qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

cpu-exec.c (36437B)


      1 /*
      2  *  emulator main execution loop
      3  *
      4  *  Copyright (c) 2003-2005 Fabrice Bellard
      5  *
      6  * This library is free software; you can redistribute it and/or
      7  * modify it under the terms of the GNU Lesser General Public
      8  * License as published by the Free Software Foundation; either
      9  * version 2.1 of the License, or (at your option) any later version.
     10  *
     11  * This library is distributed in the hope that it will be useful,
     12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     14  * Lesser General Public License for more details.
     15  *
     16  * You should have received a copy of the GNU Lesser General Public
     17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
     18  */
     19 
     20 #include "qemu/osdep.h"
     21 #include "qemu/qemu-print.h"
     22 #include "qapi/error.h"
     23 #include "qapi/qapi-commands-machine.h"
     24 #include "qapi/type-helpers.h"
     25 #include "hw/core/tcg-cpu-ops.h"
     26 #include "trace.h"
     27 #include "disas/disas.h"
     28 #include "exec/exec-all.h"
     29 #include "tcg/tcg.h"
     30 #include "qemu/atomic.h"
     31 #include "qemu/compiler.h"
     32 #include "qemu/timer.h"
     33 #include "qemu/rcu.h"
     34 #include "exec/log.h"
     35 #include "qemu/main-loop.h"
     36 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
     37 #include "hw/i386/apic.h"
     38 #endif
     39 #include "sysemu/cpus.h"
     40 #include "exec/cpu-all.h"
     41 #include "sysemu/cpu-timers.h"
     42 #include "sysemu/replay.h"
     43 #include "sysemu/tcg.h"
     44 #include "exec/helper-proto.h"
     45 #include "tb-jmp-cache.h"
     46 #include "tb-hash.h"
     47 #include "tb-context.h"
     48 #include "internal.h"
     49 
     50 /* -icount align implementation. */
     51 
     52 typedef struct SyncClocks {
     53     int64_t diff_clk;
     54     int64_t last_cpu_icount;
     55     int64_t realtime_clock;
     56 } SyncClocks;
     57 
     58 #if !defined(CONFIG_USER_ONLY)
     59 /* Allow the guest to have a max 3ms advance.
     60  * The difference between the 2 clocks could therefore
     61  * oscillate around 0.
     62  */
     63 #define VM_CLOCK_ADVANCE 3000000
     64 #define THRESHOLD_REDUCE 1.5
     65 #define MAX_DELAY_PRINT_RATE 2000000000LL
     66 #define MAX_NB_PRINTS 100
     67 
     68 static int64_t max_delay;
     69 static int64_t max_advance;
     70 
     71 static void align_clocks(SyncClocks *sc, CPUState *cpu)
     72 {
     73     int64_t cpu_icount;
     74 
     75     if (!icount_align_option) {
     76         return;
     77     }
     78 
     79     cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
     80     sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount);
     81     sc->last_cpu_icount = cpu_icount;
     82 
     83     if (sc->diff_clk > VM_CLOCK_ADVANCE) {
     84 #ifndef _WIN32
     85         struct timespec sleep_delay, rem_delay;
     86         sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
     87         sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
     88         if (nanosleep(&sleep_delay, &rem_delay) < 0) {
     89             sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
     90         } else {
     91             sc->diff_clk = 0;
     92         }
     93 #else
     94         Sleep(sc->diff_clk / SCALE_MS);
     95         sc->diff_clk = 0;
     96 #endif
     97     }
     98 }
     99 
    100 static void print_delay(const SyncClocks *sc)
    101 {
    102     static float threshold_delay;
    103     static int64_t last_realtime_clock;
    104     static int nb_prints;
    105 
    106     if (icount_align_option &&
    107         sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
    108         nb_prints < MAX_NB_PRINTS) {
    109         if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
    110             (-sc->diff_clk / (float)1000000000LL <
    111              (threshold_delay - THRESHOLD_REDUCE))) {
    112             threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
    113             qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
    114                         threshold_delay - 1,
    115                         threshold_delay);
    116             nb_prints++;
    117             last_realtime_clock = sc->realtime_clock;
    118         }
    119     }
    120 }
    121 
    122 static void init_delay_params(SyncClocks *sc, CPUState *cpu)
    123 {
    124     if (!icount_align_option) {
    125         return;
    126     }
    127     sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
    128     sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
    129     sc->last_cpu_icount
    130         = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
    131     if (sc->diff_clk < max_delay) {
    132         max_delay = sc->diff_clk;
    133     }
    134     if (sc->diff_clk > max_advance) {
    135         max_advance = sc->diff_clk;
    136     }
    137 
    138     /* Print every 2s max if the guest is late. We limit the number
    139        of printed messages to NB_PRINT_MAX(currently 100) */
    140     print_delay(sc);
    141 }
    142 #else
    143 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
    144 {
    145 }
    146 
    147 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
    148 {
    149 }
    150 #endif /* CONFIG USER ONLY */
    151 
    152 uint32_t curr_cflags(CPUState *cpu)
    153 {
    154     uint32_t cflags = cpu->tcg_cflags;
    155 
    156     /*
    157      * Record gdb single-step.  We should be exiting the TB by raising
    158      * EXCP_DEBUG, but to simplify other tests, disable chaining too.
    159      *
    160      * For singlestep and -d nochain, suppress goto_tb so that
    161      * we can log -d cpu,exec after every TB.
    162      */
    163     if (unlikely(cpu->singlestep_enabled)) {
    164         cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1;
    165     } else if (singlestep) {
    166         cflags |= CF_NO_GOTO_TB | 1;
    167     } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
    168         cflags |= CF_NO_GOTO_TB;
    169     }
    170 
    171     return cflags;
    172 }
    173 
    174 struct tb_desc {
    175     target_ulong pc;
    176     target_ulong cs_base;
    177     CPUArchState *env;
    178     tb_page_addr_t page_addr0;
    179     uint32_t flags;
    180     uint32_t cflags;
    181     uint32_t trace_vcpu_dstate;
    182 };
    183 
    184 static bool tb_lookup_cmp(const void *p, const void *d)
    185 {
    186     const TranslationBlock *tb = p;
    187     const struct tb_desc *desc = d;
    188 
    189     if ((TARGET_TB_PCREL || tb_pc(tb) == desc->pc) &&
    190         tb_page_addr0(tb) == desc->page_addr0 &&
    191         tb->cs_base == desc->cs_base &&
    192         tb->flags == desc->flags &&
    193         tb->trace_vcpu_dstate == desc->trace_vcpu_dstate &&
    194         tb_cflags(tb) == desc->cflags) {
    195         /* check next page if needed */
    196         tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb);
    197         if (tb_phys_page1 == -1) {
    198             return true;
    199         } else {
    200             tb_page_addr_t phys_page1;
    201             target_ulong virt_page1;
    202 
    203             /*
    204              * We know that the first page matched, and an otherwise valid TB
    205              * encountered an incomplete instruction at the end of that page,
    206              * therefore we know that generating a new TB from the current PC
    207              * must also require reading from the next page -- even if the
    208              * second pages do not match, and therefore the resulting insn
    209              * is different for the new TB.  Therefore any exception raised
    210              * here by the faulting lookup is not premature.
    211              */
    212             virt_page1 = TARGET_PAGE_ALIGN(desc->pc);
    213             phys_page1 = get_page_addr_code(desc->env, virt_page1);
    214             if (tb_phys_page1 == phys_page1) {
    215                 return true;
    216             }
    217         }
    218     }
    219     return false;
    220 }
    221 
    222 static TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
    223                                           target_ulong cs_base, uint32_t flags,
    224                                           uint32_t cflags)
    225 {
    226     tb_page_addr_t phys_pc;
    227     struct tb_desc desc;
    228     uint32_t h;
    229 
    230     desc.env = cpu->env_ptr;
    231     desc.cs_base = cs_base;
    232     desc.flags = flags;
    233     desc.cflags = cflags;
    234     desc.trace_vcpu_dstate = *cpu->trace_dstate;
    235     desc.pc = pc;
    236     phys_pc = get_page_addr_code(desc.env, pc);
    237     if (phys_pc == -1) {
    238         return NULL;
    239     }
    240     desc.page_addr0 = phys_pc;
    241     h = tb_hash_func(phys_pc, (TARGET_TB_PCREL ? 0 : pc),
    242                      flags, cflags, *cpu->trace_dstate);
    243     return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
    244 }
    245 
    246 /* Might cause an exception, so have a longjmp destination ready */
    247 static inline TranslationBlock *tb_lookup(CPUState *cpu, target_ulong pc,
    248                                           target_ulong cs_base,
    249                                           uint32_t flags, uint32_t cflags)
    250 {
    251     TranslationBlock *tb;
    252     CPUJumpCache *jc;
    253     uint32_t hash;
    254 
    255     /* we should never be trying to look up an INVALID tb */
    256     tcg_debug_assert(!(cflags & CF_INVALID));
    257 
    258     hash = tb_jmp_cache_hash_func(pc);
    259     jc = cpu->tb_jmp_cache;
    260     tb = tb_jmp_cache_get_tb(jc, hash);
    261 
    262     if (likely(tb &&
    263                tb_jmp_cache_get_pc(jc, hash, tb) == pc &&
    264                tb->cs_base == cs_base &&
    265                tb->flags == flags &&
    266                tb->trace_vcpu_dstate == *cpu->trace_dstate &&
    267                tb_cflags(tb) == cflags)) {
    268         return tb;
    269     }
    270     tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
    271     if (tb == NULL) {
    272         return NULL;
    273     }
    274     tb_jmp_cache_set(jc, hash, tb, pc);
    275     return tb;
    276 }
    277 
    278 static void log_cpu_exec(target_ulong pc, CPUState *cpu,
    279                          const TranslationBlock *tb)
    280 {
    281     if (qemu_log_in_addr_range(pc)) {
    282         qemu_log_mask(CPU_LOG_EXEC,
    283                       "Trace %d: %p [" TARGET_FMT_lx
    284                       "/" TARGET_FMT_lx "/%08x/%08x] %s\n",
    285                       cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc,
    286                       tb->flags, tb->cflags, lookup_symbol(pc));
    287 
    288 #if defined(DEBUG_DISAS)
    289         if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
    290             FILE *logfile = qemu_log_trylock();
    291             if (logfile) {
    292                 int flags = 0;
    293 
    294                 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
    295                     flags |= CPU_DUMP_FPU;
    296                 }
    297 #if defined(TARGET_I386)
    298                 flags |= CPU_DUMP_CCOP;
    299 #endif
    300                 cpu_dump_state(cpu, logfile, flags);
    301                 qemu_log_unlock(logfile);
    302             }
    303         }
    304 #endif /* DEBUG_DISAS */
    305     }
    306 }
    307 
    308 static bool check_for_breakpoints_slow(CPUState *cpu, target_ulong pc,
    309                                        uint32_t *cflags)
    310 {
    311     CPUBreakpoint *bp;
    312     bool match_page = false;
    313 
    314     /*
    315      * Singlestep overrides breakpoints.
    316      * This requirement is visible in the record-replay tests, where
    317      * we would fail to make forward progress in reverse-continue.
    318      *
    319      * TODO: gdb singlestep should only override gdb breakpoints,
    320      * so that one could (gdb) singlestep into the guest kernel's
    321      * architectural breakpoint handler.
    322      */
    323     if (cpu->singlestep_enabled) {
    324         return false;
    325     }
    326 
    327     QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
    328         /*
    329          * If we have an exact pc match, trigger the breakpoint.
    330          * Otherwise, note matches within the page.
    331          */
    332         if (pc == bp->pc) {
    333             bool match_bp = false;
    334 
    335             if (bp->flags & BP_GDB) {
    336                 match_bp = true;
    337             } else if (bp->flags & BP_CPU) {
    338 #ifdef CONFIG_USER_ONLY
    339                 g_assert_not_reached();
    340 #else
    341                 CPUClass *cc = CPU_GET_CLASS(cpu);
    342                 assert(cc->tcg_ops->debug_check_breakpoint);
    343                 match_bp = cc->tcg_ops->debug_check_breakpoint(cpu);
    344 #endif
    345             }
    346 
    347             if (match_bp) {
    348                 cpu->exception_index = EXCP_DEBUG;
    349                 return true;
    350             }
    351         } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) {
    352             match_page = true;
    353         }
    354     }
    355 
    356     /*
    357      * Within the same page as a breakpoint, single-step,
    358      * returning to helper_lookup_tb_ptr after each insn looking
    359      * for the actual breakpoint.
    360      *
    361      * TODO: Perhaps better to record all of the TBs associated
    362      * with a given virtual page that contains a breakpoint, and
    363      * then invalidate them when a new overlapping breakpoint is
    364      * set on the page.  Non-overlapping TBs would not be
    365      * invalidated, nor would any TB need to be invalidated as
    366      * breakpoints are removed.
    367      */
    368     if (match_page) {
    369         *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1;
    370     }
    371     return false;
    372 }
    373 
    374 static inline bool check_for_breakpoints(CPUState *cpu, target_ulong pc,
    375                                          uint32_t *cflags)
    376 {
    377     return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) &&
    378         check_for_breakpoints_slow(cpu, pc, cflags);
    379 }
    380 
    381 /**
    382  * helper_lookup_tb_ptr: quick check for next tb
    383  * @env: current cpu state
    384  *
    385  * Look for an existing TB matching the current cpu state.
    386  * If found, return the code pointer.  If not found, return
    387  * the tcg epilogue so that we return into cpu_tb_exec.
    388  */
    389 const void *HELPER(lookup_tb_ptr)(CPUArchState *env)
    390 {
    391     CPUState *cpu = env_cpu(env);
    392     TranslationBlock *tb;
    393     target_ulong cs_base, pc;
    394     uint32_t flags, cflags;
    395 
    396     cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
    397 
    398     cflags = curr_cflags(cpu);
    399     if (check_for_breakpoints(cpu, pc, &cflags)) {
    400         cpu_loop_exit(cpu);
    401     }
    402 
    403     tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
    404     if (tb == NULL) {
    405         return tcg_code_gen_epilogue;
    406     }
    407 
    408     if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
    409         log_cpu_exec(pc, cpu, tb);
    410     }
    411 
    412     return tb->tc.ptr;
    413 }
    414 
    415 /* Execute a TB, and fix up the CPU state afterwards if necessary */
    416 /*
    417  * Disable CFI checks.
    418  * TCG creates binary blobs at runtime, with the transformed code.
    419  * A TB is a blob of binary code, created at runtime and called with an
    420  * indirect function call. Since such function did not exist at compile time,
    421  * the CFI runtime has no way to verify its signature and would fail.
    422  * TCG is not considered a security-sensitive part of QEMU so this does not
    423  * affect the impact of CFI in environment with high security requirements
    424  */
    425 static inline TranslationBlock * QEMU_DISABLE_CFI
    426 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit)
    427 {
    428     CPUArchState *env = cpu->env_ptr;
    429     uintptr_t ret;
    430     TranslationBlock *last_tb;
    431     const void *tb_ptr = itb->tc.ptr;
    432 
    433     if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
    434         log_cpu_exec(log_pc(cpu, itb), cpu, itb);
    435     }
    436 
    437     qemu_thread_jit_execute();
    438     ret = tcg_qemu_tb_exec(env, tb_ptr);
    439     cpu->can_do_io = 1;
    440     /*
    441      * TODO: Delay swapping back to the read-write region of the TB
    442      * until we actually need to modify the TB.  The read-only copy,
    443      * coming from the rx region, shares the same host TLB entry as
    444      * the code that executed the exit_tb opcode that arrived here.
    445      * If we insist on touching both the RX and the RW pages, we
    446      * double the host TLB pressure.
    447      */
    448     last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK));
    449     *tb_exit = ret & TB_EXIT_MASK;
    450 
    451     trace_exec_tb_exit(last_tb, *tb_exit);
    452 
    453     if (*tb_exit > TB_EXIT_IDX1) {
    454         /* We didn't start executing this TB (eg because the instruction
    455          * counter hit zero); we must restore the guest PC to the address
    456          * of the start of the TB.
    457          */
    458         CPUClass *cc = CPU_GET_CLASS(cpu);
    459 
    460         if (cc->tcg_ops->synchronize_from_tb) {
    461             cc->tcg_ops->synchronize_from_tb(cpu, last_tb);
    462         } else {
    463             assert(!TARGET_TB_PCREL);
    464             assert(cc->set_pc);
    465             cc->set_pc(cpu, tb_pc(last_tb));
    466         }
    467         if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
    468             target_ulong pc = log_pc(cpu, last_tb);
    469             if (qemu_log_in_addr_range(pc)) {
    470                 qemu_log("Stopped execution of TB chain before %p ["
    471                          TARGET_FMT_lx "] %s\n",
    472                          last_tb->tc.ptr, pc, lookup_symbol(pc));
    473             }
    474         }
    475     }
    476 
    477     /*
    478      * If gdb single-step, and we haven't raised another exception,
    479      * raise a debug exception.  Single-step with another exception
    480      * is handled in cpu_handle_exception.
    481      */
    482     if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) {
    483         cpu->exception_index = EXCP_DEBUG;
    484         cpu_loop_exit(cpu);
    485     }
    486 
    487     return last_tb;
    488 }
    489 
    490 
    491 static void cpu_exec_enter(CPUState *cpu)
    492 {
    493     CPUClass *cc = CPU_GET_CLASS(cpu);
    494 
    495     if (cc->tcg_ops->cpu_exec_enter) {
    496         cc->tcg_ops->cpu_exec_enter(cpu);
    497     }
    498 }
    499 
    500 static void cpu_exec_exit(CPUState *cpu)
    501 {
    502     CPUClass *cc = CPU_GET_CLASS(cpu);
    503 
    504     if (cc->tcg_ops->cpu_exec_exit) {
    505         cc->tcg_ops->cpu_exec_exit(cpu);
    506     }
    507 }
    508 
    509 void cpu_exec_step_atomic(CPUState *cpu)
    510 {
    511     CPUArchState *env = cpu->env_ptr;
    512     TranslationBlock *tb;
    513     target_ulong cs_base, pc;
    514     uint32_t flags, cflags;
    515     int tb_exit;
    516 
    517     if (sigsetjmp(cpu->jmp_env, 0) == 0) {
    518         start_exclusive();
    519         g_assert(cpu == current_cpu);
    520         g_assert(!cpu->running);
    521         cpu->running = true;
    522 
    523         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
    524 
    525         cflags = curr_cflags(cpu);
    526         /* Execute in a serial context. */
    527         cflags &= ~CF_PARALLEL;
    528         /* After 1 insn, return and release the exclusive lock. */
    529         cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1;
    530         /*
    531          * No need to check_for_breakpoints here.
    532          * We only arrive in cpu_exec_step_atomic after beginning execution
    533          * of an insn that includes an atomic operation we can't handle.
    534          * Any breakpoint for this insn will have been recognized earlier.
    535          */
    536 
    537         tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
    538         if (tb == NULL) {
    539             mmap_lock();
    540             tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
    541             mmap_unlock();
    542         }
    543 
    544         cpu_exec_enter(cpu);
    545         /* execute the generated code */
    546         trace_exec_tb(tb, pc);
    547         cpu_tb_exec(cpu, tb, &tb_exit);
    548         cpu_exec_exit(cpu);
    549     } else {
    550 #ifndef CONFIG_SOFTMMU
    551         clear_helper_retaddr();
    552         if (have_mmap_lock()) {
    553             mmap_unlock();
    554         }
    555 #endif
    556         if (qemu_mutex_iothread_locked()) {
    557             qemu_mutex_unlock_iothread();
    558         }
    559         assert_no_pages_locked();
    560         qemu_plugin_disable_mem_helpers(cpu);
    561     }
    562 
    563     /*
    564      * As we start the exclusive region before codegen we must still
    565      * be in the region if we longjump out of either the codegen or
    566      * the execution.
    567      */
    568     g_assert(cpu_in_exclusive_context(cpu));
    569     cpu->running = false;
    570     end_exclusive();
    571 }
    572 
    573 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
    574 {
    575     if (TCG_TARGET_HAS_direct_jump) {
    576         uintptr_t offset = tb->jmp_target_arg[n];
    577         uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr;
    578         uintptr_t jmp_rx = tc_ptr + offset;
    579         uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff;
    580         tb_target_set_jmp_target(tc_ptr, jmp_rx, jmp_rw, addr);
    581     } else {
    582         tb->jmp_target_arg[n] = addr;
    583     }
    584 }
    585 
    586 static inline void tb_add_jump(TranslationBlock *tb, int n,
    587                                TranslationBlock *tb_next)
    588 {
    589     uintptr_t old;
    590 
    591     qemu_thread_jit_write();
    592     assert(n < ARRAY_SIZE(tb->jmp_list_next));
    593     qemu_spin_lock(&tb_next->jmp_lock);
    594 
    595     /* make sure the destination TB is valid */
    596     if (tb_next->cflags & CF_INVALID) {
    597         goto out_unlock_next;
    598     }
    599     /* Atomically claim the jump destination slot only if it was NULL */
    600     old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL,
    601                           (uintptr_t)tb_next);
    602     if (old) {
    603         goto out_unlock_next;
    604     }
    605 
    606     /* patch the native jump address */
    607     tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
    608 
    609     /* add in TB jmp list */
    610     tb->jmp_list_next[n] = tb_next->jmp_list_head;
    611     tb_next->jmp_list_head = (uintptr_t)tb | n;
    612 
    613     qemu_spin_unlock(&tb_next->jmp_lock);
    614 
    615     qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n",
    616                   tb->tc.ptr, n, tb_next->tc.ptr);
    617     return;
    618 
    619  out_unlock_next:
    620     qemu_spin_unlock(&tb_next->jmp_lock);
    621     return;
    622 }
    623 
    624 static inline bool cpu_handle_halt(CPUState *cpu)
    625 {
    626 #ifndef CONFIG_USER_ONLY
    627     if (cpu->halted) {
    628 #if defined(TARGET_I386)
    629         if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
    630             X86CPU *x86_cpu = X86_CPU(cpu);
    631             qemu_mutex_lock_iothread();
    632             apic_poll_irq(x86_cpu->apic_state);
    633             cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
    634             qemu_mutex_unlock_iothread();
    635         }
    636 #endif /* TARGET_I386 */
    637         if (!cpu_has_work(cpu)) {
    638             return true;
    639         }
    640 
    641         cpu->halted = 0;
    642     }
    643 #endif /* !CONFIG_USER_ONLY */
    644 
    645     return false;
    646 }
    647 
    648 static inline void cpu_handle_debug_exception(CPUState *cpu)
    649 {
    650     CPUClass *cc = CPU_GET_CLASS(cpu);
    651     CPUWatchpoint *wp;
    652 
    653     if (!cpu->watchpoint_hit) {
    654         QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
    655             wp->flags &= ~BP_WATCHPOINT_HIT;
    656         }
    657     }
    658 
    659     if (cc->tcg_ops->debug_excp_handler) {
    660         cc->tcg_ops->debug_excp_handler(cpu);
    661     }
    662 }
    663 
    664 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
    665 {
    666     if (cpu->exception_index < 0) {
    667 #ifndef CONFIG_USER_ONLY
    668         if (replay_has_exception()
    669             && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) {
    670             /* Execute just one insn to trigger exception pending in the log */
    671             cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT)
    672                 | CF_NOIRQ | 1;
    673         }
    674 #endif
    675         return false;
    676     }
    677     if (cpu->exception_index >= EXCP_INTERRUPT) {
    678         /* exit request from the cpu execution loop */
    679         *ret = cpu->exception_index;
    680         if (*ret == EXCP_DEBUG) {
    681             cpu_handle_debug_exception(cpu);
    682         }
    683         cpu->exception_index = -1;
    684         return true;
    685     } else {
    686 #if defined(CONFIG_USER_ONLY)
    687         /* if user mode only, we simulate a fake exception
    688            which will be handled outside the cpu execution
    689            loop */
    690 #if defined(TARGET_I386)
    691         CPUClass *cc = CPU_GET_CLASS(cpu);
    692         cc->tcg_ops->fake_user_interrupt(cpu);
    693 #endif /* TARGET_I386 */
    694         *ret = cpu->exception_index;
    695         cpu->exception_index = -1;
    696         return true;
    697 #else
    698         if (replay_exception()) {
    699             CPUClass *cc = CPU_GET_CLASS(cpu);
    700             qemu_mutex_lock_iothread();
    701             cc->tcg_ops->do_interrupt(cpu);
    702             qemu_mutex_unlock_iothread();
    703             cpu->exception_index = -1;
    704 
    705             if (unlikely(cpu->singlestep_enabled)) {
    706                 /*
    707                  * After processing the exception, ensure an EXCP_DEBUG is
    708                  * raised when single-stepping so that GDB doesn't miss the
    709                  * next instruction.
    710                  */
    711                 *ret = EXCP_DEBUG;
    712                 cpu_handle_debug_exception(cpu);
    713                 return true;
    714             }
    715         } else if (!replay_has_interrupt()) {
    716             /* give a chance to iothread in replay mode */
    717             *ret = EXCP_INTERRUPT;
    718             return true;
    719         }
    720 #endif
    721     }
    722 
    723     return false;
    724 }
    725 
    726 #ifndef CONFIG_USER_ONLY
    727 /*
    728  * CPU_INTERRUPT_POLL is a virtual event which gets converted into a
    729  * "real" interrupt event later. It does not need to be recorded for
    730  * replay purposes.
    731  */
    732 static inline bool need_replay_interrupt(int interrupt_request)
    733 {
    734 #if defined(TARGET_I386)
    735     return !(interrupt_request & CPU_INTERRUPT_POLL);
    736 #else
    737     return true;
    738 #endif
    739 }
    740 #endif /* !CONFIG_USER_ONLY */
    741 
    742 static inline bool cpu_handle_interrupt(CPUState *cpu,
    743                                         TranslationBlock **last_tb)
    744 {
    745     /*
    746      * If we have requested custom cflags with CF_NOIRQ we should
    747      * skip checking here. Any pending interrupts will get picked up
    748      * by the next TB we execute under normal cflags.
    749      */
    750     if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) {
    751         return false;
    752     }
    753 
    754     /* Clear the interrupt flag now since we're processing
    755      * cpu->interrupt_request and cpu->exit_request.
    756      * Ensure zeroing happens before reading cpu->exit_request or
    757      * cpu->interrupt_request (see also smp_wmb in cpu_exit())
    758      */
    759     qatomic_mb_set(&cpu_neg(cpu)->icount_decr.u16.high, 0);
    760 
    761     if (unlikely(qatomic_read(&cpu->interrupt_request))) {
    762         int interrupt_request;
    763         qemu_mutex_lock_iothread();
    764         interrupt_request = cpu->interrupt_request;
    765         if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
    766             /* Mask out external interrupts for this step. */
    767             interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
    768         }
    769         if (interrupt_request & CPU_INTERRUPT_DEBUG) {
    770             cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
    771             cpu->exception_index = EXCP_DEBUG;
    772             qemu_mutex_unlock_iothread();
    773             return true;
    774         }
    775 #if !defined(CONFIG_USER_ONLY)
    776         if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
    777             /* Do nothing */
    778         } else if (interrupt_request & CPU_INTERRUPT_HALT) {
    779             replay_interrupt();
    780             cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
    781             cpu->halted = 1;
    782             cpu->exception_index = EXCP_HLT;
    783             qemu_mutex_unlock_iothread();
    784             return true;
    785         }
    786 #if defined(TARGET_I386)
    787         else if (interrupt_request & CPU_INTERRUPT_INIT) {
    788             X86CPU *x86_cpu = X86_CPU(cpu);
    789             CPUArchState *env = &x86_cpu->env;
    790             replay_interrupt();
    791             cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
    792             do_cpu_init(x86_cpu);
    793             cpu->exception_index = EXCP_HALTED;
    794             qemu_mutex_unlock_iothread();
    795             return true;
    796         }
    797 #else
    798         else if (interrupt_request & CPU_INTERRUPT_RESET) {
    799             replay_interrupt();
    800             cpu_reset(cpu);
    801             qemu_mutex_unlock_iothread();
    802             return true;
    803         }
    804 #endif /* !TARGET_I386 */
    805         /* The target hook has 3 exit conditions:
    806            False when the interrupt isn't processed,
    807            True when it is, and we should restart on a new TB,
    808            and via longjmp via cpu_loop_exit.  */
    809         else {
    810             CPUClass *cc = CPU_GET_CLASS(cpu);
    811 
    812             if (cc->tcg_ops->cpu_exec_interrupt &&
    813                 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) {
    814                 if (need_replay_interrupt(interrupt_request)) {
    815                     replay_interrupt();
    816                 }
    817                 /*
    818                  * After processing the interrupt, ensure an EXCP_DEBUG is
    819                  * raised when single-stepping so that GDB doesn't miss the
    820                  * next instruction.
    821                  */
    822                 if (unlikely(cpu->singlestep_enabled)) {
    823                     cpu->exception_index = EXCP_DEBUG;
    824                     qemu_mutex_unlock_iothread();
    825                     return true;
    826                 }
    827                 cpu->exception_index = -1;
    828                 *last_tb = NULL;
    829             }
    830             /* The target hook may have updated the 'cpu->interrupt_request';
    831              * reload the 'interrupt_request' value */
    832             interrupt_request = cpu->interrupt_request;
    833         }
    834 #endif /* !CONFIG_USER_ONLY */
    835         if (interrupt_request & CPU_INTERRUPT_EXITTB) {
    836             cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
    837             /* ensure that no TB jump will be modified as
    838                the program flow was changed */
    839             *last_tb = NULL;
    840         }
    841 
    842         /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
    843         qemu_mutex_unlock_iothread();
    844     }
    845 
    846     /* Finally, check if we need to exit to the main loop.  */
    847     if (unlikely(qatomic_read(&cpu->exit_request))
    848         || (icount_enabled()
    849             && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT)
    850             && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) {
    851         qatomic_set(&cpu->exit_request, 0);
    852         if (cpu->exception_index == -1) {
    853             cpu->exception_index = EXCP_INTERRUPT;
    854         }
    855         return true;
    856     }
    857 
    858     return false;
    859 }
    860 
    861 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
    862                                     target_ulong pc,
    863                                     TranslationBlock **last_tb, int *tb_exit)
    864 {
    865     int32_t insns_left;
    866 
    867     trace_exec_tb(tb, pc);
    868     tb = cpu_tb_exec(cpu, tb, tb_exit);
    869     if (*tb_exit != TB_EXIT_REQUESTED) {
    870         *last_tb = tb;
    871         return;
    872     }
    873 
    874     *last_tb = NULL;
    875     insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32);
    876     if (insns_left < 0) {
    877         /* Something asked us to stop executing chained TBs; just
    878          * continue round the main loop. Whatever requested the exit
    879          * will also have set something else (eg exit_request or
    880          * interrupt_request) which will be handled by
    881          * cpu_handle_interrupt.  cpu_handle_interrupt will also
    882          * clear cpu->icount_decr.u16.high.
    883          */
    884         return;
    885     }
    886 
    887     /* Instruction counter expired.  */
    888     assert(icount_enabled());
    889 #ifndef CONFIG_USER_ONLY
    890     /* Ensure global icount has gone forward */
    891     icount_update(cpu);
    892     /* Refill decrementer and continue execution.  */
    893     insns_left = MIN(0xffff, cpu->icount_budget);
    894     cpu_neg(cpu)->icount_decr.u16.low = insns_left;
    895     cpu->icount_extra = cpu->icount_budget - insns_left;
    896 
    897     /*
    898      * If the next tb has more instructions than we have left to
    899      * execute we need to ensure we find/generate a TB with exactly
    900      * insns_left instructions in it.
    901      */
    902     if (insns_left > 0 && insns_left < tb->icount)  {
    903         assert(insns_left <= CF_COUNT_MASK);
    904         assert(cpu->icount_extra == 0);
    905         cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left;
    906     }
    907 #endif
    908 }
    909 
    910 /* main execution loop */
    911 
    912 int cpu_exec(CPUState *cpu)
    913 {
    914     int ret;
    915     SyncClocks sc = { 0 };
    916 
    917     /* replay_interrupt may need current_cpu */
    918     current_cpu = cpu;
    919 
    920     if (cpu_handle_halt(cpu)) {
    921         return EXCP_HALTED;
    922     }
    923 
    924     rcu_read_lock();
    925 
    926     cpu_exec_enter(cpu);
    927 
    928     /* Calculate difference between guest clock and host clock.
    929      * This delay includes the delay of the last cycle, so
    930      * what we have to do is sleep until it is 0. As for the
    931      * advance/delay we gain here, we try to fix it next time.
    932      */
    933     init_delay_params(&sc, cpu);
    934 
    935     /* prepare setjmp context for exception handling */
    936     if (sigsetjmp(cpu->jmp_env, 0) != 0) {
    937 #if defined(__clang__)
    938         /*
    939          * Some compilers wrongly smash all local variables after
    940          * siglongjmp (the spec requires that only non-volatile locals
    941          * which are changed between the sigsetjmp and siglongjmp are
    942          * permitted to be trashed). There were bug reports for gcc
    943          * 4.5.0 and clang.  The bug is fixed in all versions of gcc
    944          * that we support, but is still unfixed in clang:
    945          *   https://bugs.llvm.org/show_bug.cgi?id=21183
    946          *
    947          * Reload an essential local variable here for those compilers.
    948          * Newer versions of gcc would complain about this code (-Wclobbered),
    949          * so we only perform the workaround for clang.
    950          */
    951         cpu = current_cpu;
    952 #else
    953         /* Non-buggy compilers preserve this; assert the correct value. */
    954         g_assert(cpu == current_cpu);
    955 #endif
    956 
    957 #ifndef CONFIG_SOFTMMU
    958         clear_helper_retaddr();
    959         if (have_mmap_lock()) {
    960             mmap_unlock();
    961         }
    962 #endif
    963         if (qemu_mutex_iothread_locked()) {
    964             qemu_mutex_unlock_iothread();
    965         }
    966         qemu_plugin_disable_mem_helpers(cpu);
    967 
    968         assert_no_pages_locked();
    969     }
    970 
    971     /* if an exception is pending, we execute it here */
    972     while (!cpu_handle_exception(cpu, &ret)) {
    973         TranslationBlock *last_tb = NULL;
    974         int tb_exit = 0;
    975 
    976         while (!cpu_handle_interrupt(cpu, &last_tb)) {
    977             TranslationBlock *tb;
    978             target_ulong cs_base, pc;
    979             uint32_t flags, cflags;
    980 
    981             cpu_get_tb_cpu_state(cpu->env_ptr, &pc, &cs_base, &flags);
    982 
    983             /*
    984              * When requested, use an exact setting for cflags for the next
    985              * execution.  This is used for icount, precise smc, and stop-
    986              * after-access watchpoints.  Since this request should never
    987              * have CF_INVALID set, -1 is a convenient invalid value that
    988              * does not require tcg headers for cpu_common_reset.
    989              */
    990             cflags = cpu->cflags_next_tb;
    991             if (cflags == -1) {
    992                 cflags = curr_cflags(cpu);
    993             } else {
    994                 cpu->cflags_next_tb = -1;
    995             }
    996 
    997             if (check_for_breakpoints(cpu, pc, &cflags)) {
    998                 break;
    999             }
   1000 
   1001             tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
   1002             if (tb == NULL) {
   1003                 uint32_t h;
   1004 
   1005                 mmap_lock();
   1006                 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
   1007                 mmap_unlock();
   1008                 /*
   1009                  * We add the TB in the virtual pc hash table
   1010                  * for the fast lookup
   1011                  */
   1012                 h = tb_jmp_cache_hash_func(pc);
   1013                 tb_jmp_cache_set(cpu->tb_jmp_cache, h, tb, pc);
   1014             }
   1015 
   1016 #ifndef CONFIG_USER_ONLY
   1017             /*
   1018              * We don't take care of direct jumps when address mapping
   1019              * changes in system emulation.  So it's not safe to make a
   1020              * direct jump to a TB spanning two pages because the mapping
   1021              * for the second page can change.
   1022              */
   1023             if (tb_page_addr1(tb) != -1) {
   1024                 last_tb = NULL;
   1025             }
   1026 #endif
   1027             /* See if we can patch the calling TB. */
   1028             if (last_tb) {
   1029                 tb_add_jump(last_tb, tb_exit, tb);
   1030             }
   1031 
   1032             cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit);
   1033 
   1034             /* Try to align the host and virtual clocks
   1035                if the guest is in advance */
   1036             align_clocks(&sc, cpu);
   1037         }
   1038     }
   1039 
   1040     cpu_exec_exit(cpu);
   1041     rcu_read_unlock();
   1042 
   1043     return ret;
   1044 }
   1045 
   1046 void tcg_exec_realizefn(CPUState *cpu, Error **errp)
   1047 {
   1048     static bool tcg_target_initialized;
   1049     CPUClass *cc = CPU_GET_CLASS(cpu);
   1050 
   1051     if (!tcg_target_initialized) {
   1052         cc->tcg_ops->initialize();
   1053         tcg_target_initialized = true;
   1054     }
   1055 
   1056     cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1);
   1057     tlb_init(cpu);
   1058 #ifndef CONFIG_USER_ONLY
   1059     tcg_iommu_init_notifier_list(cpu);
   1060 #endif /* !CONFIG_USER_ONLY */
   1061     /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */
   1062 }
   1063 
   1064 /* undo the initializations in reverse order */
   1065 void tcg_exec_unrealizefn(CPUState *cpu)
   1066 {
   1067     qemu_plugin_vcpu_exit_hook(cpu);
   1068 #ifndef CONFIG_USER_ONLY
   1069     tcg_iommu_free_notifier_list(cpu);
   1070 #endif /* !CONFIG_USER_ONLY */
   1071 
   1072     tlb_destroy(cpu);
   1073     g_free(cpu->tb_jmp_cache);
   1074 }
   1075 
   1076 #ifndef CONFIG_USER_ONLY
   1077 
   1078 static void dump_drift_info(GString *buf)
   1079 {
   1080     if (!icount_enabled()) {
   1081         return;
   1082     }
   1083 
   1084     g_string_append_printf(buf, "Host - Guest clock  %"PRIi64" ms\n",
   1085                            (cpu_get_clock() - icount_get()) / SCALE_MS);
   1086     if (icount_align_option) {
   1087         g_string_append_printf(buf, "Max guest delay     %"PRIi64" ms\n",
   1088                                -max_delay / SCALE_MS);
   1089         g_string_append_printf(buf, "Max guest advance   %"PRIi64" ms\n",
   1090                                max_advance / SCALE_MS);
   1091     } else {
   1092         g_string_append_printf(buf, "Max guest delay     NA\n");
   1093         g_string_append_printf(buf, "Max guest advance   NA\n");
   1094     }
   1095 }
   1096 
   1097 HumanReadableText *qmp_x_query_jit(Error **errp)
   1098 {
   1099     g_autoptr(GString) buf = g_string_new("");
   1100 
   1101     if (!tcg_enabled()) {
   1102         error_setg(errp, "JIT information is only available with accel=tcg");
   1103         return NULL;
   1104     }
   1105 
   1106     dump_exec_info(buf);
   1107     dump_drift_info(buf);
   1108 
   1109     return human_readable_text_from_str(buf);
   1110 }
   1111 
   1112 HumanReadableText *qmp_x_query_opcount(Error **errp)
   1113 {
   1114     g_autoptr(GString) buf = g_string_new("");
   1115 
   1116     if (!tcg_enabled()) {
   1117         error_setg(errp, "Opcode count information is only available with accel=tcg");
   1118         return NULL;
   1119     }
   1120 
   1121     tcg_dump_op_count(buf);
   1122 
   1123     return human_readable_text_from_str(buf);
   1124 }
   1125 
   1126 #ifdef CONFIG_PROFILER
   1127 
   1128 int64_t dev_time;
   1129 
   1130 HumanReadableText *qmp_x_query_profile(Error **errp)
   1131 {
   1132     g_autoptr(GString) buf = g_string_new("");
   1133     static int64_t last_cpu_exec_time;
   1134     int64_t cpu_exec_time;
   1135     int64_t delta;
   1136 
   1137     cpu_exec_time = tcg_cpu_exec_time();
   1138     delta = cpu_exec_time - last_cpu_exec_time;
   1139 
   1140     g_string_append_printf(buf, "async time  %" PRId64 " (%0.3f)\n",
   1141                            dev_time, dev_time / (double)NANOSECONDS_PER_SECOND);
   1142     g_string_append_printf(buf, "qemu time   %" PRId64 " (%0.3f)\n",
   1143                            delta, delta / (double)NANOSECONDS_PER_SECOND);
   1144     last_cpu_exec_time = cpu_exec_time;
   1145     dev_time = 0;
   1146 
   1147     return human_readable_text_from_str(buf);
   1148 }
   1149 #else
   1150 HumanReadableText *qmp_x_query_profile(Error **errp)
   1151 {
   1152     error_setg(errp, "Internal profiler not compiled");
   1153     return NULL;
   1154 }
   1155 #endif
   1156 
   1157 #endif /* !CONFIG_USER_ONLY */