;
   1140     asidx = cpu_asidx_from_attrs(cpu, full->attrs);
   1141     section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
   1142                                                 &xlat, &sz, full->attrs, &prot);
   1143     assert(sz >= TARGET_PAGE_SIZE);
   1144 
   1145     tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
   1146               " prot=%x idx=%d\n",
   1147               vaddr, full->phys_addr, prot, mmu_idx);
   1148 
   1149     address = vaddr_page;
   1150     if (full->lg_page_size < TARGET_PAGE_BITS) {
   1151         /* Repeat the MMU check and TLB fill on every access.  */
   1152         address |= TLB_INVALID_MASK;
   1153     }
   1154     if (full->attrs.byte_swap) {
   1155         address |= TLB_BSWAP;
   1156     }
   1157 
   1158     is_ram = memory_region_is_ram(section->mr);
   1159     is_romd = memory_region_is_romd(section->mr);
   1160 
   1161     if (is_ram || is_romd) {
   1162         /* RAM and ROMD both have associated host memory. */
   1163         addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
   1164     } else {
   1165         /* I/O does not; force the host address to NULL. */
   1166         addend = 0;
   1167     }
   1168 
   1169     write_address = address;
   1170     if (is_ram) {
   1171         iotlb = memory_region_get_ram_addr(section->mr) + xlat;
   1172         /*
   1173          * Computing is_clean is expensive; avoid all that unless
   1174          * the page is actually writable.
   1175          */
   1176         if (prot & PAGE_WRITE) {
   1177             if (section->readonly) {
   1178                 write_address |= TLB_DISCARD_WRITE;
   1179             } else if (cpu_physical_memory_is_clean(iotlb)) {
   1180                 write_address |= TLB_NOTDIRTY;
   1181             }
   1182         }
   1183     } else {
   1184         /* I/O or ROMD */
   1185         iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
   1186         /*
   1187          * Writes to romd devices must go through MMIO to enable write.
   1188          * Reads to romd devices go through the ram_ptr found above,
   1189          * but of course reads to I/O must go through MMIO.
   1190          */
   1191         write_address |= TLB_MMIO;
   1192         if (!is_romd) {
   1193             address = write_address;
   1194         }
   1195     }
   1196 
   1197     wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page,
   1198                                               TARGET_PAGE_SIZE);
   1199 
   1200     index = tlb_index(env, mmu_idx, vaddr_page);
   1201     te = tlb_entry(env, mmu_idx, vaddr_page);
   1202 
   1203     /*
   1204      * Hold the TLB lock for the rest of the function. We could acquire/release
   1205      * the lock several times in the function, but it is faster to amortize the
   1206      * acquisition cost by acquiring it just once. Note that this leads to
   1207      * a longer critical section, but this is not a concern since the TLB lock
   1208      * is unlikely to be contended.
   1209      */
   1210     qemu_spin_lock(&tlb->c.lock);
   1211 
   1212     /* Note that the tlb is no longer clean.  */
   1213     tlb->c.dirty |= 1 << mmu_idx;
   1214 
   1215     /* Make sure there's no cached translation for the new page.  */
   1216     tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page);
   1217 
   1218     /*
   1219      * Only evict the old entry to the victim tlb if it's for a
   1220      * different page; otherwise just overwrite the stale data.
   1221      */
   1222     if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) {
   1223         unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
   1224         CPUTLBEntry *tv = &desc->vtable[vidx];
   1225 
   1226         /* Evict the old entry into the victim tlb.  */
   1227         copy_tlb_helper_locked(tv, te);
   1228         desc->vfulltlb[vidx] = desc->fulltlb[index];
   1229         tlb_n_used_entries_dec(env, mmu_idx);
   1230     }
   1231 
   1232     /* refill the tlb */
   1233     /*
   1234      * At this point iotlb contains a physical section number in the lower
   1235      * TARGET_PAGE_BITS, and either
   1236      *  + the ram_addr_t of the page base of the target RAM (RAM)
   1237      *  + the offset within section->mr of the page base (I/O, ROMD)
   1238      * We subtract the vaddr_page (which is page aligned and thus won't
   1239      * disturb the low bits) to give an offset which can be added to the
   1240      * (non-page-aligned) vaddr of the eventual memory access to get
   1241      * the MemoryRegion offset for the access. Note that the vaddr we
   1242      * subtract here is that of the page base, and not the same as the
   1243      * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
   1244      */
   1245     desc->fulltlb[index] = *full;
   1246     desc->fulltlb[index].xlat_section = iotlb - vaddr_page;
   1247     desc->fulltlb[index].phys_addr = paddr_page;
   1248     desc->fulltlb[index].prot = prot;
   1249 
   1250     /* Now calculate the new entry */
   1251     tn.addend = addend - vaddr_page;
   1252     if (prot & PAGE_READ) {
   1253         tn.addr_read = address;
   1254         if (wp_flags & BP_MEM_READ) {
   1255             tn.addr_read |= TLB_WATCHPOINT;
   1256         }
   1257     } else {
   1258         tn.addr_read = -1;
   1259     }
   1260 
   1261     if (prot & PAGE_EXEC) {
   1262         tn.addr_code = address;
   1263     } else {
   1264         tn.addr_code = -1;
   1265     }
   1266 
   1267     tn.addr_write = -1;
   1268     if (prot & PAGE_WRITE) {
   1269         tn.addr_write = write_address;
   1270         if (prot & PAGE_WRITE_INV) {
   1271             tn.addr_write |= TLB_INVALID_MASK;
   1272         }
   1273         if (wp_flags & BP_MEM_WRITE) {
   1274             tn.addr_write |= TLB_WATCHPOINT;
   1275         }
   1276     }
   1277 
   1278     copy_tlb_helper_locked(te, &tn);
   1279     tlb_n_used_entries_inc(env, mmu_idx);
   1280     qemu_spin_unlock(&tlb->c.lock);
   1281 }
   1282 
   1283 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
   1284                              hwaddr paddr, MemTxAttrs attrs, int prot,
   1285                              int mmu_idx, target_ulong size)
   1286 {
   1287     CPUTLBEntryFull full = {
   1288         .phys_addr = paddr,
   1289         .attrs = attrs,
   1290         .prot = prot,
   1291         .lg_page_size = ctz64(size)
   1292     };
   1293 
   1294     assert(is_power_of_2(size));
   1295     tlb_set_page_full(cpu, mmu_idx, vaddr, &full);
   1296 }
   1297 
   1298 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
   1299                   hwaddr paddr, int prot,
   1300                   int mmu_idx, target_ulong size)
   1301 {
   1302     tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
   1303                             prot, mmu_idx, size);
   1304 }
   1305 
   1306 /*
   1307  * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
   1308  * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
   1309  * be discarded and looked up again (e.g. via tlb_entry()).
   1310  */
   1311 static void tlb_fill(CPUState *cpu, target_ulong addr, int size,
   1312                      MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
   1313 {
   1314     bool ok;
   1315 
   1316     /*
   1317      * This is not a probe, so only valid return is success; failure
   1318      * should result in exception + longjmp to the cpu loop.
   1319      */
   1320     ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size,
   1321                                     access_type, mmu_idx, false, retaddr);
   1322     assert(ok);
   1323 }
   1324 
   1325 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
   1326                                         MMUAccessType access_type,
   1327                                         int mmu_idx, uintptr_t retaddr)
   1328 {
   1329     cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type,
   1330                                           mmu_idx, retaddr);
   1331 }
   1332 
   1333 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
   1334                                           vaddr addr, unsigned size,
   1335                                           MMUAccessType access_type,
   1336                                           int mmu_idx, MemTxAttrs attrs,
   1337                                           MemTxResult response,
   1338                                           uintptr_t retaddr)
   1339 {
   1340     CPUClass *cc = CPU_GET_CLASS(cpu);
   1341 
   1342     if (!cpu->ignore_memory_transaction_failures &&
   1343         cc->tcg_ops->do_transaction_failed) {
   1344         cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
   1345                                            access_type, mmu_idx, attrs,
   1346                                            response, retaddr);
   1347     }
   1348 }
   1349 
   1350 static uint64_t io_readx(CPUArchState *env, CPUTLBEntryFull *full,
   1351                          int mmu_idx, target_ulong addr, uintptr_t retaddr,
   1352                          MMUAccessType access_type, MemOp op)
   1353 {
   1354     CPUState *cpu = env_cpu(env);
   1355     hwaddr mr_offset;
   1356     MemoryRegionSection *section;
   1357     MemoryRegion *mr;
   1358     uint64_t val;
   1359     bool locked = false;
   1360     MemTxResult r;
   1361 
   1362     section = iotlb_to_section(cpu, full->xlat_section, full->attrs);
   1363     mr = section->mr;
   1364     mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
   1365     cpu->mem_io_pc = retaddr;
   1366     if (!cpu->can_do_io) {
   1367         cpu_io_recompile(cpu, retaddr);
   1368     }
   1369 
   1370     if (!qemu_mutex_iothread_locked()) {
   1371         qemu_mutex_lock_iothread();
   1372         locked = true;
   1373     }
   1374     r = memory_region_dispatch_read(mr, mr_offset, &val, op, full->attrs);
   1375     if (r != MEMTX_OK) {
   1376         hwaddr physaddr = mr_offset +
   1377             section->offset_within_address_space -
   1378             section->offset_within_region;
   1379 
   1380         cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type,
   1381                                mmu_idx, full->attrs, r, retaddr);
   1382     }
   1383     if (locked) {
   1384         qemu_mutex_unlock_iothread();
   1385     }
   1386 
   1387     return val;
   1388 }
   1389 
   1390 /*
   1391  * Save a potentially trashed CPUTLBEntryFull for later lookup by plugin.
   1392  * This is read by tlb_plugin_lookup if the fulltlb entry doesn't match
   1393  * because of the side effect of io_writex changing memory layout.
   1394  */
   1395 static void save_iotlb_data(CPUState *cs, MemoryRegionSection *section,
   1396                             hwaddr mr_offset)
   1397 {
   1398 #ifdef CONFIG_PLUGIN
   1399     SavedIOTLB *saved = &cs->saved_iotlb;
   1400     saved->section = section;
   1401     saved->mr_offset = mr_offset;
   1402 #endif
   1403 }
   1404 
   1405 static void io_writex(CPUArchState *env, CPUTLBEntryFull *full,
   1406                       int mmu_idx, uint64_t val, target_ulong addr,
   1407                       uintptr_t retaddr, MemOp op)
   1408 {
   1409     CPUState *cpu = env_cpu(env);
   1410     hwaddr mr_offset;
   1411     MemoryRegionSection *section;
   1412     MemoryRegion *mr;
   1413     bool locked = false;
   1414     MemTxResult r;
   1415 
   1416     section = iotlb_to_section(cpu, full->xlat_section, full->attrs);
   1417     mr = section->mr;
   1418     mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
   1419     if (!cpu->can_do_io) {
   1420         cpu_io_recompile(cpu, retaddr);
   1421     }
   1422     cpu->mem_io_pc = retaddr;
   1423 
   1424     /*
   1425      * The memory_region_dispatch may trigger a flush/resize
   1426      * so for plugins we save the iotlb_data just in case.
   1427      */
   1428     save_iotlb_data(cpu, section, mr_offset);
   1429 
   1430     if (!qemu_mutex_iothread_locked()) {
   1431         qemu_mutex_lock_iothread();
   1432         locked = true;
   1433     }
   1434     r = memory_region_dispatch_write(mr, mr_offset, val, op, full->attrs);
   1435     if (r != MEMTX_OK) {
   1436         hwaddr physaddr = mr_offset +
   1437             section->offset_within_address_space -
   1438             section->offset_within_region;
   1439 
   1440         cpu_transaction_failed(cpu, physaddr, addr, memop_size(op),
   1441                                MMU_DATA_STORE, mmu_idx, full->attrs, r,
   1442                                retaddr);
   1443     }
   1444     if (locked) {
   1445         qemu_mutex_unlock_iothread();
   1446     }
   1447 }
   1448 
   1449 static inline target_ulong tlb_read_ofs(CPUTLBEntry *entry, size_t ofs)
   1450 {
   1451 #if TCG_OVERSIZED_GUEST
   1452     return *(target_ulong *)((uintptr_t)entry + ofs);
   1453 #else
   1454     /* ofs might correspond to .addr_write, so use qatomic_read */
   1455     return qatomic_read((target_ulong *)((uintptr_t)entry + ofs));
   1456 #endif
   1457 }
   1458 
   1459 /* Return true if ADDR is present in the victim tlb, and has been copied
   1460    back to the main tlb.  */
   1461 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
   1462                            size_t elt_ofs, target_ulong page)
   1463 {
   1464     size_t vidx;
   1465 
   1466     assert_cpu_is_self(env_cpu(env));
   1467     for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
   1468         CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
   1469         target_ulong cmp;
   1470 
   1471         /* elt_ofs might correspond to .addr_write, so use qatomic_read */
   1472 #if TCG_OVERSIZED_GUEST
   1473         cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
   1474 #else
   1475         cmp = qatomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs));
   1476 #endif
   1477 
   1478         if (cmp == page) {
   1479             /* Found entry in victim tlb, swap tlb and iotlb.  */
   1480             CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
   1481 
   1482             qemu_spin_lock(&env_tlb(env)->c.lock);
   1483             copy_tlb_helper_locked(&tmptlb, tlb);
   1484             copy_tlb_helper_locked(tlb, vtlb);
   1485             copy_tlb_helper_locked(vtlb, &tmptlb);
   1486             qemu_spin_unlock(&env_tlb(env)->c.lock);
   1487 
   1488             CPUTLBEntryFull *f1 = &env_tlb(env)->d[mmu_idx].fulltlb[index];
   1489             CPUTLBEntryFull *f2 = &env_tlb(env)->d[mmu_idx].vfulltlb[vidx];
   1490             CPUTLBEntryFull tmpf;
   1491             tmpf = *f1; *f1 = *f2; *f2 = tmpf;
   1492             return true;
   1493         }
   1494     }
   1495     return false;
   1496 }
   1497 
   1498 /* Macro to call the above, with local variables from the use context.  */
   1499 #define VICTIM_TLB_HIT(TY, ADDR) \
   1500   victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
   1501                  (ADDR) & TARGET_PAGE_MASK)
   1502 
   1503 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
   1504                            CPUTLBEntryFull *full, uintptr_t retaddr)
   1505 {
   1506     ram_addr_t ram_addr = mem_vaddr + full->xlat_section;
   1507 
   1508     trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
   1509 
   1510     if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
   1511         struct page_collection *pages
   1512             = page_collection_lock(ram_addr, ram_addr + size);
   1513         tb_invalidate_phys_page_fast(pages, ram_addr, size, retaddr);
   1514         page_collection_unlock(pages);
   1515     }
   1516 
   1517     /*
   1518      * Set both VGA and migration bits for simplicity and to remove
   1519      * the notdirty callback faster.
   1520      */
   1521     cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
   1522 
   1523     /* We remove the notdirty callback only if the code has been flushed. */
   1524     if (!cpu_physical_memory_is_clean(ram_addr)) {
   1525         trace_memory_notdirty_set_dirty(mem_vaddr);
   1526         tlb_set_dirty(cpu, mem_vaddr);
   1527     }
   1528 }
   1529 
   1530 static int probe_access_internal(CPUArchState *env, target_ulong addr,
   1531                                  int fault_size, MMUAccessType access_type,
   1532                                  int mmu_idx, bool nonfault,
   1533                                  void **phost, CPUTLBEntryFull **pfull,
   1534                                  uintptr_t retaddr)
   1535 {
   1536     uintptr_t index = tlb_index(env, mmu_idx, addr);
   1537     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
   1538     target_ulong tlb_addr, page_addr;
   1539     size_t elt_ofs;
   1540     int flags;
   1541 
   1542     switch (access_type) {
   1543     case MMU_DATA_LOAD:
   1544         elt_ofs = offsetof(CPUTLBEntry, addr_read);
   1545         break;
   1546     case MMU_DATA_STORE:
   1547         elt_ofs = offsetof(CPUTLBEntry, addr_write);
   1548         break;
   1549     case MMU_INST_FETCH:
   1550         elt_ofs = offsetof(CPUTLBEntry, addr_code);
   1551         break;
   1552     default:
   1553         g_assert_not_reached();
   1554     }
   1555     tlb_addr = tlb_read_ofs(entry, elt_ofs);
   1556 
   1557     flags = TLB_FLAGS_MASK;
   1558     page_addr = addr & TARGET_PAGE_MASK;
   1559     if (!tlb_hit_page(tlb_addr, page_addr)) {
   1560         if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs, page_addr)) {
   1561             CPUState *cs = env_cpu(env);
   1562 
   1563             if (!cs->cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type,
   1564                                            mmu_idx, nonfault, retaddr)) {
   1565                 /* Non-faulting page table read failed.  */
   1566                 *phost = NULL;
   1567                 *pfull = NULL;
   1568                 return TLB_INVALID_MASK;
   1569             }
   1570 
   1571             /* TLB resize via tlb_fill may have moved the entry.  */
   1572             index = tlb_index(env, mmu_idx, addr);
   1573             entry = tlb_entry(env, mmu_idx, addr);
   1574 
   1575             /*
   1576              * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately,
   1577              * to force the next access through tlb_fill.  We've just
   1578              * called tlb_fill, so we know that this entry *is* valid.
   1579              */
   1580             flags &= ~TLB_INVALID_MASK;
   1581         }
   1582         tlb_addr = tlb_read_ofs(entry, elt_ofs);
   1583     }
   1584     flags &= tlb_addr;
   1585 
   1586     *pfull = &env_tlb(env)->d[mmu_idx].fulltlb[index];
   1587 
   1588     /* Fold all "mmio-like" bits into TLB_MMIO.  This is not RAM.  */
   1589     if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) {
   1590         *phost = NULL;
   1591         return TLB_MMIO;
   1592     }
   1593 
   1594     /* Everything else is RAM. */
   1595     *phost = (void *)((uintptr_t)addr + entry->addend);
   1596     return flags;
   1597 }
   1598 
   1599 int probe_access_full(CPUArchState *env, target_ulong addr,
   1600                       MMUAccessType access_type, int mmu_idx,
   1601                       bool nonfault, void **phost, CPUTLBEntryFull **pfull,
   1602                       uintptr_t retaddr)
   1603 {
   1604     int flags = probe_access_internal(env, addr, 0, access_type, mmu_idx,
   1605                                       nonfault, phost, pfull, retaddr);
   1606 
   1607     /* Handle clean RAM pages.  */
   1608     if (unlikely(flags & TLB_NOTDIRTY)) {
   1609         notdirty_write(env_cpu(env), addr, 1, *pfull, retaddr);
   1610         flags &= ~TLB_NOTDIRTY;
   1611     }
   1612 
   1613     return flags;
   1614 }
   1615 
   1616 int probe_access_flags(CPUArchState *env, target_ulong addr,
   1617                        MMUAccessType access_type, int mmu_idx,
   1618                        bool nonfault, void **phost, uintptr_t retaddr)
   1619 {
   1620     CPUTLBEntryFull *full;
   1621 
   1622     return probe_access_full(env, addr, access_type, mmu_idx,
   1623                              nonfault, phost, &full, retaddr);
   1624 }
   1625 
   1626 void *probe_access(CPUArchState *env, target_ulong addr, int size,
   1627                    MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
   1628 {
   1629     CPUTLBEntryFull *full;
   1630     void *host;
   1631     int flags;
   1632 
   1633     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
   1634 
   1635     flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
   1636                                   false, &host, &full, retaddr);
   1637 
   1638     /* Per the interface, size == 0 merely faults the access. */
   1639     if (size == 0) {
   1640         return NULL;
   1641     }
   1642 
   1643     if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
   1644         /* Handle watchpoints.  */
   1645         if (flags & TLB_WATCHPOINT) {
   1646             int wp_access = (access_type == MMU_DATA_STORE
   1647                              ? BP_MEM_WRITE : BP_MEM_READ);
   1648             cpu_check_watchpoint(env_cpu(env), addr, size,
   1649                                  full->attrs, wp_access, retaddr);
   1650         }
   1651 
   1652         /* Handle clean RAM pages.  */
   1653         if (flags & TLB_NOTDIRTY) {
   1654             notdirty_write(env_cpu(env), addr, 1, full, retaddr);
   1655         }
   1656     }
   1657 
   1658     return host;
   1659 }
   1660 
   1661 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
   1662                         MMUAccessType access_type, int mmu_idx)
   1663 {
   1664     CPUTLBEntryFull *full;
   1665     void *host;
   1666     int flags;
   1667 
   1668     flags = probe_access_internal(env, addr, 0, access_type,
   1669                                   mmu_idx, true, &host, &full, 0);
   1670 
   1671     /* No combination of flags are expected by the caller. */
   1672     return flags ? NULL : host;
   1673 }
   1674 
   1675 /*
   1676  * Return a ram_addr_t for the virtual address for execution.
   1677  *
   1678  * Return -1 if we can't translate and execute from an entire page
   1679  * of RAM.  This will force us to execute by loading and translating
   1680  * one insn at a time, without caching.
   1681  *
   1682  * NOTE: This function will trigger an exception if the page is
   1683  * not executable.
   1684  */
   1685 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
   1686                                         void **hostp)
   1687 {
   1688     CPUTLBEntryFull *full;
   1689     void *p;
   1690 
   1691     (void)probe_access_internal(env, addr, 1, MMU_INST_FETCH,
   1692                                 cpu_mmu_index(env, true), false, &p, &full, 0);
   1693     if (p == NULL) {
   1694         return -1;
   1695     }
   1696     if (hostp) {
   1697         *hostp = p;
   1698     }
   1699     return qemu_ram_addr_from_host_nofail(p);
   1700 }
   1701 
   1702 #ifdef CONFIG_PLUGIN
   1703 /*
   1704  * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
   1705  * This should be a hot path as we will have just looked this path up
   1706  * in the softmmu lookup code (or helper). We don't handle re-fills or
   1707  * checking the victim table. This is purely informational.
   1708  *
   1709  * This almost never fails as the memory access being instrumented
   1710  * should have just filled the TLB. The one corner case is io_writex
   1711  * which can cause TLB flushes and potential resizing of the TLBs
   1712  * losing the information we need. In those cases we need to recover
   1713  * data from a copy of the CPUTLBEntryFull. As long as this always occurs
   1714  * from the same thread (which a mem callback will be) this is safe.
   1715  */
   1716 
   1717 bool tlb_plugin_lookup(CPUState *cpu, target_ulong addr, int mmu_idx,
   1718                        bool is_store, struct qemu_plugin_hwaddr *data)
   1719 {
   1720     CPUArchState *env = cpu->env_ptr;
   1721     CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
   1722     uintptr_t index = tlb_index(env, mmu_idx, addr);
   1723     target_ulong tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read;
   1724 
   1725     if (likely(tlb_hit(tlb_addr, addr))) {
   1726         /* We must have an iotlb entry for MMIO */
   1727         if (tlb_addr & TLB_MMIO) {
   1728             CPUTLBEntryFull *full;
   1729             full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
   1730             data->is_io = true;
   1731             data->v.io.section =
   1732                 iotlb_to_section(cpu, full->xlat_section, full->attrs);
   1733             data->v.io.offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
   1734         } else {
   1735             data->is_io = false;
   1736             data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
   1737         }
   1738         return true;
   1739     } else {
   1740         SavedIOTLB *saved = &cpu->saved_iotlb;
   1741         data->is_io = true;
   1742         data->v.io.section = saved->section;
   1743         data->v.io.offset = saved->mr_offset;
   1744         return true;
   1745     }
   1746 }
   1747 
   1748 #endif
   1749 
   1750 /*
   1751  * Probe for an atomic operation.  Do not allow unaligned operations,
   1752  * or io operations to proceed.  Return the host address.
   1753  *
   1754  * @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE.
   1755  */
   1756 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
   1757                                MemOpIdx oi, int size, int prot,
   1758                                uintptr_t retaddr)
   1759 {
   1760     uintptr_t mmu_idx = get_mmuidx(oi);
   1761     MemOp mop = get_memop(oi);
   1762     int a_bits = get_alignment_bits(mop);
   1763     uintptr_t index;
   1764     CPUTLBEntry *tlbe;
   1765     target_ulong tlb_addr;
   1766     void *hostaddr;
   1767 
   1768     tcg_debug_assert(mmu_idx < NB_MMU_MODES);
   1769 
   1770     /* Adjust the given return address.  */
   1771     retaddr -= GETPC_ADJ;
   1772 
   1773     /* Enforce guest required alignment.  */
   1774     if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
   1775         /* ??? Maybe indicate atomic op to cpu_unaligned_access */
   1776         cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
   1777                              mmu_idx, retaddr);
   1778     }
   1779 
   1780     /* Enforce qemu required alignment.  */
   1781     if (unlikely(addr & (size - 1))) {
   1782         /* We get here if guest alignment was not requested,
   1783            or was not enforced by cpu_unaligned_access above.
   1784            We might widen the access and emulate, but for now
   1785            mark an exception and exit the cpu loop.  */
   1786         goto stop_the_world;
   1787     }
   1788 
   1789     index = tlb_index(env, mmu_idx, addr);
   1790     tlbe = tlb_entry(env, mmu_idx, addr);
   1791 
   1792     /* Check TLB entry and enforce page permissions.  */
   1793     if (prot & PAGE_WRITE) {
   1794         tlb_addr = tlb_addr_write(tlbe);
   1795         if (!tlb_hit(tlb_addr, addr)) {
   1796             if (!VICTIM_TLB_HIT(addr_write, addr)) {
   1797                 tlb_fill(env_cpu(env), addr, size,
   1798                          MMU_DATA_STORE, mmu_idx, retaddr);
   1799                 index = tlb_index(env, mmu_idx, addr);
   1800                 tlbe = tlb_entry(env, mmu_idx, addr);
   1801             }
   1802             tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
   1803         }
   1804 
   1805         /* Let the guest notice RMW on a write-only page.  */
   1806         if ((prot & PAGE_READ) &&
   1807             unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) {
   1808             tlb_fill(env_cpu(env), addr, size,
   1809                      MMU_DATA_LOAD, mmu_idx, retaddr);
   1810             /*
   1811              * Since we don't support reads and writes to different addresses,
   1812              * and we do have the proper page loaded for write, this shouldn't
   1813              * ever return.  But just in case, handle via stop-the-world.
   1814              */
   1815             goto stop_the_world;
   1816         }
   1817     } else /* if (prot & PAGE_READ) */ {
   1818         tlb_addr = tlbe->addr_read;
   1819         if (!tlb_hit(tlb_addr, addr)) {
   1820             if (!VICTIM_TLB_HIT(addr_write, addr)) {
   1821                 tlb_fill(env_cpu(env), addr, size,
   1822                          MMU_DATA_LOAD, mmu_idx, retaddr);
   1823                 index = tlb_index(env, mmu_idx, addr);
   1824                 tlbe = tlb_entry(env, mmu_idx, addr);
   1825             }
   1826             tlb_addr = tlbe->addr_read & ~TLB_INVALID_MASK;
   1827         }
   1828     }
   1829 
   1830     /* Notice an IO access or a needs-MMU-lookup access */
   1831     if (unlikely(tlb_addr & TLB_MMIO)) {
   1832         /* There's really nothing that can be done to
   1833            support this apart from stop-the-world.  */
   1834         goto stop_the_world;
   1835     }
   1836 
   1837     hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
   1838 
   1839     if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
   1840         notdirty_write(env_cpu(env), addr, size,
   1841                        &env_tlb(env)->d[mmu_idx].fulltlb[index], retaddr);
   1842     }
   1843 
   1844     return hostaddr;
   1845 
   1846  stop_the_world:
   1847     cpu_loop_exit_atomic(env_cpu(env), retaddr);
   1848 }
   1849 
   1850 /*
   1851  * Verify that we have passed the correct MemOp to the correct function.
   1852  *
   1853  * In the case of the helper_*_mmu functions, we will have done this by
   1854  * using the MemOp to look up the helper during code generation.
   1855  *
   1856  * In the case of the cpu_*_mmu functions, this is up to the caller.
   1857  * We could present one function to target code, and dispatch based on
   1858  * the MemOp, but so far we have worked hard to avoid an indirect function
   1859  * call along the memory path.
   1860  */
   1861 static void validate_memop(MemOpIdx oi, MemOp expected)
   1862 {
   1863 #ifdef CONFIG_DEBUG_TCG
   1864     MemOp have = get_memop(oi) & (MO_SIZE | MO_BSWAP);
   1865     assert(have == expected);
   1866 #endif
   1867 }
   1868 
   1869 /*
   1870  * Load Helpers
   1871  *
   1872  * We support two different access types. SOFTMMU_CODE_ACCESS is
   1873  * specifically for reading instructions from system memory. It is
   1874  * called by the translation loop and in some helpers where the code
   1875  * is disassembled. It shouldn't be called directly by guest code.
   1876  */
   1877 
   1878 typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr,
   1879                                 MemOpIdx oi, uintptr_t retaddr);
   1880 
   1881 static inline uint64_t QEMU_ALWAYS_INLINE
   1882 load_memop(const void *haddr, MemOp op)
   1883 {
   1884     switch (op) {
   1885     case MO_UB:
   1886         return ldub_p(haddr);
   1887     case MO_BEUW:
   1888         return lduw_be_p(haddr);
   1889     case MO_LEUW:
   1890         return lduw_le_p(haddr);
   1891     case MO_BEUL:
   1892         return (uint32_t)ldl_be_p(haddr);
   1893     case MO_LEUL:
   1894         return (uint32_t)ldl_le_p(haddr);
   1895     case MO_BEUQ:
   1896         return ldq_be_p(haddr);
   1897     case MO_LEUQ:
   1898         return ldq_le_p(haddr);
   1899     default:
   1900         qemu_build_not_reached();
   1901     }
   1902 }
   1903 
   1904 static inline uint64_t QEMU_ALWAYS_INLINE
   1905 load_helper(CPUArchState *env, target_ulong addr, MemOpIdx oi,
   1906             uintptr_t retaddr, MemOp op, bool code_read,
   1907             FullLoadHelper *full_load)
   1908 {
   1909     const size_t tlb_off = code_read ?
   1910         offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read);
   1911     const MMUAccessType access_type =
   1912         code_read ? MMU_INST_FETCH : MMU_DATA_LOAD;
   1913     const unsigned a_bits = get_alignment_bits(get_memop(oi));
   1914     const size_t size = memop_size(op);
   1915     uintptr_t mmu_idx = get_mmuidx(oi);
   1916     uintptr_t index;
   1917     CPUTLBEntry *entry;
   1918     target_ulong tlb_addr;
   1919     void *haddr;
   1920     uint64_t res;
   1921 
   1922     tcg_debug_assert(mmu_idx < NB_MMU_MODES);
   1923 
   1924     /* Handle CPU specific unaligned behaviour */
   1925     if (addr & ((1 << a_bits) - 1)) {
   1926         cpu_unaligned_access(env_cpu(env), addr, access_type,
   1927                              mmu_idx, retaddr);
   1928     }
   1929 
   1930     index = tlb_index(env, mmu_idx, addr);
   1931     entry = tlb_entry(env, mmu_idx, addr);
   1932     tlb_addr = code_read ? entry->addr_code : entry->addr_read;
   1933 
   1934     /* If the TLB entry is for a different page, reload and try again.  */
   1935     if (!tlb_hit(tlb_addr, addr)) {
   1936         if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
   1937                             addr & TARGET_PAGE_MASK)) {
   1938             tlb_fill(env_cpu(env), addr, size,
   1939                      access_type, mmu_idx, retaddr);
   1940             index = tlb_index(env, mmu_idx, addr);
   1941             entry = tlb_entry(env, mmu_idx, addr);
   1942         }
   1943         tlb_addr = code_read ? entry->addr_code : entry->addr_read;
   1944         tlb_addr &= ~TLB_INVALID_MASK;
   1945     }
   1946 
   1947     /* Handle anything that isn't just a straight memory access.  */
   1948     if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
   1949         CPUTLBEntryFull *full;
   1950         bool need_swap;
   1951 
   1952         /* For anything that is unaligned, recurse through full_load.  */
   1953         if ((addr & (size - 1)) != 0) {
   1954             goto do_unaligned_access;
   1955         }
   1956 
   1957         full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
   1958 
   1959         /* Handle watchpoints.  */
   1960         if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
   1961             /* On watchpoint hit, this will longjmp out.  */
   1962             cpu_check_watchpoint(env_cpu(env), addr, size,
   1963                                  full->attrs, BP_MEM_READ, retaddr);
   1964         }
   1965 
   1966         need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
   1967 
   1968         /* Handle I/O access.  */
   1969         if (likely(tlb_addr & TLB_MMIO)) {
   1970             return io_readx(env, full, mmu_idx, addr, retaddr,
   1971                             access_type, op ^ (need_swap * MO_BSWAP));
   1972         }
   1973 
   1974         haddr = (void *)((uintptr_t)addr + entry->addend);
   1975 
   1976         /*
   1977          * Keep these two load_memop separate to ensure that the compiler
   1978          * is able to fold the entire function to a single instruction.
   1979          * There is a build-time assert inside to remind you of this.  ;-)
   1980          */
   1981         if (unlikely(need_swap)) {
   1982             return load_memop(haddr, op ^ MO_BSWAP);
   1983         }
   1984         return load_memop(haddr, op);
   1985     }
   1986 
   1987     /* Handle slow unaligned access (it spans two pages or IO).  */
   1988     if (size > 1
   1989         && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
   1990                     >= TARGET_PAGE_SIZE)) {
   1991         target_ulong addr1, addr2;
   1992         uint64_t r1, r2;
   1993         unsigned shift;
   1994     do_unaligned_access:
   1995         addr1 = addr & ~((target_ulong)size - 1);
   1996         addr2 = addr1 + size;
   1997         r1 = full_load(env, addr1, oi, retaddr);
   1998         r2 = full_load(env, addr2, oi, retaddr);
   1999         shift = (addr & (size - 1)) * 8;
   2000 
   2001         if (memop_big_endian(op)) {
   2002             /* Big-endian combine.  */
   2003             res = (r1 << shift) | (r2 >> ((size * 8) - shift));
   2004         } else {
   2005             /* Little-endian combine.  */
   2006             res = (r1 >> shift) | (r2 << ((size * 8) - shift));
   2007         }
   2008         return res & MAKE_64BIT_MASK(0, size * 8);
   2009     }
   2010 
   2011     haddr = (void *)((uintptr_t)addr + entry->addend);
   2012     return load_memop(haddr, op);
   2013 }
   2014 
   2015 /*
   2016  * For the benefit of TCG generated code, we want to avoid the
   2017  * complication of ABI-specific return type promotion and always
   2018  * return a value extended to the register size of the host. This is
   2019  * tcg_target_long, except in the case of a 32-bit host and 64-bit
   2020  * data, and for that we always have uint64_t.
   2021  *
   2022  * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
   2023  */
   2024 
   2025 static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr,
   2026                               MemOpIdx oi, uintptr_t retaddr)
   2027 {
   2028     validate_memop(oi, MO_UB);
   2029     return load_helper(env, addr, oi, retaddr, MO_UB, false, full_ldub_mmu);
   2030 }
   2031 
   2032 tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr,
   2033                                      MemOpIdx oi, uintptr_t retaddr)
   2034 {
   2035     return full_ldub_mmu(env, addr, oi, retaddr);
   2036 }
   2037 
   2038 static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr,
   2039                                  MemOpIdx oi, uintptr_t retaddr)
   2040 {
   2041     validate_memop(oi, MO_LEUW);
   2042     return load_helper(env, addr, oi, retaddr, MO_LEUW, false,
   2043                        full_le_lduw_mmu);
   2044 }
   2045 
   2046 tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr,
   2047                                     MemOpIdx oi, uintptr_t retaddr)
   2048 {
   2049     return full_le_lduw_mmu(env, addr, oi, retaddr);
   2050 }
   2051 
   2052 static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr,
   2053                                  MemOpIdx oi, uintptr_t retaddr)
   2054 {
   2055     validate_memop(oi, MO_BEUW);
   2056     return load_helper(env, addr, oi, retaddr, MO_BEUW, false,
   2057                        full_be_lduw_mmu);
   2058 }
   2059 
   2060 tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr,
   2061                                     MemOpIdx oi, uintptr_t retaddr)
   2062 {
   2063     return full_be_lduw_mmu(env, addr, oi, retaddr);
   2064 }
   2065 
   2066 static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr,
   2067                                  MemOpIdx oi, uintptr_t retaddr)
   2068 {
   2069     validate_memop(oi, MO_LEUL);
   2070     return load_helper(env, addr, oi, retaddr, MO_LEUL, false,
   2071                        full_le_ldul_mmu);
   2072 }
   2073 
   2074 tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr,
   2075                                     MemOpIdx oi, uintptr_t retaddr)
   2076 {
   2077     return full_le_ldul_mmu(env, addr, oi, retaddr);
   2078 }
   2079 
   2080 static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr,
   2081                                  MemOpIdx oi, uintptr_t retaddr)
   2082 {
   2083     validate_memop(oi, MO_BEUL);
   2084     return load_helper(env, addr, oi, retaddr, MO_BEUL, false,
   2085                        full_be_ldul_mmu);
   2086 }
   2087 
   2088 tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr,
   2089                                     MemOpIdx oi, uintptr_t retaddr)
   2090 {
   2091     return full_be_ldul_mmu(env, addr, oi, retaddr);
   2092 }
   2093 
   2094 uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr,
   2095                            MemOpIdx oi, uintptr_t retaddr)
   2096 {
   2097     validate_memop(oi, MO_LEUQ);
   2098     return load_helper(env, addr, oi, retaddr, MO_LEUQ, false,
   2099                        helper_le_ldq_mmu);
   2100 }
   2101 
   2102 uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr,
   2103                            MemOpIdx oi, uintptr_t retaddr)
   2104 {
   2105     validate_memop(oi, MO_BEUQ);
   2106     return load_helper(env, addr, oi, retaddr, MO_BEUQ, false,
   2107                        helper_be_ldq_mmu);
   2108 }
   2109 
   2110 /*
   2111  * Provide signed versions of the load routines as well.  We can of course
   2112  * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
   2113  */
   2114 
   2115 
   2116 tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr,
   2117                                      MemOpIdx oi, uintptr_t retaddr)
   2118 {
   2119     return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr);
   2120 }
   2121 
   2122 tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr,
   2123                                     MemOpIdx oi, uintptr_t retaddr)
   2124 {
   2125     return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr);
   2126 }
   2127 
   2128 tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr,
   2129                                     MemOpIdx oi, uintptr_t retaddr)
   2130 {
   2131     return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr);
   2132 }
   2133 
   2134 tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr,
   2135                                     MemOpIdx oi, uintptr_t retaddr)
   2136 {
   2137     return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr);
   2138 }
   2139 
   2140 tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr,
   2141                                     MemOpIdx oi, uintptr_t retaddr)
   2142 {
   2143     return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr);
   2144 }
   2145 
   2146 /*
   2147  * Load helpers for cpu_ldst.h.
   2148  */
   2149 
   2150 static inline uint64_t cpu_load_helper(CPUArchState *env, abi_ptr addr,
   2151                                        MemOpIdx oi, uintptr_t retaddr,
   2152                                        FullLoadHelper *full_load)
   2153 {
   2154     uint64_t ret;
   2155 
   2156     ret = full_load(env, addr, oi, retaddr);
   2157     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
   2158     return ret;
   2159 }
   2160 
   2161 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra)
   2162 {
   2163     return cpu_load_helper(env, addr, oi, ra, full_ldub_mmu);
   2164 }
   2165 
   2166 uint16_t cpu_ldw_be_mmu(CPUArchState *env, abi_ptr addr,
   2167                         MemOpIdx oi, uintptr_t ra)
   2168 {
   2169     return cpu_load_helper(env, addr, oi, ra, full_be_lduw_mmu);
   2170 }
   2171 
   2172 uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr,
   2173                         MemOpIdx oi, uintptr_t ra)
   2174 {
   2175     return cpu_load_helper(env, addr, oi, ra, full_be_ldul_mmu);
   2176 }
   2177 
   2178 uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr,
   2179                         MemOpIdx oi, uintptr_t ra)
   2180 {
   2181     return cpu_load_helper(env, addr, oi, ra, helper_be_ldq_mmu);
   2182 }
   2183 
   2184 uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr,
   2185                         MemOpIdx oi, uintptr_t ra)
   2186 {
   2187     return cpu_load_helper(env, addr, oi, ra, full_le_lduw_mmu);
   2188 }
   2189 
   2190 uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr,
   2191                         MemOpIdx oi, uintptr_t ra)
   2192 {
   2193     return cpu_load_helper(env, addr, oi, ra, full_le_ldul_mmu);
   2194 }
   2195 
   2196 uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr,
   2197                         MemOpIdx oi, uintptr_t ra)
   2198 {
   2199     return cpu_load_helper(env, addr, oi, ra, helper_le_ldq_mmu);
   2200 }
   2201 
   2202 /*
   2203  * Store Helpers
   2204  */
   2205 
   2206 static inline void QEMU_ALWAYS_INLINE
   2207 store_memop(void *haddr, uint64_t val, MemOp op)
   2208 {
   2209     switch (op) {
   2210     case MO_UB:
   2211         stb_p(haddr, val);
   2212         break;
   2213     case MO_BEUW:
   2214         stw_be_p(haddr, val);
   2215         break;
   2216     case MO_LEUW:
   2217         stw_le_p(haddr, val);
   2218         break;
   2219     case MO_BEUL:
   2220         stl_be_p(haddr, val);
   2221         break;
   2222     case MO_LEUL:
   2223         stl_le_p(haddr, val);
   2224         break;
   2225     case MO_BEUQ:
   2226         stq_be_p(haddr, val);
   2227         break;
   2228     case MO_LEUQ:
   2229         stq_le_p(haddr, val);
   2230         break;
   2231     default:
   2232         qemu_build_not_reached();
   2233     }
   2234 }
   2235 
   2236 static void full_stb_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
   2237                          MemOpIdx oi, uintptr_t retaddr);
   2238 
   2239 static void __attribute__((noinline))
   2240 store_helper_unaligned(CPUArchState *env, target_ulong addr, uint64_t val,
   2241                        uintptr_t retaddr, size_t size, uintptr_t mmu_idx,
   2242                        bool big_endian)
   2243 {
   2244     const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
   2245     uintptr_t index, index2;
   2246     CPUTLBEntry *entry, *entry2;
   2247     target_ulong page1, page2, tlb_addr, tlb_addr2;
   2248     MemOpIdx oi;
   2249     size_t size2;
   2250     int i;
   2251 
   2252     /*
   2253      * Ensure the second page is in the TLB.  Note that the first page
   2254      * is already guaranteed to be filled, and that the second page
   2255      * cannot evict the first.  An exception to this rule is PAGE_WRITE_INV
   2256      * handling: the first page could have evicted itself.
   2257      */
   2258     page1 = addr & TARGET_PAGE_MASK;
   2259     page2 = (addr + size) & TARGET_PAGE_MASK;
   2260     size2 = (addr + size) & ~TARGET_PAGE_MASK;
   2261     index2 = tlb_index(env, mmu_idx, page2);
   2262     entry2 = tlb_entry(env, mmu_idx, page2);
   2263 
   2264     tlb_addr2 = tlb_addr_write(entry2);
   2265     if (page1 != page2 && !tlb_hit_page(tlb_addr2, page2)) {
   2266         if (!victim_tlb_hit(env, mmu_idx, index2, tlb_off, page2)) {
   2267             tlb_fill(env_cpu(env), page2, size2, MMU_DATA_STORE,
   2268                      mmu_idx, retaddr);
   2269             index2 = tlb_index(env, mmu_idx, page2);
   2270             entry2 = tlb_entry(env, mmu_idx, page2);
   2271         }
   2272         tlb_addr2 = tlb_addr_write(entry2);
   2273     }
   2274 
   2275     index = tlb_index(env, mmu_idx, addr);
   2276     entry = tlb_entry(env, mmu_idx, addr);
   2277     tlb_addr = tlb_addr_write(entry);
   2278 
   2279     /*
   2280      * Handle watchpoints.  Since this may trap, all checks
   2281      * must happen before any store.
   2282      */
   2283     if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
   2284         cpu_check_watchpoint(env_cpu(env), addr, size - size2,
   2285                              env_tlb(env)->d[mmu_idx].fulltlb[index].attrs,
   2286                              BP_MEM_WRITE, retaddr);
   2287     }
   2288     if (unlikely(tlb_addr2 & TLB_WATCHPOINT)) {
   2289         cpu_check_watchpoint(env_cpu(env), page2, size2,
   2290                              env_tlb(env)->d[mmu_idx].fulltlb[index2].attrs,
   2291                              BP_MEM_WRITE, retaddr);
   2292     }
   2293 
   2294     /*
   2295      * XXX: not efficient, but simple.
   2296      * This loop must go in the forward direction to avoid issues
   2297      * with self-modifying code in Windows 64-bit.
   2298      */
   2299     oi = make_memop_idx(MO_UB, mmu_idx);
   2300     if (big_endian) {
   2301         for (i = 0; i < size; ++i) {
   2302             /* Big-endian extract.  */
   2303             uint8_t val8 = val >> (((size - 1) * 8) - (i * 8));
   2304             full_stb_mmu(env, addr + i, val8, oi, retaddr);
   2305         }
   2306     } else {
   2307         for (i = 0; i < size; ++i) {
   2308             /* Little-endian extract.  */
   2309             uint8_t val8 = val >> (i * 8);
   2310             full_stb_mmu(env, addr + i, val8, oi, retaddr);
   2311         }
   2312     }
   2313 }
   2314 
   2315 static inline void QEMU_ALWAYS_INLINE
   2316 store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
   2317              MemOpIdx oi, uintptr_t retaddr, MemOp op)
   2318 {
   2319     const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
   2320     const unsigned a_bits = get_alignment_bits(get_memop(oi));
   2321     const size_t size = memop_size(op);
   2322     uintptr_t mmu_idx = get_mmuidx(oi);
   2323     uintptr_t index;
   2324     CPUTLBEntry *entry;
   2325     target_ulong tlb_addr;
   2326     void *haddr;
   2327 
   2328     tcg_debug_assert(mmu_idx < NB_MMU_MODES);
   2329 
   2330     /* Handle CPU specific unaligned behaviour */
   2331     if (addr & ((1 << a_bits) - 1)) {
   2332         cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
   2333                              mmu_idx, retaddr);
   2334     }
   2335 
   2336     index = tlb_index(env, mmu_idx, addr);
   2337     entry = tlb_entry(env, mmu_idx, addr);
   2338     tlb_addr = tlb_addr_write(entry);
   2339 
   2340     /* If the TLB entry is for a different page, reload and try again.  */
   2341     if (!tlb_hit(tlb_addr, addr)) {
   2342         if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
   2343             addr & TARGET_PAGE_MASK)) {
   2344             tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE,
   2345                      mmu_idx, retaddr);
   2346             index = tlb_index(env, mmu_idx, addr);
   2347             entry = tlb_entry(env, mmu_idx, addr);
   2348         }
   2349         tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK;
   2350     }
   2351 
   2352     /* Handle anything that isn't just a straight memory access.  */
   2353     if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
   2354         CPUTLBEntryFull *full;
   2355         bool need_swap;
   2356 
   2357         /* For anything that is unaligned, recurse through byte stores.  */
   2358         if ((addr & (size - 1)) != 0) {
   2359             goto do_unaligned_access;
   2360         }
   2361 
   2362         full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
   2363 
   2364         /* Handle watchpoints.  */
   2365         if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
   2366             /* On watchpoint hit, this will longjmp out.  */
   2367             cpu_check_watchpoint(env_cpu(env), addr, size,
   2368                                  full->attrs, BP_MEM_WRITE, retaddr);
   2369         }
   2370 
   2371         need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
   2372 
   2373         /* Handle I/O access.  */
   2374         if (tlb_addr & TLB_MMIO) {
   2375             io_writex(env, full, mmu_idx, val, addr, retaddr,
   2376                       op ^ (need_swap * MO_BSWAP));
   2377             return;
   2378         }
   2379 
   2380         /* Ignore writes to ROM.  */
   2381         if (unlikely(tlb_addr & TLB_DISCARD_WRITE)) {
   2382             return;
   2383         }
   2384 
   2385         /* Handle clean RAM pages.  */
   2386         if (tlb_addr & TLB_NOTDIRTY) {
   2387             notdirty_write(env_cpu(env), addr, size, full, retaddr);
   2388         }
   2389 
   2390         haddr = (void *)((uintptr_t)addr + entry->addend);
   2391 
   2392         /*
   2393          * Keep these two store_memop separate to ensure that the compiler
   2394          * is able to fold the entire function to a single instruction.
   2395          * There is a build-time assert inside to remind you of this.  ;-)
   2396          */
   2397         if (unlikely(need_swap)) {
   2398             store_memop(haddr, val, op ^ MO_BSWAP);
   2399         } else {
   2400             store_memop(haddr, val, op);
   2401         }
   2402         return;
   2403     }
   2404 
   2405     /* Handle slow unaligned access (it spans two pages or IO).  */
   2406     if (size > 1
   2407         && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
   2408                      >= TARGET_PAGE_SIZE)) {
   2409     do_unaligned_access:
   2410         store_helper_unaligned(env, addr, val, retaddr, size,
   2411                                mmu_idx, memop_big_endian(op));
   2412         return;
   2413     }
   2414 
   2415     haddr = (void *)((uintptr_t)addr + entry->addend);
   2416     store_memop(haddr, val, op);
   2417 }
   2418 
   2419 static void __attribute__((noinline))
   2420 full_stb_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
   2421              MemOpIdx oi, uintptr_t retaddr)
   2422 {
   2423     validate_memop(oi, MO_UB);
   2424     store_helper(env, addr, val, oi, retaddr, MO_UB);
   2425 }
   2426 
   2427 void helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
   2428                         MemOpIdx oi, uintptr_t retaddr)
   2429 {
   2430     full_stb_mmu(env, addr, val, oi, retaddr);
   2431 }
   2432 
   2433 static void full_le_stw_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
   2434                             MemOpIdx oi, uintptr_t retaddr)
   2435 {
   2436     validate_memop(oi, MO_LEUW);
   2437     store_helper(env, addr, val, oi, retaddr, MO_LEUW);
   2438 }
   2439 
   2440 void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
   2441                        MemOpIdx oi, uintptr_t retaddr)
   2442 {
   2443     full_le_stw_mmu(env, addr, val, oi, retaddr);
   2444 }
   2445 
   2446 static void full_be_stw_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
   2447                             MemOpIdx oi, uintptr_t retaddr)
   2448 {
   2449     validate_memop(oi, MO_BEUW);
   2450     store_helper(env, addr, val, oi, retaddr, MO_BEUW);
   2451 }
   2452 
   2453 void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
   2454                        MemOpIdx oi, uintptr_t retaddr)
   2455 {
   2456     full_be_stw_mmu(env, addr, val, oi, retaddr);
   2457 }
   2458 
   2459 static void full_le_stl_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
   2460                             MemOpIdx oi, uintptr_t retaddr)
   2461 {
   2462     validate_memop(oi, MO_LEUL);
   2463     store_helper(env, addr, val, oi, retaddr, MO_LEUL);
   2464 }
   2465 
   2466 void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
   2467                        MemOpIdx oi, uintptr_t retaddr)
   2468 {
   2469     full_le_stl_mmu(env, addr, val, oi, retaddr);
   2470 }
   2471 
   2472 static void full_be_stl_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
   2473                             MemOpIdx oi, uintptr_t retaddr)
   2474 {
   2475     validate_memop(oi, MO_BEUL);
   2476     store_helper(env, addr, val, oi, retaddr, MO_BEUL);
   2477 }
   2478 
   2479 void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
   2480                        MemOpIdx oi, uintptr_t retaddr)
   2481 {
   2482     full_be_stl_mmu(env, addr, val, oi, retaddr);
   2483 }
   2484 
   2485 void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
   2486                        MemOpIdx oi, uintptr_t retaddr)
   2487 {
   2488     validate_memop(oi, MO_LEUQ);
   2489     store_helper(env, addr, val, oi, retaddr, MO_LEUQ);
   2490 }
   2491 
   2492 void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
   2493                        MemOpIdx oi, uintptr_t retaddr)
   2494 {
   2495     validate_memop(oi, MO_BEUQ);
   2496     store_helper(env, addr, val, oi, retaddr, MO_BEUQ);
   2497 }
   2498 
   2499 /*
   2500  * Store Helpers for cpu_ldst.h
   2501  */
   2502 
   2503 typedef void FullStoreHelper(CPUArchState *env, target_ulong addr,
   2504                              uint64_t val, MemOpIdx oi, uintptr_t retaddr);
   2505 
   2506 static inline void cpu_store_helper(CPUArchState *env, target_ulong addr,
   2507                                     uint64_t val, MemOpIdx oi, uintptr_t ra,
   2508                                     FullStoreHelper *full_store)
   2509 {
   2510     full_store(env, addr, val, oi, ra);
   2511     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
   2512 }
   2513 
   2514 void cpu_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
   2515                  MemOpIdx oi, uintptr_t retaddr)
   2516 {
   2517     cpu_store_helper(env, addr, val, oi, retaddr, full_stb_mmu);
   2518 }
   2519 
   2520 void cpu_stw_be_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
   2521                     MemOpIdx oi, uintptr_t retaddr)
   2522 {
   2523     cpu_store_helper(env, addr, val, oi, retaddr, full_be_stw_mmu);
   2524 }
   2525 
   2526 void cpu_stl_be_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
   2527                     MemOpIdx oi, uintptr_t retaddr)
   2528 {
   2529     cpu_store_helper(env, addr, val, oi, retaddr, full_be_stl_mmu);
   2530 }
   2531 
   2532 void cpu_stq_be_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
   2533                     MemOpIdx oi, uintptr_t retaddr)
   2534 {
   2535     cpu_store_helper(env, addr, val, oi, retaddr, helper_be_stq_mmu);
   2536 }
   2537 
   2538 void cpu_stw_le_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
   2539                     MemOpIdx oi, uintptr_t retaddr)
   2540 {
   2541     cpu_store_helper(env, addr, val, oi, retaddr, full_le_stw_mmu);
   2542 }
   2543 
   2544 void cpu_stl_le_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
   2545                     MemOpIdx oi, uintptr_t retaddr)
   2546 {
   2547     cpu_store_helper(env, addr, val, oi, retaddr, full_le_stl_mmu);
   2548 }
   2549 
   2550 void cpu_stq_le_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
   2551                     MemOpIdx oi, uintptr_t retaddr)
   2552 {
   2553     cpu_store_helper(env, addr, val, oi, retaddr, helper_le_stq_mmu);
   2554 }
   2555 
   2556 #include "ldst_common.c.inc"
   2557 
   2558 /*
   2559  * First set of functions passes in OI and RETADDR.
   2560  * This makes them callable from other helpers.
   2561  */
   2562 
   2563 #define ATOMIC_NAME(X) \
   2564     glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
   2565 
   2566 #define ATOMIC_MMU_CLEANUP
   2567 
   2568 #include "atomic_common.c.inc"
   2569 
   2570 #define DATA_SIZE 1
   2571 #include "atomic_template.h"
   2572 
   2573 #define DATA_SIZE 2
   2574 #include "atomic_template.h"
   2575 
   2576 #define DATA_SIZE 4
   2577 #include "atomic_template.h"
   2578 
   2579 #ifdef CONFIG_ATOMIC64
   2580 #define DATA_SIZE 8
   2581 #include "atomic_template.h"
   2582 #endif
   2583 
   2584 #if HAVE_CMPXCHG128 || HAVE_ATOMIC128
   2585 #define DATA_SIZE 16
   2586 #include "atomic_template.h"
   2587 #endif
   2588 
   2589 /* Code access functions.  */
   2590 
   2591 static uint64_t full_ldub_code(CPUArchState *env, target_ulong addr,
   2592                                MemOpIdx oi, uintptr_t retaddr)
   2593 {
   2594     return load_helper(env, addr, oi, retaddr, MO_8, true, full_ldub_code);
   2595 }
   2596 
   2597 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
   2598 {
   2599     MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true));
   2600     return full_ldub_code(env, addr, oi, 0);
   2601 }
   2602 
   2603 static uint64_t full_lduw_code(CPUArchState *env, target_ulong addr,
   2604                                MemOpIdx oi, uintptr_t retaddr)
   2605 {
   2606     return load_helper(env, addr, oi, retaddr, MO_TEUW, true, full_lduw_code);
   2607 }
   2608 
   2609 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
   2610 {
   2611     MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true));
   2612     return full_lduw_code(env, addr, oi, 0);
   2613 }
   2614 
   2615 static uint64_t full_ldl_code(CPUArchState *env, target_ulong addr,
   2616                               MemOpIdx oi, uintptr_t retaddr)
   2617 {
   2618     return load_helper(env, addr, oi, retaddr, MO_TEUL, true, full_ldl_code);
   2619 }
   2620 
   2621 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
   2622 {
   2623     MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true));
   2624     return full_ldl_code(env, addr, oi, 0);
   2625 }
   2626 
   2627 static uint64_t full_ldq_code(CPUArchState *env, target_ulong addr,
   2628                               MemOpIdx oi, uintptr_t retaddr)
   2629 {
   2630     return load_helper(env, addr, oi, retaddr, MO_TEUQ, true, full_ldq_code);
   2631 }
   2632 
   2633 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
   2634 {
   2635     MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true));
   2636     return full_ldq_code(env, addr, oi, 0);
   2637 }