qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

kvm-all.c (115637B)


      1 /*
      2  * QEMU KVM support
      3  *
      4  * Copyright IBM, Corp. 2008
      5  *           Red Hat, Inc. 2008
      6  *
      7  * Authors:
      8  *  Anthony Liguori   <aliguori@us.ibm.com>
      9  *  Glauber Costa     <gcosta@redhat.com>
     10  *
     11  * This work is licensed under the terms of the GNU GPL, version 2 or later.
     12  * See the COPYING file in the top-level directory.
     13  *
     14  */
     15 
     16 #include "qemu/osdep.h"
     17 #include <sys/ioctl.h>
     18 #include <poll.h>
     19 
     20 #include <linux/kvm.h>
     21 
     22 #include "qemu/atomic.h"
     23 #include "qemu/option.h"
     24 #include "qemu/config-file.h"
     25 #include "qemu/error-report.h"
     26 #include "qapi/error.h"
     27 #include "hw/pci/msi.h"
     28 #include "hw/pci/msix.h"
     29 #include "hw/s390x/adapter.h"
     30 #include "exec/gdbstub.h"
     31 #include "sysemu/kvm_int.h"
     32 #include "sysemu/runstate.h"
     33 #include "sysemu/cpus.h"
     34 #include "qemu/bswap.h"
     35 #include "exec/memory.h"
     36 #include "exec/ram_addr.h"
     37 #include "qemu/event_notifier.h"
     38 #include "qemu/main-loop.h"
     39 #include "trace.h"
     40 #include "hw/irq.h"
     41 #include "qapi/visitor.h"
     42 #include "qapi/qapi-types-common.h"
     43 #include "qapi/qapi-visit-common.h"
     44 #include "sysemu/reset.h"
     45 #include "qemu/guest-random.h"
     46 #include "sysemu/hw_accel.h"
     47 #include "kvm-cpus.h"
     48 #include "sysemu/dirtylimit.h"
     49 
     50 #include "hw/boards.h"
     51 #include "monitor/stats.h"
     52 
     53 /* This check must be after config-host.h is included */
     54 #ifdef CONFIG_EVENTFD
     55 #include <sys/eventfd.h>
     56 #endif
     57 
     58 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
     59  * need to use the real host PAGE_SIZE, as that's what KVM will use.
     60  */
     61 #ifdef PAGE_SIZE
     62 #undef PAGE_SIZE
     63 #endif
     64 #define PAGE_SIZE qemu_real_host_page_size()
     65 
     66 #ifndef KVM_GUESTDBG_BLOCKIRQ
     67 #define KVM_GUESTDBG_BLOCKIRQ 0
     68 #endif
     69 
     70 //#define DEBUG_KVM
     71 
     72 #ifdef DEBUG_KVM
     73 #define DPRINTF(fmt, ...) \
     74     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
     75 #else
     76 #define DPRINTF(fmt, ...) \
     77     do { } while (0)
     78 #endif
     79 
     80 struct KVMParkedVcpu {
     81     unsigned long vcpu_id;
     82     int kvm_fd;
     83     QLIST_ENTRY(KVMParkedVcpu) node;
     84 };
     85 
     86 KVMState *kvm_state;
     87 bool kvm_kernel_irqchip;
     88 bool kvm_split_irqchip;
     89 bool kvm_async_interrupts_allowed;
     90 bool kvm_halt_in_kernel_allowed;
     91 bool kvm_eventfds_allowed;
     92 bool kvm_irqfds_allowed;
     93 bool kvm_resamplefds_allowed;
     94 bool kvm_msi_via_irqfd_allowed;
     95 bool kvm_gsi_routing_allowed;
     96 bool kvm_gsi_direct_mapping;
     97 bool kvm_allowed;
     98 bool kvm_readonly_mem_allowed;
     99 bool kvm_vm_attributes_allowed;
    100 bool kvm_direct_msi_allowed;
    101 bool kvm_ioeventfd_any_length_allowed;
    102 bool kvm_msi_use_devid;
    103 bool kvm_has_guest_debug;
    104 static int kvm_sstep_flags;
    105 static bool kvm_immediate_exit;
    106 static hwaddr kvm_max_slot_size = ~0;
    107 
    108 static const KVMCapabilityInfo kvm_required_capabilites[] = {
    109     KVM_CAP_INFO(USER_MEMORY),
    110     KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
    111     KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
    112     KVM_CAP_LAST_INFO
    113 };
    114 
    115 static NotifierList kvm_irqchip_change_notifiers =
    116     NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
    117 
    118 struct KVMResampleFd {
    119     int gsi;
    120     EventNotifier *resample_event;
    121     QLIST_ENTRY(KVMResampleFd) node;
    122 };
    123 typedef struct KVMResampleFd KVMResampleFd;
    124 
    125 /*
    126  * Only used with split irqchip where we need to do the resample fd
    127  * kick for the kernel from userspace.
    128  */
    129 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
    130     QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
    131 
    132 static QemuMutex kml_slots_lock;
    133 
    134 #define kvm_slots_lock()    qemu_mutex_lock(&kml_slots_lock)
    135 #define kvm_slots_unlock()  qemu_mutex_unlock(&kml_slots_lock)
    136 
    137 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
    138 
    139 static inline void kvm_resample_fd_remove(int gsi)
    140 {
    141     KVMResampleFd *rfd;
    142 
    143     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
    144         if (rfd->gsi == gsi) {
    145             QLIST_REMOVE(rfd, node);
    146             g_free(rfd);
    147             break;
    148         }
    149     }
    150 }
    151 
    152 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
    153 {
    154     KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
    155 
    156     rfd->gsi = gsi;
    157     rfd->resample_event = event;
    158 
    159     QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
    160 }
    161 
    162 void kvm_resample_fd_notify(int gsi)
    163 {
    164     KVMResampleFd *rfd;
    165 
    166     QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
    167         if (rfd->gsi == gsi) {
    168             event_notifier_set(rfd->resample_event);
    169             trace_kvm_resample_fd_notify(gsi);
    170             return;
    171         }
    172     }
    173 }
    174 
    175 int kvm_get_max_memslots(void)
    176 {
    177     KVMState *s = KVM_STATE(current_accel());
    178 
    179     return s->nr_slots;
    180 }
    181 
    182 /* Called with KVMMemoryListener.slots_lock held */
    183 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
    184 {
    185     KVMState *s = kvm_state;
    186     int i;
    187 
    188     for (i = 0; i < s->nr_slots; i++) {
    189         if (kml->slots[i].memory_size == 0) {
    190             return &kml->slots[i];
    191         }
    192     }
    193 
    194     return NULL;
    195 }
    196 
    197 bool kvm_has_free_slot(MachineState *ms)
    198 {
    199     KVMState *s = KVM_STATE(ms->accelerator);
    200     bool result;
    201     KVMMemoryListener *kml = &s->memory_listener;
    202 
    203     kvm_slots_lock();
    204     result = !!kvm_get_free_slot(kml);
    205     kvm_slots_unlock();
    206 
    207     return result;
    208 }
    209 
    210 /* Called with KVMMemoryListener.slots_lock held */
    211 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
    212 {
    213     KVMSlot *slot = kvm_get_free_slot(kml);
    214 
    215     if (slot) {
    216         return slot;
    217     }
    218 
    219     fprintf(stderr, "%s: no free slot available\n", __func__);
    220     abort();
    221 }
    222 
    223 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
    224                                          hwaddr start_addr,
    225                                          hwaddr size)
    226 {
    227     KVMState *s = kvm_state;
    228     int i;
    229 
    230     for (i = 0; i < s->nr_slots; i++) {
    231         KVMSlot *mem = &kml->slots[i];
    232 
    233         if (start_addr == mem->start_addr && size == mem->memory_size) {
    234             return mem;
    235         }
    236     }
    237 
    238     return NULL;
    239 }
    240 
    241 /*
    242  * Calculate and align the start address and the size of the section.
    243  * Return the size. If the size is 0, the aligned section is empty.
    244  */
    245 static hwaddr kvm_align_section(MemoryRegionSection *section,
    246                                 hwaddr *start)
    247 {
    248     hwaddr size = int128_get64(section->size);
    249     hwaddr delta, aligned;
    250 
    251     /* kvm works in page size chunks, but the function may be called
    252        with sub-page size and unaligned start address. Pad the start
    253        address to next and truncate size to previous page boundary. */
    254     aligned = ROUND_UP(section->offset_within_address_space,
    255                        qemu_real_host_page_size());
    256     delta = aligned - section->offset_within_address_space;
    257     *start = aligned;
    258     if (delta > size) {
    259         return 0;
    260     }
    261 
    262     return (size - delta) & qemu_real_host_page_mask();
    263 }
    264 
    265 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
    266                                        hwaddr *phys_addr)
    267 {
    268     KVMMemoryListener *kml = &s->memory_listener;
    269     int i, ret = 0;
    270 
    271     kvm_slots_lock();
    272     for (i = 0; i < s->nr_slots; i++) {
    273         KVMSlot *mem = &kml->slots[i];
    274 
    275         if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
    276             *phys_addr = mem->start_addr + (ram - mem->ram);
    277             ret = 1;
    278             break;
    279         }
    280     }
    281     kvm_slots_unlock();
    282 
    283     return ret;
    284 }
    285 
    286 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
    287 {
    288     KVMState *s = kvm_state;
    289     struct kvm_userspace_memory_region mem;
    290     int ret;
    291 
    292     mem.slot = slot->slot | (kml->as_id << 16);
    293     mem.guest_phys_addr = slot->start_addr;
    294     mem.userspace_addr = (unsigned long)slot->ram;
    295     mem.flags = slot->flags;
    296 
    297     if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
    298         /* Set the slot size to 0 before setting the slot to the desired
    299          * value. This is needed based on KVM commit 75d61fbc. */
    300         mem.memory_size = 0;
    301         ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
    302         if (ret < 0) {
    303             goto err;
    304         }
    305     }
    306     mem.memory_size = slot->memory_size;
    307     ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
    308     slot->old_flags = mem.flags;
    309 err:
    310     trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
    311                               mem.memory_size, mem.userspace_addr, ret);
    312     if (ret < 0) {
    313         error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
    314                      " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
    315                      __func__, mem.slot, slot->start_addr,
    316                      (uint64_t)mem.memory_size, strerror(errno));
    317     }
    318     return ret;
    319 }
    320 
    321 static int do_kvm_destroy_vcpu(CPUState *cpu)
    322 {
    323     KVMState *s = kvm_state;
    324     long mmap_size;
    325     struct KVMParkedVcpu *vcpu = NULL;
    326     int ret = 0;
    327 
    328     DPRINTF("kvm_destroy_vcpu\n");
    329 
    330     ret = kvm_arch_destroy_vcpu(cpu);
    331     if (ret < 0) {
    332         goto err;
    333     }
    334 
    335     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
    336     if (mmap_size < 0) {
    337         ret = mmap_size;
    338         DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
    339         goto err;
    340     }
    341 
    342     ret = munmap(cpu->kvm_run, mmap_size);
    343     if (ret < 0) {
    344         goto err;
    345     }
    346 
    347     if (cpu->kvm_dirty_gfns) {
    348         ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
    349         if (ret < 0) {
    350             goto err;
    351         }
    352     }
    353 
    354     vcpu = g_malloc0(sizeof(*vcpu));
    355     vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
    356     vcpu->kvm_fd = cpu->kvm_fd;
    357     QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
    358 err:
    359     return ret;
    360 }
    361 
    362 void kvm_destroy_vcpu(CPUState *cpu)
    363 {
    364     if (do_kvm_destroy_vcpu(cpu) < 0) {
    365         error_report("kvm_destroy_vcpu failed");
    366         exit(EXIT_FAILURE);
    367     }
    368 }
    369 
    370 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
    371 {
    372     struct KVMParkedVcpu *cpu;
    373 
    374     QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
    375         if (cpu->vcpu_id == vcpu_id) {
    376             int kvm_fd;
    377 
    378             QLIST_REMOVE(cpu, node);
    379             kvm_fd = cpu->kvm_fd;
    380             g_free(cpu);
    381             return kvm_fd;
    382         }
    383     }
    384 
    385     return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
    386 }
    387 
    388 int kvm_init_vcpu(CPUState *cpu, Error **errp)
    389 {
    390     KVMState *s = kvm_state;
    391     long mmap_size;
    392     int ret;
    393 
    394     trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
    395 
    396     ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
    397     if (ret < 0) {
    398         error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
    399                          kvm_arch_vcpu_id(cpu));
    400         goto err;
    401     }
    402 
    403     cpu->kvm_fd = ret;
    404     cpu->kvm_state = s;
    405     cpu->vcpu_dirty = true;
    406     cpu->dirty_pages = 0;
    407     cpu->throttle_us_per_full = 0;
    408 
    409     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
    410     if (mmap_size < 0) {
    411         ret = mmap_size;
    412         error_setg_errno(errp, -mmap_size,
    413                          "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
    414         goto err;
    415     }
    416 
    417     cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
    418                         cpu->kvm_fd, 0);
    419     if (cpu->kvm_run == MAP_FAILED) {
    420         ret = -errno;
    421         error_setg_errno(errp, ret,
    422                          "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
    423                          kvm_arch_vcpu_id(cpu));
    424         goto err;
    425     }
    426 
    427     if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
    428         s->coalesced_mmio_ring =
    429             (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
    430     }
    431 
    432     if (s->kvm_dirty_ring_size) {
    433         /* Use MAP_SHARED to share pages with the kernel */
    434         cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
    435                                    PROT_READ | PROT_WRITE, MAP_SHARED,
    436                                    cpu->kvm_fd,
    437                                    PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
    438         if (cpu->kvm_dirty_gfns == MAP_FAILED) {
    439             ret = -errno;
    440             DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret);
    441             goto err;
    442         }
    443     }
    444 
    445     ret = kvm_arch_init_vcpu(cpu);
    446     if (ret < 0) {
    447         error_setg_errno(errp, -ret,
    448                          "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
    449                          kvm_arch_vcpu_id(cpu));
    450     }
    451 err:
    452     return ret;
    453 }
    454 
    455 /*
    456  * dirty pages logging control
    457  */
    458 
    459 static int kvm_mem_flags(MemoryRegion *mr)
    460 {
    461     bool readonly = mr->readonly || memory_region_is_romd(mr);
    462     int flags = 0;
    463 
    464     if (memory_region_get_dirty_log_mask(mr) != 0) {
    465         flags |= KVM_MEM_LOG_DIRTY_PAGES;
    466     }
    467     if (readonly && kvm_readonly_mem_allowed) {
    468         flags |= KVM_MEM_READONLY;
    469     }
    470     return flags;
    471 }
    472 
    473 /* Called with KVMMemoryListener.slots_lock held */
    474 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
    475                                  MemoryRegion *mr)
    476 {
    477     mem->flags = kvm_mem_flags(mr);
    478 
    479     /* If nothing changed effectively, no need to issue ioctl */
    480     if (mem->flags == mem->old_flags) {
    481         return 0;
    482     }
    483 
    484     kvm_slot_init_dirty_bitmap(mem);
    485     return kvm_set_user_memory_region(kml, mem, false);
    486 }
    487 
    488 static int kvm_section_update_flags(KVMMemoryListener *kml,
    489                                     MemoryRegionSection *section)
    490 {
    491     hwaddr start_addr, size, slot_size;
    492     KVMSlot *mem;
    493     int ret = 0;
    494 
    495     size = kvm_align_section(section, &start_addr);
    496     if (!size) {
    497         return 0;
    498     }
    499 
    500     kvm_slots_lock();
    501 
    502     while (size && !ret) {
    503         slot_size = MIN(kvm_max_slot_size, size);
    504         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
    505         if (!mem) {
    506             /* We don't have a slot if we want to trap every access. */
    507             goto out;
    508         }
    509 
    510         ret = kvm_slot_update_flags(kml, mem, section->mr);
    511         start_addr += slot_size;
    512         size -= slot_size;
    513     }
    514 
    515 out:
    516     kvm_slots_unlock();
    517     return ret;
    518 }
    519 
    520 static void kvm_log_start(MemoryListener *listener,
    521                           MemoryRegionSection *section,
    522                           int old, int new)
    523 {
    524     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
    525     int r;
    526 
    527     if (old != 0) {
    528         return;
    529     }
    530 
    531     r = kvm_section_update_flags(kml, section);
    532     if (r < 0) {
    533         abort();
    534     }
    535 }
    536 
    537 static void kvm_log_stop(MemoryListener *listener,
    538                           MemoryRegionSection *section,
    539                           int old, int new)
    540 {
    541     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
    542     int r;
    543 
    544     if (new != 0) {
    545         return;
    546     }
    547 
    548     r = kvm_section_update_flags(kml, section);
    549     if (r < 0) {
    550         abort();
    551     }
    552 }
    553 
    554 /* get kvm's dirty pages bitmap and update qemu's */
    555 static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
    556 {
    557     ram_addr_t start = slot->ram_start_offset;
    558     ram_addr_t pages = slot->memory_size / qemu_real_host_page_size();
    559 
    560     cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
    561 }
    562 
    563 static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
    564 {
    565     memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
    566 }
    567 
    568 #define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
    569 
    570 /* Allocate the dirty bitmap for a slot  */
    571 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
    572 {
    573     if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
    574         return;
    575     }
    576 
    577     /*
    578      * XXX bad kernel interface alert
    579      * For dirty bitmap, kernel allocates array of size aligned to
    580      * bits-per-long.  But for case when the kernel is 64bits and
    581      * the userspace is 32bits, userspace can't align to the same
    582      * bits-per-long, since sizeof(long) is different between kernel
    583      * and user space.  This way, userspace will provide buffer which
    584      * may be 4 bytes less than the kernel will use, resulting in
    585      * userspace memory corruption (which is not detectable by valgrind
    586      * too, in most cases).
    587      * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
    588      * a hope that sizeof(long) won't become >8 any time soon.
    589      *
    590      * Note: the granule of kvm dirty log is qemu_real_host_page_size.
    591      * And mem->memory_size is aligned to it (otherwise this mem can't
    592      * be registered to KVM).
    593      */
    594     hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(),
    595                                         /*HOST_LONG_BITS*/ 64) / 8;
    596     mem->dirty_bmap = g_malloc0(bitmap_size);
    597     mem->dirty_bmap_size = bitmap_size;
    598 }
    599 
    600 /*
    601  * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
    602  * succeeded, false otherwise
    603  */
    604 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
    605 {
    606     struct kvm_dirty_log d = {};
    607     int ret;
    608 
    609     d.dirty_bitmap = slot->dirty_bmap;
    610     d.slot = slot->slot | (slot->as_id << 16);
    611     ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
    612 
    613     if (ret == -ENOENT) {
    614         /* kernel does not have dirty bitmap in this slot */
    615         ret = 0;
    616     }
    617     if (ret) {
    618         error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
    619                           __func__, ret);
    620     }
    621     return ret == 0;
    622 }
    623 
    624 /* Should be with all slots_lock held for the address spaces. */
    625 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
    626                                      uint32_t slot_id, uint64_t offset)
    627 {
    628     KVMMemoryListener *kml;
    629     KVMSlot *mem;
    630 
    631     if (as_id >= s->nr_as) {
    632         return;
    633     }
    634 
    635     kml = s->as[as_id].ml;
    636     mem = &kml->slots[slot_id];
    637 
    638     if (!mem->memory_size || offset >=
    639         (mem->memory_size / qemu_real_host_page_size())) {
    640         return;
    641     }
    642 
    643     set_bit(offset, mem->dirty_bmap);
    644 }
    645 
    646 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
    647 {
    648     /*
    649      * Read the flags before the value.  Pairs with barrier in
    650      * KVM's kvm_dirty_ring_push() function.
    651      */
    652     return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY;
    653 }
    654 
    655 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
    656 {
    657     /*
    658      * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS
    659      * sees the full content of the ring:
    660      *
    661      * CPU0                     CPU1                         CPU2
    662      * ------------------------------------------------------------------------------
    663      *                                                       fill gfn0
    664      *                                                       store-rel flags for gfn0
    665      * load-acq flags for gfn0
    666      * store-rel RESET for gfn0
    667      *                          ioctl(RESET_RINGS)
    668      *                            load-acq flags for gfn0
    669      *                            check if flags have RESET
    670      *
    671      * The synchronization goes from CPU2 to CPU0 to CPU1.
    672      */
    673     qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET);
    674 }
    675 
    676 /*
    677  * Should be with all slots_lock held for the address spaces.  It returns the
    678  * dirty page we've collected on this dirty ring.
    679  */
    680 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
    681 {
    682     struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
    683     uint32_t ring_size = s->kvm_dirty_ring_size;
    684     uint32_t count = 0, fetch = cpu->kvm_fetch_index;
    685 
    686     assert(dirty_gfns && ring_size);
    687     trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
    688 
    689     while (true) {
    690         cur = &dirty_gfns[fetch % ring_size];
    691         if (!dirty_gfn_is_dirtied(cur)) {
    692             break;
    693         }
    694         kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
    695                                  cur->offset);
    696         dirty_gfn_set_collected(cur);
    697         trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
    698         fetch++;
    699         count++;
    700     }
    701     cpu->kvm_fetch_index = fetch;
    702     cpu->dirty_pages += count;
    703 
    704     return count;
    705 }
    706 
    707 /* Must be with slots_lock held */
    708 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu)
    709 {
    710     int ret;
    711     uint64_t total = 0;
    712     int64_t stamp;
    713 
    714     stamp = get_clock();
    715 
    716     if (cpu) {
    717         total = kvm_dirty_ring_reap_one(s, cpu);
    718     } else {
    719         CPU_FOREACH(cpu) {
    720             total += kvm_dirty_ring_reap_one(s, cpu);
    721         }
    722     }
    723 
    724     if (total) {
    725         ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
    726         assert(ret == total);
    727     }
    728 
    729     stamp = get_clock() - stamp;
    730 
    731     if (total) {
    732         trace_kvm_dirty_ring_reap(total, stamp / 1000);
    733     }
    734 
    735     return total;
    736 }
    737 
    738 /*
    739  * Currently for simplicity, we must hold BQL before calling this.  We can
    740  * consider to drop the BQL if we're clear with all the race conditions.
    741  */
    742 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu)
    743 {
    744     uint64_t total;
    745 
    746     /*
    747      * We need to lock all kvm slots for all address spaces here,
    748      * because:
    749      *
    750      * (1) We need to mark dirty for dirty bitmaps in multiple slots
    751      *     and for tons of pages, so it's better to take the lock here
    752      *     once rather than once per page.  And more importantly,
    753      *
    754      * (2) We must _NOT_ publish dirty bits to the other threads
    755      *     (e.g., the migration thread) via the kvm memory slot dirty
    756      *     bitmaps before correctly re-protect those dirtied pages.
    757      *     Otherwise we can have potential risk of data corruption if
    758      *     the page data is read in the other thread before we do
    759      *     reset below.
    760      */
    761     kvm_slots_lock();
    762     total = kvm_dirty_ring_reap_locked(s, cpu);
    763     kvm_slots_unlock();
    764 
    765     return total;
    766 }
    767 
    768 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
    769 {
    770     /* No need to do anything */
    771 }
    772 
    773 /*
    774  * Kick all vcpus out in a synchronized way.  When returned, we
    775  * guarantee that every vcpu has been kicked and at least returned to
    776  * userspace once.
    777  */
    778 static void kvm_cpu_synchronize_kick_all(void)
    779 {
    780     CPUState *cpu;
    781 
    782     CPU_FOREACH(cpu) {
    783         run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
    784     }
    785 }
    786 
    787 /*
    788  * Flush all the existing dirty pages to the KVM slot buffers.  When
    789  * this call returns, we guarantee that all the touched dirty pages
    790  * before calling this function have been put into the per-kvmslot
    791  * dirty bitmap.
    792  *
    793  * This function must be called with BQL held.
    794  */
    795 static void kvm_dirty_ring_flush(void)
    796 {
    797     trace_kvm_dirty_ring_flush(0);
    798     /*
    799      * The function needs to be serialized.  Since this function
    800      * should always be with BQL held, serialization is guaranteed.
    801      * However, let's be sure of it.
    802      */
    803     assert(qemu_mutex_iothread_locked());
    804     /*
    805      * First make sure to flush the hardware buffers by kicking all
    806      * vcpus out in a synchronous way.
    807      */
    808     kvm_cpu_synchronize_kick_all();
    809     kvm_dirty_ring_reap(kvm_state, NULL);
    810     trace_kvm_dirty_ring_flush(1);
    811 }
    812 
    813 /**
    814  * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
    815  *
    816  * This function will first try to fetch dirty bitmap from the kernel,
    817  * and then updates qemu's dirty bitmap.
    818  *
    819  * NOTE: caller must be with kml->slots_lock held.
    820  *
    821  * @kml: the KVM memory listener object
    822  * @section: the memory section to sync the dirty bitmap with
    823  */
    824 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
    825                                            MemoryRegionSection *section)
    826 {
    827     KVMState *s = kvm_state;
    828     KVMSlot *mem;
    829     hwaddr start_addr, size;
    830     hwaddr slot_size;
    831 
    832     size = kvm_align_section(section, &start_addr);
    833     while (size) {
    834         slot_size = MIN(kvm_max_slot_size, size);
    835         mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
    836         if (!mem) {
    837             /* We don't have a slot if we want to trap every access. */
    838             return;
    839         }
    840         if (kvm_slot_get_dirty_log(s, mem)) {
    841             kvm_slot_sync_dirty_pages(mem);
    842         }
    843         start_addr += slot_size;
    844         size -= slot_size;
    845     }
    846 }
    847 
    848 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
    849 #define KVM_CLEAR_LOG_SHIFT  6
    850 #define KVM_CLEAR_LOG_ALIGN  (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT)
    851 #define KVM_CLEAR_LOG_MASK   (-KVM_CLEAR_LOG_ALIGN)
    852 
    853 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
    854                                   uint64_t size)
    855 {
    856     KVMState *s = kvm_state;
    857     uint64_t end, bmap_start, start_delta, bmap_npages;
    858     struct kvm_clear_dirty_log d;
    859     unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size();
    860     int ret;
    861 
    862     /*
    863      * We need to extend either the start or the size or both to
    864      * satisfy the KVM interface requirement.  Firstly, do the start
    865      * page alignment on 64 host pages
    866      */
    867     bmap_start = start & KVM_CLEAR_LOG_MASK;
    868     start_delta = start - bmap_start;
    869     bmap_start /= psize;
    870 
    871     /*
    872      * The kernel interface has restriction on the size too, that either:
    873      *
    874      * (1) the size is 64 host pages aligned (just like the start), or
    875      * (2) the size fills up until the end of the KVM memslot.
    876      */
    877     bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
    878         << KVM_CLEAR_LOG_SHIFT;
    879     end = mem->memory_size / psize;
    880     if (bmap_npages > end - bmap_start) {
    881         bmap_npages = end - bmap_start;
    882     }
    883     start_delta /= psize;
    884 
    885     /*
    886      * Prepare the bitmap to clear dirty bits.  Here we must guarantee
    887      * that we won't clear any unknown dirty bits otherwise we might
    888      * accidentally clear some set bits which are not yet synced from
    889      * the kernel into QEMU's bitmap, then we'll lose track of the
    890      * guest modifications upon those pages (which can directly lead
    891      * to guest data loss or panic after migration).
    892      *
    893      * Layout of the KVMSlot.dirty_bmap:
    894      *
    895      *                   |<-------- bmap_npages -----------..>|
    896      *                                                     [1]
    897      *                     start_delta         size
    898      *  |----------------|-------------|------------------|------------|
    899      *  ^                ^             ^                               ^
    900      *  |                |             |                               |
    901      * start          bmap_start     (start)                         end
    902      * of memslot                                             of memslot
    903      *
    904      * [1] bmap_npages can be aligned to either 64 pages or the end of slot
    905      */
    906 
    907     assert(bmap_start % BITS_PER_LONG == 0);
    908     /* We should never do log_clear before log_sync */
    909     assert(mem->dirty_bmap);
    910     if (start_delta || bmap_npages - size / psize) {
    911         /* Slow path - we need to manipulate a temp bitmap */
    912         bmap_clear = bitmap_new(bmap_npages);
    913         bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
    914                                     bmap_start, start_delta + size / psize);
    915         /*
    916          * We need to fill the holes at start because that was not
    917          * specified by the caller and we extended the bitmap only for
    918          * 64 pages alignment
    919          */
    920         bitmap_clear(bmap_clear, 0, start_delta);
    921         d.dirty_bitmap = bmap_clear;
    922     } else {
    923         /*
    924          * Fast path - both start and size align well with BITS_PER_LONG
    925          * (or the end of memory slot)
    926          */
    927         d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
    928     }
    929 
    930     d.first_page = bmap_start;
    931     /* It should never overflow.  If it happens, say something */
    932     assert(bmap_npages <= UINT32_MAX);
    933     d.num_pages = bmap_npages;
    934     d.slot = mem->slot | (as_id << 16);
    935 
    936     ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
    937     if (ret < 0 && ret != -ENOENT) {
    938         error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
    939                      "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
    940                      __func__, d.slot, (uint64_t)d.first_page,
    941                      (uint32_t)d.num_pages, ret);
    942     } else {
    943         ret = 0;
    944         trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
    945     }
    946 
    947     /*
    948      * After we have updated the remote dirty bitmap, we update the
    949      * cached bitmap as well for the memslot, then if another user
    950      * clears the same region we know we shouldn't clear it again on
    951      * the remote otherwise it's data loss as well.
    952      */
    953     bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
    954                  size / psize);
    955     /* This handles the NULL case well */
    956     g_free(bmap_clear);
    957     return ret;
    958 }
    959 
    960 
    961 /**
    962  * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
    963  *
    964  * NOTE: this will be a no-op if we haven't enabled manual dirty log
    965  * protection in the host kernel because in that case this operation
    966  * will be done within log_sync().
    967  *
    968  * @kml:     the kvm memory listener
    969  * @section: the memory range to clear dirty bitmap
    970  */
    971 static int kvm_physical_log_clear(KVMMemoryListener *kml,
    972                                   MemoryRegionSection *section)
    973 {
    974     KVMState *s = kvm_state;
    975     uint64_t start, size, offset, count;
    976     KVMSlot *mem;
    977     int ret = 0, i;
    978 
    979     if (!s->manual_dirty_log_protect) {
    980         /* No need to do explicit clear */
    981         return ret;
    982     }
    983 
    984     start = section->offset_within_address_space;
    985     size = int128_get64(section->size);
    986 
    987     if (!size) {
    988         /* Nothing more we can do... */
    989         return ret;
    990     }
    991 
    992     kvm_slots_lock();
    993 
    994     for (i = 0; i < s->nr_slots; i++) {
    995         mem = &kml->slots[i];
    996         /* Discard slots that are empty or do not overlap the section */
    997         if (!mem->memory_size ||
    998             mem->start_addr > start + size - 1 ||
    999             start > mem->start_addr + mem->memory_size - 1) {
   1000             continue;
   1001         }
   1002 
   1003         if (start >= mem->start_addr) {
   1004             /* The slot starts before section or is aligned to it.  */
   1005             offset = start - mem->start_addr;
   1006             count = MIN(mem->memory_size - offset, size);
   1007         } else {
   1008             /* The slot starts after section.  */
   1009             offset = 0;
   1010             count = MIN(mem->memory_size, size - (mem->start_addr - start));
   1011         }
   1012         ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
   1013         if (ret < 0) {
   1014             break;
   1015         }
   1016     }
   1017 
   1018     kvm_slots_unlock();
   1019 
   1020     return ret;
   1021 }
   1022 
   1023 static void kvm_coalesce_mmio_region(MemoryListener *listener,
   1024                                      MemoryRegionSection *secion,
   1025                                      hwaddr start, hwaddr size)
   1026 {
   1027     KVMState *s = kvm_state;
   1028 
   1029     if (s->coalesced_mmio) {
   1030         struct kvm_coalesced_mmio_zone zone;
   1031 
   1032         zone.addr = start;
   1033         zone.size = size;
   1034         zone.pad = 0;
   1035 
   1036         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
   1037     }
   1038 }
   1039 
   1040 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
   1041                                        MemoryRegionSection *secion,
   1042                                        hwaddr start, hwaddr size)
   1043 {
   1044     KVMState *s = kvm_state;
   1045 
   1046     if (s->coalesced_mmio) {
   1047         struct kvm_coalesced_mmio_zone zone;
   1048 
   1049         zone.addr = start;
   1050         zone.size = size;
   1051         zone.pad = 0;
   1052 
   1053         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
   1054     }
   1055 }
   1056 
   1057 static void kvm_coalesce_pio_add(MemoryListener *listener,
   1058                                 MemoryRegionSection *section,
   1059                                 hwaddr start, hwaddr size)
   1060 {
   1061     KVMState *s = kvm_state;
   1062 
   1063     if (s->coalesced_pio) {
   1064         struct kvm_coalesced_mmio_zone zone;
   1065 
   1066         zone.addr = start;
   1067         zone.size = size;
   1068         zone.pio = 1;
   1069 
   1070         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
   1071     }
   1072 }
   1073 
   1074 static void kvm_coalesce_pio_del(MemoryListener *listener,
   1075                                 MemoryRegionSection *section,
   1076                                 hwaddr start, hwaddr size)
   1077 {
   1078     KVMState *s = kvm_state;
   1079 
   1080     if (s->coalesced_pio) {
   1081         struct kvm_coalesced_mmio_zone zone;
   1082 
   1083         zone.addr = start;
   1084         zone.size = size;
   1085         zone.pio = 1;
   1086 
   1087         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
   1088      }
   1089 }
   1090 
   1091 static MemoryListener kvm_coalesced_pio_listener = {
   1092     .name = "kvm-coalesced-pio",
   1093     .coalesced_io_add = kvm_coalesce_pio_add,
   1094     .coalesced_io_del = kvm_coalesce_pio_del,
   1095 };
   1096 
   1097 int kvm_check_extension(KVMState *s, unsigned int extension)
   1098 {
   1099     int ret;
   1100 
   1101     ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
   1102     if (ret < 0) {
   1103         ret = 0;
   1104     }
   1105 
   1106     return ret;
   1107 }
   1108 
   1109 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
   1110 {
   1111     int ret;
   1112 
   1113     ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
   1114     if (ret < 0) {
   1115         /* VM wide version not implemented, use global one instead */
   1116         ret = kvm_check_extension(s, extension);
   1117     }
   1118 
   1119     return ret;
   1120 }
   1121 
   1122 typedef struct HWPoisonPage {
   1123     ram_addr_t ram_addr;
   1124     QLIST_ENTRY(HWPoisonPage) list;
   1125 } HWPoisonPage;
   1126 
   1127 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
   1128     QLIST_HEAD_INITIALIZER(hwpoison_page_list);
   1129 
   1130 static void kvm_unpoison_all(void *param)
   1131 {
   1132     HWPoisonPage *page, *next_page;
   1133 
   1134     QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
   1135         QLIST_REMOVE(page, list);
   1136         qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
   1137         g_free(page);
   1138     }
   1139 }
   1140 
   1141 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
   1142 {
   1143     HWPoisonPage *page;
   1144 
   1145     QLIST_FOREACH(page, &hwpoison_page_list, list) {
   1146         if (page->ram_addr == ram_addr) {
   1147             return;
   1148         }
   1149     }
   1150     page = g_new(HWPoisonPage, 1);
   1151     page->ram_addr = ram_addr;
   1152     QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
   1153 }
   1154 
   1155 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
   1156 {
   1157 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
   1158     /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN
   1159      * endianness, but the memory core hands them in target endianness.
   1160      * For example, PPC is always treated as big-endian even if running
   1161      * on KVM and on PPC64LE.  Correct here.
   1162      */
   1163     switch (size) {
   1164     case 2:
   1165         val = bswap16(val);
   1166         break;
   1167     case 4:
   1168         val = bswap32(val);
   1169         break;
   1170     }
   1171 #endif
   1172     return val;
   1173 }
   1174 
   1175 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
   1176                                   bool assign, uint32_t size, bool datamatch)
   1177 {
   1178     int ret;
   1179     struct kvm_ioeventfd iofd = {
   1180         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
   1181         .addr = addr,
   1182         .len = size,
   1183         .flags = 0,
   1184         .fd = fd,
   1185     };
   1186 
   1187     trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
   1188                                  datamatch);
   1189     if (!kvm_enabled()) {
   1190         return -ENOSYS;
   1191     }
   1192 
   1193     if (datamatch) {
   1194         iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
   1195     }
   1196     if (!assign) {
   1197         iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
   1198     }
   1199 
   1200     ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
   1201 
   1202     if (ret < 0) {
   1203         return -errno;
   1204     }
   1205 
   1206     return 0;
   1207 }
   1208 
   1209 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
   1210                                  bool assign, uint32_t size, bool datamatch)
   1211 {
   1212     struct kvm_ioeventfd kick = {
   1213         .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
   1214         .addr = addr,
   1215         .flags = KVM_IOEVENTFD_FLAG_PIO,
   1216         .len = size,
   1217         .fd = fd,
   1218     };
   1219     int r;
   1220     trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
   1221     if (!kvm_enabled()) {
   1222         return -ENOSYS;
   1223     }
   1224     if (datamatch) {
   1225         kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
   1226     }
   1227     if (!assign) {
   1228         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
   1229     }
   1230     r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
   1231     if (r < 0) {
   1232         return r;
   1233     }
   1234     return 0;
   1235 }
   1236 
   1237 
   1238 static int kvm_check_many_ioeventfds(void)
   1239 {
   1240     /* Userspace can use ioeventfd for io notification.  This requires a host
   1241      * that supports eventfd(2) and an I/O thread; since eventfd does not
   1242      * support SIGIO it cannot interrupt the vcpu.
   1243      *
   1244      * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
   1245      * can avoid creating too many ioeventfds.
   1246      */
   1247 #if defined(CONFIG_EVENTFD)
   1248     int ioeventfds[7];
   1249     int i, ret = 0;
   1250     for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
   1251         ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
   1252         if (ioeventfds[i] < 0) {
   1253             break;
   1254         }
   1255         ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
   1256         if (ret < 0) {
   1257             close(ioeventfds[i]);
   1258             break;
   1259         }
   1260     }
   1261 
   1262     /* Decide whether many devices are supported or not */
   1263     ret = i == ARRAY_SIZE(ioeventfds);
   1264 
   1265     while (i-- > 0) {
   1266         kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
   1267         close(ioeventfds[i]);
   1268     }
   1269     return ret;
   1270 #else
   1271     return 0;
   1272 #endif
   1273 }
   1274 
   1275 static const KVMCapabilityInfo *
   1276 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
   1277 {
   1278     while (list->name) {
   1279         if (!kvm_check_extension(s, list->value)) {
   1280             return list;
   1281         }
   1282         list++;
   1283     }
   1284     return NULL;
   1285 }
   1286 
   1287 void kvm_set_max_memslot_size(hwaddr max_slot_size)
   1288 {
   1289     g_assert(
   1290         ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size
   1291     );
   1292     kvm_max_slot_size = max_slot_size;
   1293 }
   1294 
   1295 static void kvm_set_phys_mem(KVMMemoryListener *kml,
   1296                              MemoryRegionSection *section, bool add)
   1297 {
   1298     KVMSlot *mem;
   1299     int err;
   1300     MemoryRegion *mr = section->mr;
   1301     bool writable = !mr->readonly && !mr->rom_device;
   1302     hwaddr start_addr, size, slot_size, mr_offset;
   1303     ram_addr_t ram_start_offset;
   1304     void *ram;
   1305 
   1306     if (!memory_region_is_ram(mr)) {
   1307         if (writable || !kvm_readonly_mem_allowed) {
   1308             return;
   1309         } else if (!mr->romd_mode) {
   1310             /* If the memory device is not in romd_mode, then we actually want
   1311              * to remove the kvm memory slot so all accesses will trap. */
   1312             add = false;
   1313         }
   1314     }
   1315 
   1316     size = kvm_align_section(section, &start_addr);
   1317     if (!size) {
   1318         return;
   1319     }
   1320 
   1321     /* The offset of the kvmslot within the memory region */
   1322     mr_offset = section->offset_within_region + start_addr -
   1323         section->offset_within_address_space;
   1324 
   1325     /* use aligned delta to align the ram address and offset */
   1326     ram = memory_region_get_ram_ptr(mr) + mr_offset;
   1327     ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
   1328 
   1329     kvm_slots_lock();
   1330 
   1331     if (!add) {
   1332         do {
   1333             slot_size = MIN(kvm_max_slot_size, size);
   1334             mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
   1335             if (!mem) {
   1336                 goto out;
   1337             }
   1338             if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
   1339                 /*
   1340                  * NOTE: We should be aware of the fact that here we're only
   1341                  * doing a best effort to sync dirty bits.  No matter whether
   1342                  * we're using dirty log or dirty ring, we ignored two facts:
   1343                  *
   1344                  * (1) dirty bits can reside in hardware buffers (PML)
   1345                  *
   1346                  * (2) after we collected dirty bits here, pages can be dirtied
   1347                  * again before we do the final KVM_SET_USER_MEMORY_REGION to
   1348                  * remove the slot.
   1349                  *
   1350                  * Not easy.  Let's cross the fingers until it's fixed.
   1351                  */
   1352                 if (kvm_state->kvm_dirty_ring_size) {
   1353                     kvm_dirty_ring_reap_locked(kvm_state, NULL);
   1354                 } else {
   1355                     kvm_slot_get_dirty_log(kvm_state, mem);
   1356                 }
   1357                 kvm_slot_sync_dirty_pages(mem);
   1358             }
   1359 
   1360             /* unregister the slot */
   1361             g_free(mem->dirty_bmap);
   1362             mem->dirty_bmap = NULL;
   1363             mem->memory_size = 0;
   1364             mem->flags = 0;
   1365             err = kvm_set_user_memory_region(kml, mem, false);
   1366             if (err) {
   1367                 fprintf(stderr, "%s: error unregistering slot: %s\n",
   1368                         __func__, strerror(-err));
   1369                 abort();
   1370             }
   1371             start_addr += slot_size;
   1372             size -= slot_size;
   1373         } while (size);
   1374         goto out;
   1375     }
   1376 
   1377     /* register the new slot */
   1378     do {
   1379         slot_size = MIN(kvm_max_slot_size, size);
   1380         mem = kvm_alloc_slot(kml);
   1381         mem->as_id = kml->as_id;
   1382         mem->memory_size = slot_size;
   1383         mem->start_addr = start_addr;
   1384         mem->ram_start_offset = ram_start_offset;
   1385         mem->ram = ram;
   1386         mem->flags = kvm_mem_flags(mr);
   1387         kvm_slot_init_dirty_bitmap(mem);
   1388         err = kvm_set_user_memory_region(kml, mem, true);
   1389         if (err) {
   1390             fprintf(stderr, "%s: error registering slot: %s\n", __func__,
   1391                     strerror(-err));
   1392             abort();
   1393         }
   1394         start_addr += slot_size;
   1395         ram_start_offset += slot_size;
   1396         ram += slot_size;
   1397         size -= slot_size;
   1398     } while (size);
   1399 
   1400 out:
   1401     kvm_slots_unlock();
   1402 }
   1403 
   1404 static void *kvm_dirty_ring_reaper_thread(void *data)
   1405 {
   1406     KVMState *s = data;
   1407     struct KVMDirtyRingReaper *r = &s->reaper;
   1408 
   1409     rcu_register_thread();
   1410 
   1411     trace_kvm_dirty_ring_reaper("init");
   1412 
   1413     while (true) {
   1414         r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
   1415         trace_kvm_dirty_ring_reaper("wait");
   1416         /*
   1417          * TODO: provide a smarter timeout rather than a constant?
   1418          */
   1419         sleep(1);
   1420 
   1421         /* keep sleeping so that dirtylimit not be interfered by reaper */
   1422         if (dirtylimit_in_service()) {
   1423             continue;
   1424         }
   1425 
   1426         trace_kvm_dirty_ring_reaper("wakeup");
   1427         r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
   1428 
   1429         qemu_mutex_lock_iothread();
   1430         kvm_dirty_ring_reap(s, NULL);
   1431         qemu_mutex_unlock_iothread();
   1432 
   1433         r->reaper_iteration++;
   1434     }
   1435 
   1436     trace_kvm_dirty_ring_reaper("exit");
   1437 
   1438     rcu_unregister_thread();
   1439 
   1440     return NULL;
   1441 }
   1442 
   1443 static int kvm_dirty_ring_reaper_init(KVMState *s)
   1444 {
   1445     struct KVMDirtyRingReaper *r = &s->reaper;
   1446 
   1447     qemu_thread_create(&r->reaper_thr, "kvm-reaper",
   1448                        kvm_dirty_ring_reaper_thread,
   1449                        s, QEMU_THREAD_JOINABLE);
   1450 
   1451     return 0;
   1452 }
   1453 
   1454 static void kvm_region_add(MemoryListener *listener,
   1455                            MemoryRegionSection *section)
   1456 {
   1457     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
   1458 
   1459     memory_region_ref(section->mr);
   1460     kvm_set_phys_mem(kml, section, true);
   1461 }
   1462 
   1463 static void kvm_region_del(MemoryListener *listener,
   1464                            MemoryRegionSection *section)
   1465 {
   1466     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
   1467 
   1468     kvm_set_phys_mem(kml, section, false);
   1469     memory_region_unref(section->mr);
   1470 }
   1471 
   1472 static void kvm_log_sync(MemoryListener *listener,
   1473                          MemoryRegionSection *section)
   1474 {
   1475     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
   1476 
   1477     kvm_slots_lock();
   1478     kvm_physical_sync_dirty_bitmap(kml, section);
   1479     kvm_slots_unlock();
   1480 }
   1481 
   1482 static void kvm_log_sync_global(MemoryListener *l)
   1483 {
   1484     KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
   1485     KVMState *s = kvm_state;
   1486     KVMSlot *mem;
   1487     int i;
   1488 
   1489     /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
   1490     kvm_dirty_ring_flush();
   1491 
   1492     /*
   1493      * TODO: make this faster when nr_slots is big while there are
   1494      * only a few used slots (small VMs).
   1495      */
   1496     kvm_slots_lock();
   1497     for (i = 0; i < s->nr_slots; i++) {
   1498         mem = &kml->slots[i];
   1499         if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
   1500             kvm_slot_sync_dirty_pages(mem);
   1501             /*
   1502              * This is not needed by KVM_GET_DIRTY_LOG because the
   1503              * ioctl will unconditionally overwrite the whole region.
   1504              * However kvm dirty ring has no such side effect.
   1505              */
   1506             kvm_slot_reset_dirty_pages(mem);
   1507         }
   1508     }
   1509     kvm_slots_unlock();
   1510 }
   1511 
   1512 static void kvm_log_clear(MemoryListener *listener,
   1513                           MemoryRegionSection *section)
   1514 {
   1515     KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
   1516     int r;
   1517 
   1518     r = kvm_physical_log_clear(kml, section);
   1519     if (r < 0) {
   1520         error_report_once("%s: kvm log clear failed: mr=%s "
   1521                           "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
   1522                           section->mr->name, section->offset_within_region,
   1523                           int128_get64(section->size));
   1524         abort();
   1525     }
   1526 }
   1527 
   1528 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
   1529                                   MemoryRegionSection *section,
   1530                                   bool match_data, uint64_t data,
   1531                                   EventNotifier *e)
   1532 {
   1533     int fd = event_notifier_get_fd(e);
   1534     int r;
   1535 
   1536     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
   1537                                data, true, int128_get64(section->size),
   1538                                match_data);
   1539     if (r < 0) {
   1540         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
   1541                 __func__, strerror(-r), -r);
   1542         abort();
   1543     }
   1544 }
   1545 
   1546 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
   1547                                   MemoryRegionSection *section,
   1548                                   bool match_data, uint64_t data,
   1549                                   EventNotifier *e)
   1550 {
   1551     int fd = event_notifier_get_fd(e);
   1552     int r;
   1553 
   1554     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
   1555                                data, false, int128_get64(section->size),
   1556                                match_data);
   1557     if (r < 0) {
   1558         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
   1559                 __func__, strerror(-r), -r);
   1560         abort();
   1561     }
   1562 }
   1563 
   1564 static void kvm_io_ioeventfd_add(MemoryListener *listener,
   1565                                  MemoryRegionSection *section,
   1566                                  bool match_data, uint64_t data,
   1567                                  EventNotifier *e)
   1568 {
   1569     int fd = event_notifier_get_fd(e);
   1570     int r;
   1571 
   1572     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
   1573                               data, true, int128_get64(section->size),
   1574                               match_data);
   1575     if (r < 0) {
   1576         fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
   1577                 __func__, strerror(-r), -r);
   1578         abort();
   1579     }
   1580 }
   1581 
   1582 static void kvm_io_ioeventfd_del(MemoryListener *listener,
   1583                                  MemoryRegionSection *section,
   1584                                  bool match_data, uint64_t data,
   1585                                  EventNotifier *e)
   1586 
   1587 {
   1588     int fd = event_notifier_get_fd(e);
   1589     int r;
   1590 
   1591     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
   1592                               data, false, int128_get64(section->size),
   1593                               match_data);
   1594     if (r < 0) {
   1595         fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
   1596                 __func__, strerror(-r), -r);
   1597         abort();
   1598     }
   1599 }
   1600 
   1601 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
   1602                                   AddressSpace *as, int as_id, const char *name)
   1603 {
   1604     int i;
   1605 
   1606     kml->slots = g_new0(KVMSlot, s->nr_slots);
   1607     kml->as_id = as_id;
   1608 
   1609     for (i = 0; i < s->nr_slots; i++) {
   1610         kml->slots[i].slot = i;
   1611     }
   1612 
   1613     kml->listener.region_add = kvm_region_add;
   1614     kml->listener.region_del = kvm_region_del;
   1615     kml->listener.log_start = kvm_log_start;
   1616     kml->listener.log_stop = kvm_log_stop;
   1617     kml->listener.priority = 10;
   1618     kml->listener.name = name;
   1619 
   1620     if (s->kvm_dirty_ring_size) {
   1621         kml->listener.log_sync_global = kvm_log_sync_global;
   1622     } else {
   1623         kml->listener.log_sync = kvm_log_sync;
   1624         kml->listener.log_clear = kvm_log_clear;
   1625     }
   1626 
   1627     memory_listener_register(&kml->listener, as);
   1628 
   1629     for (i = 0; i < s->nr_as; ++i) {
   1630         if (!s->as[i].as) {
   1631             s->as[i].as = as;
   1632             s->as[i].ml = kml;
   1633             break;
   1634         }
   1635     }
   1636 }
   1637 
   1638 static MemoryListener kvm_io_listener = {
   1639     .name = "kvm-io",
   1640     .eventfd_add = kvm_io_ioeventfd_add,
   1641     .eventfd_del = kvm_io_ioeventfd_del,
   1642     .priority = 10,
   1643 };
   1644 
   1645 int kvm_set_irq(KVMState *s, int irq, int level)
   1646 {
   1647     struct kvm_irq_level event;
   1648     int ret;
   1649 
   1650     assert(kvm_async_interrupts_enabled());
   1651 
   1652     event.level = level;
   1653     event.irq = irq;
   1654     ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
   1655     if (ret < 0) {
   1656         perror("kvm_set_irq");
   1657         abort();
   1658     }
   1659 
   1660     return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
   1661 }
   1662 
   1663 #ifdef KVM_CAP_IRQ_ROUTING
   1664 typedef struct KVMMSIRoute {
   1665     struct kvm_irq_routing_entry kroute;
   1666     QTAILQ_ENTRY(KVMMSIRoute) entry;
   1667 } KVMMSIRoute;
   1668 
   1669 static void set_gsi(KVMState *s, unsigned int gsi)
   1670 {
   1671     set_bit(gsi, s->used_gsi_bitmap);
   1672 }
   1673 
   1674 static void clear_gsi(KVMState *s, unsigned int gsi)
   1675 {
   1676     clear_bit(gsi, s->used_gsi_bitmap);
   1677 }
   1678 
   1679 void kvm_init_irq_routing(KVMState *s)
   1680 {
   1681     int gsi_count, i;
   1682 
   1683     gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
   1684     if (gsi_count > 0) {
   1685         /* Round up so we can search ints using ffs */
   1686         s->used_gsi_bitmap = bitmap_new(gsi_count);
   1687         s->gsi_count = gsi_count;
   1688     }
   1689 
   1690     s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
   1691     s->nr_allocated_irq_routes = 0;
   1692 
   1693     if (!kvm_direct_msi_allowed) {
   1694         for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
   1695             QTAILQ_INIT(&s->msi_hashtab[i]);
   1696         }
   1697     }
   1698 
   1699     kvm_arch_init_irq_routing(s);
   1700 }
   1701 
   1702 void kvm_irqchip_commit_routes(KVMState *s)
   1703 {
   1704     int ret;
   1705 
   1706     if (kvm_gsi_direct_mapping()) {
   1707         return;
   1708     }
   1709 
   1710     if (!kvm_gsi_routing_enabled()) {
   1711         return;
   1712     }
   1713 
   1714     s->irq_routes->flags = 0;
   1715     trace_kvm_irqchip_commit_routes();
   1716     ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
   1717     assert(ret == 0);
   1718 }
   1719 
   1720 static void kvm_add_routing_entry(KVMState *s,
   1721                                   struct kvm_irq_routing_entry *entry)
   1722 {
   1723     struct kvm_irq_routing_entry *new;
   1724     int n, size;
   1725 
   1726     if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
   1727         n = s->nr_allocated_irq_routes * 2;
   1728         if (n < 64) {
   1729             n = 64;
   1730         }
   1731         size = sizeof(struct kvm_irq_routing);
   1732         size += n * sizeof(*new);
   1733         s->irq_routes = g_realloc(s->irq_routes, size);
   1734         s->nr_allocated_irq_routes = n;
   1735     }
   1736     n = s->irq_routes->nr++;
   1737     new = &s->irq_routes->entries[n];
   1738 
   1739     *new = *entry;
   1740 
   1741     set_gsi(s, entry->gsi);
   1742 }
   1743 
   1744 static int kvm_update_routing_entry(KVMState *s,
   1745                                     struct kvm_irq_routing_entry *new_entry)
   1746 {
   1747     struct kvm_irq_routing_entry *entry;
   1748     int n;
   1749 
   1750     for (n = 0; n < s->irq_routes->nr; n++) {
   1751         entry = &s->irq_routes->entries[n];
   1752         if (entry->gsi != new_entry->gsi) {
   1753             continue;
   1754         }
   1755 
   1756         if(!memcmp(entry, new_entry, sizeof *entry)) {
   1757             return 0;
   1758         }
   1759 
   1760         *entry = *new_entry;
   1761 
   1762         return 0;
   1763     }
   1764 
   1765     return -ESRCH;
   1766 }
   1767 
   1768 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
   1769 {
   1770     struct kvm_irq_routing_entry e = {};
   1771 
   1772     assert(pin < s->gsi_count);
   1773 
   1774     e.gsi = irq;
   1775     e.type = KVM_IRQ_ROUTING_IRQCHIP;
   1776     e.flags = 0;
   1777     e.u.irqchip.irqchip = irqchip;
   1778     e.u.irqchip.pin = pin;
   1779     kvm_add_routing_entry(s, &e);
   1780 }
   1781 
   1782 void kvm_irqchip_release_virq(KVMState *s, int virq)
   1783 {
   1784     struct kvm_irq_routing_entry *e;
   1785     int i;
   1786 
   1787     if (kvm_gsi_direct_mapping()) {
   1788         return;
   1789     }
   1790 
   1791     for (i = 0; i < s->irq_routes->nr; i++) {
   1792         e = &s->irq_routes->entries[i];
   1793         if (e->gsi == virq) {
   1794             s->irq_routes->nr--;
   1795             *e = s->irq_routes->entries[s->irq_routes->nr];
   1796         }
   1797     }
   1798     clear_gsi(s, virq);
   1799     kvm_arch_release_virq_post(virq);
   1800     trace_kvm_irqchip_release_virq(virq);
   1801 }
   1802 
   1803 void kvm_irqchip_add_change_notifier(Notifier *n)
   1804 {
   1805     notifier_list_add(&kvm_irqchip_change_notifiers, n);
   1806 }
   1807 
   1808 void kvm_irqchip_remove_change_notifier(Notifier *n)
   1809 {
   1810     notifier_remove(n);
   1811 }
   1812 
   1813 void kvm_irqchip_change_notify(void)
   1814 {
   1815     notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
   1816 }
   1817 
   1818 static unsigned int kvm_hash_msi(uint32_t data)
   1819 {
   1820     /* This is optimized for IA32 MSI layout. However, no other arch shall
   1821      * repeat the mistake of not providing a direct MSI injection API. */
   1822     return data & 0xff;
   1823 }
   1824 
   1825 static void kvm_flush_dynamic_msi_routes(KVMState *s)
   1826 {
   1827     KVMMSIRoute *route, *next;
   1828     unsigned int hash;
   1829 
   1830     for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
   1831         QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
   1832             kvm_irqchip_release_virq(s, route->kroute.gsi);
   1833             QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
   1834             g_free(route);
   1835         }
   1836     }
   1837 }
   1838 
   1839 static int kvm_irqchip_get_virq(KVMState *s)
   1840 {
   1841     int next_virq;
   1842 
   1843     /*
   1844      * PIC and IOAPIC share the first 16 GSI numbers, thus the available
   1845      * GSI numbers are more than the number of IRQ route. Allocating a GSI
   1846      * number can succeed even though a new route entry cannot be added.
   1847      * When this happens, flush dynamic MSI entries to free IRQ route entries.
   1848      */
   1849     if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
   1850         kvm_flush_dynamic_msi_routes(s);
   1851     }
   1852 
   1853     /* Return the lowest unused GSI in the bitmap */
   1854     next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
   1855     if (next_virq >= s->gsi_count) {
   1856         return -ENOSPC;
   1857     } else {
   1858         return next_virq;
   1859     }
   1860 }
   1861 
   1862 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
   1863 {
   1864     unsigned int hash = kvm_hash_msi(msg.data);
   1865     KVMMSIRoute *route;
   1866 
   1867     QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
   1868         if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
   1869             route->kroute.u.msi.address_hi == (msg.address >> 32) &&
   1870             route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
   1871             return route;
   1872         }
   1873     }
   1874     return NULL;
   1875 }
   1876 
   1877 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
   1878 {
   1879     struct kvm_msi msi;
   1880     KVMMSIRoute *route;
   1881 
   1882     if (kvm_direct_msi_allowed) {
   1883         msi.address_lo = (uint32_t)msg.address;
   1884         msi.address_hi = msg.address >> 32;
   1885         msi.data = le32_to_cpu(msg.data);
   1886         msi.flags = 0;
   1887         memset(msi.pad, 0, sizeof(msi.pad));
   1888 
   1889         return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
   1890     }
   1891 
   1892     route = kvm_lookup_msi_route(s, msg);
   1893     if (!route) {
   1894         int virq;
   1895 
   1896         virq = kvm_irqchip_get_virq(s);
   1897         if (virq < 0) {
   1898             return virq;
   1899         }
   1900 
   1901         route = g_new0(KVMMSIRoute, 1);
   1902         route->kroute.gsi = virq;
   1903         route->kroute.type = KVM_IRQ_ROUTING_MSI;
   1904         route->kroute.flags = 0;
   1905         route->kroute.u.msi.address_lo = (uint32_t)msg.address;
   1906         route->kroute.u.msi.address_hi = msg.address >> 32;
   1907         route->kroute.u.msi.data = le32_to_cpu(msg.data);
   1908 
   1909         kvm_add_routing_entry(s, &route->kroute);
   1910         kvm_irqchip_commit_routes(s);
   1911 
   1912         QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
   1913                            entry);
   1914     }
   1915 
   1916     assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
   1917 
   1918     return kvm_set_irq(s, route->kroute.gsi, 1);
   1919 }
   1920 
   1921 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
   1922 {
   1923     struct kvm_irq_routing_entry kroute = {};
   1924     int virq;
   1925     KVMState *s = c->s;
   1926     MSIMessage msg = {0, 0};
   1927 
   1928     if (pci_available && dev) {
   1929         msg = pci_get_msi_message(dev, vector);
   1930     }
   1931 
   1932     if (kvm_gsi_direct_mapping()) {
   1933         return kvm_arch_msi_data_to_gsi(msg.data);
   1934     }
   1935 
   1936     if (!kvm_gsi_routing_enabled()) {
   1937         return -ENOSYS;
   1938     }
   1939 
   1940     virq = kvm_irqchip_get_virq(s);
   1941     if (virq < 0) {
   1942         return virq;
   1943     }
   1944 
   1945     kroute.gsi = virq;
   1946     kroute.type = KVM_IRQ_ROUTING_MSI;
   1947     kroute.flags = 0;
   1948     kroute.u.msi.address_lo = (uint32_t)msg.address;
   1949     kroute.u.msi.address_hi = msg.address >> 32;
   1950     kroute.u.msi.data = le32_to_cpu(msg.data);
   1951     if (pci_available && kvm_msi_devid_required()) {
   1952         kroute.flags = KVM_MSI_VALID_DEVID;
   1953         kroute.u.msi.devid = pci_requester_id(dev);
   1954     }
   1955     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
   1956         kvm_irqchip_release_virq(s, virq);
   1957         return -EINVAL;
   1958     }
   1959 
   1960     trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
   1961                                     vector, virq);
   1962 
   1963     kvm_add_routing_entry(s, &kroute);
   1964     kvm_arch_add_msi_route_post(&kroute, vector, dev);
   1965     c->changes++;
   1966 
   1967     return virq;
   1968 }
   1969 
   1970 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
   1971                                  PCIDevice *dev)
   1972 {
   1973     struct kvm_irq_routing_entry kroute = {};
   1974 
   1975     if (kvm_gsi_direct_mapping()) {
   1976         return 0;
   1977     }
   1978 
   1979     if (!kvm_irqchip_in_kernel()) {
   1980         return -ENOSYS;
   1981     }
   1982 
   1983     kroute.gsi = virq;
   1984     kroute.type = KVM_IRQ_ROUTING_MSI;
   1985     kroute.flags = 0;
   1986     kroute.u.msi.address_lo = (uint32_t)msg.address;
   1987     kroute.u.msi.address_hi = msg.address >> 32;
   1988     kroute.u.msi.data = le32_to_cpu(msg.data);
   1989     if (pci_available && kvm_msi_devid_required()) {
   1990         kroute.flags = KVM_MSI_VALID_DEVID;
   1991         kroute.u.msi.devid = pci_requester_id(dev);
   1992     }
   1993     if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
   1994         return -EINVAL;
   1995     }
   1996 
   1997     trace_kvm_irqchip_update_msi_route(virq);
   1998 
   1999     return kvm_update_routing_entry(s, &kroute);
   2000 }
   2001 
   2002 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
   2003                                     EventNotifier *resample, int virq,
   2004                                     bool assign)
   2005 {
   2006     int fd = event_notifier_get_fd(event);
   2007     int rfd = resample ? event_notifier_get_fd(resample) : -1;
   2008 
   2009     struct kvm_irqfd irqfd = {
   2010         .fd = fd,
   2011         .gsi = virq,
   2012         .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
   2013     };
   2014 
   2015     if (rfd != -1) {
   2016         assert(assign);
   2017         if (kvm_irqchip_is_split()) {
   2018             /*
   2019              * When the slow irqchip (e.g. IOAPIC) is in the
   2020              * userspace, KVM kernel resamplefd will not work because
   2021              * the EOI of the interrupt will be delivered to userspace
   2022              * instead, so the KVM kernel resamplefd kick will be
   2023              * skipped.  The userspace here mimics what the kernel
   2024              * provides with resamplefd, remember the resamplefd and
   2025              * kick it when we receive EOI of this IRQ.
   2026              *
   2027              * This is hackery because IOAPIC is mostly bypassed
   2028              * (except EOI broadcasts) when irqfd is used.  However
   2029              * this can bring much performance back for split irqchip
   2030              * with INTx IRQs (for VFIO, this gives 93% perf of the
   2031              * full fast path, which is 46% perf boost comparing to
   2032              * the INTx slow path).
   2033              */
   2034             kvm_resample_fd_insert(virq, resample);
   2035         } else {
   2036             irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
   2037             irqfd.resamplefd = rfd;
   2038         }
   2039     } else if (!assign) {
   2040         if (kvm_irqchip_is_split()) {
   2041             kvm_resample_fd_remove(virq);
   2042         }
   2043     }
   2044 
   2045     if (!kvm_irqfds_enabled()) {
   2046         return -ENOSYS;
   2047     }
   2048 
   2049     return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
   2050 }
   2051 
   2052 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
   2053 {
   2054     struct kvm_irq_routing_entry kroute = {};
   2055     int virq;
   2056 
   2057     if (!kvm_gsi_routing_enabled()) {
   2058         return -ENOSYS;
   2059     }
   2060 
   2061     virq = kvm_irqchip_get_virq(s);
   2062     if (virq < 0) {
   2063         return virq;
   2064     }
   2065 
   2066     kroute.gsi = virq;
   2067     kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
   2068     kroute.flags = 0;
   2069     kroute.u.adapter.summary_addr = adapter->summary_addr;
   2070     kroute.u.adapter.ind_addr = adapter->ind_addr;
   2071     kroute.u.adapter.summary_offset = adapter->summary_offset;
   2072     kroute.u.adapter.ind_offset = adapter->ind_offset;
   2073     kroute.u.adapter.adapter_id = adapter->adapter_id;
   2074 
   2075     kvm_add_routing_entry(s, &kroute);
   2076 
   2077     return virq;
   2078 }
   2079 
   2080 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
   2081 {
   2082     struct kvm_irq_routing_entry kroute = {};
   2083     int virq;
   2084 
   2085     if (!kvm_gsi_routing_enabled()) {
   2086         return -ENOSYS;
   2087     }
   2088     if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
   2089         return -ENOSYS;
   2090     }
   2091     virq = kvm_irqchip_get_virq(s);
   2092     if (virq < 0) {
   2093         return virq;
   2094     }
   2095 
   2096     kroute.gsi = virq;
   2097     kroute.type = KVM_IRQ_ROUTING_HV_SINT;
   2098     kroute.flags = 0;
   2099     kroute.u.hv_sint.vcpu = vcpu;
   2100     kroute.u.hv_sint.sint = sint;
   2101 
   2102     kvm_add_routing_entry(s, &kroute);
   2103     kvm_irqchip_commit_routes(s);
   2104 
   2105     return virq;
   2106 }
   2107 
   2108 #else /* !KVM_CAP_IRQ_ROUTING */
   2109 
   2110 void kvm_init_irq_routing(KVMState *s)
   2111 {
   2112 }
   2113 
   2114 void kvm_irqchip_release_virq(KVMState *s, int virq)
   2115 {
   2116 }
   2117 
   2118 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
   2119 {
   2120     abort();
   2121 }
   2122 
   2123 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
   2124 {
   2125     return -ENOSYS;
   2126 }
   2127 
   2128 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
   2129 {
   2130     return -ENOSYS;
   2131 }
   2132 
   2133 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
   2134 {
   2135     return -ENOSYS;
   2136 }
   2137 
   2138 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
   2139                                     EventNotifier *resample, int virq,
   2140                                     bool assign)
   2141 {
   2142     abort();
   2143 }
   2144 
   2145 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
   2146 {
   2147     return -ENOSYS;
   2148 }
   2149 #endif /* !KVM_CAP_IRQ_ROUTING */
   2150 
   2151 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
   2152                                        EventNotifier *rn, int virq)
   2153 {
   2154     return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
   2155 }
   2156 
   2157 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
   2158                                           int virq)
   2159 {
   2160     return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
   2161 }
   2162 
   2163 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
   2164                                    EventNotifier *rn, qemu_irq irq)
   2165 {
   2166     gpointer key, gsi;
   2167     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
   2168 
   2169     if (!found) {
   2170         return -ENXIO;
   2171     }
   2172     return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
   2173 }
   2174 
   2175 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
   2176                                       qemu_irq irq)
   2177 {
   2178     gpointer key, gsi;
   2179     gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
   2180 
   2181     if (!found) {
   2182         return -ENXIO;
   2183     }
   2184     return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
   2185 }
   2186 
   2187 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
   2188 {
   2189     g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
   2190 }
   2191 
   2192 static void kvm_irqchip_create(KVMState *s)
   2193 {
   2194     int ret;
   2195 
   2196     assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
   2197     if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
   2198         ;
   2199     } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
   2200         ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
   2201         if (ret < 0) {
   2202             fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
   2203             exit(1);
   2204         }
   2205     } else {
   2206         return;
   2207     }
   2208 
   2209     /* First probe and see if there's a arch-specific hook to create the
   2210      * in-kernel irqchip for us */
   2211     ret = kvm_arch_irqchip_create(s);
   2212     if (ret == 0) {
   2213         if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
   2214             error_report("Split IRQ chip mode not supported.");
   2215             exit(1);
   2216         } else {
   2217             ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
   2218         }
   2219     }
   2220     if (ret < 0) {
   2221         fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
   2222         exit(1);
   2223     }
   2224 
   2225     kvm_kernel_irqchip = true;
   2226     /* If we have an in-kernel IRQ chip then we must have asynchronous
   2227      * interrupt delivery (though the reverse is not necessarily true)
   2228      */
   2229     kvm_async_interrupts_allowed = true;
   2230     kvm_halt_in_kernel_allowed = true;
   2231 
   2232     kvm_init_irq_routing(s);
   2233 
   2234     s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
   2235 }
   2236 
   2237 /* Find number of supported CPUs using the recommended
   2238  * procedure from the kernel API documentation to cope with
   2239  * older kernels that may be missing capabilities.
   2240  */
   2241 static int kvm_recommended_vcpus(KVMState *s)
   2242 {
   2243     int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
   2244     return (ret) ? ret : 4;
   2245 }
   2246 
   2247 static int kvm_max_vcpus(KVMState *s)
   2248 {
   2249     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
   2250     return (ret) ? ret : kvm_recommended_vcpus(s);
   2251 }
   2252 
   2253 static int kvm_max_vcpu_id(KVMState *s)
   2254 {
   2255     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
   2256     return (ret) ? ret : kvm_max_vcpus(s);
   2257 }
   2258 
   2259 bool kvm_vcpu_id_is_valid(int vcpu_id)
   2260 {
   2261     KVMState *s = KVM_STATE(current_accel());
   2262     return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
   2263 }
   2264 
   2265 bool kvm_dirty_ring_enabled(void)
   2266 {
   2267     return kvm_state->kvm_dirty_ring_size ? true : false;
   2268 }
   2269 
   2270 static void query_stats_cb(StatsResultList **result, StatsTarget target,
   2271                            strList *names, strList *targets, Error **errp);
   2272 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp);
   2273 
   2274 uint32_t kvm_dirty_ring_size(void)
   2275 {
   2276     return kvm_state->kvm_dirty_ring_size;
   2277 }
   2278 
   2279 static int kvm_init(MachineState *ms)
   2280 {
   2281     MachineClass *mc = MACHINE_GET_CLASS(ms);
   2282     static const char upgrade_note[] =
   2283         "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
   2284         "(see http://sourceforge.net/projects/kvm).\n";
   2285     struct {
   2286         const char *name;
   2287         int num;
   2288     } num_cpus[] = {
   2289         { "SMP",          ms->smp.cpus },
   2290         { "hotpluggable", ms->smp.max_cpus },
   2291         { NULL, }
   2292     }, *nc = num_cpus;
   2293     int soft_vcpus_limit, hard_vcpus_limit;
   2294     KVMState *s;
   2295     const KVMCapabilityInfo *missing_cap;
   2296     int ret;
   2297     int type = 0;
   2298     uint64_t dirty_log_manual_caps;
   2299 
   2300     qemu_mutex_init(&kml_slots_lock);
   2301 
   2302     s = KVM_STATE(ms->accelerator);
   2303 
   2304     /*
   2305      * On systems where the kernel can support different base page
   2306      * sizes, host page size may be different from TARGET_PAGE_SIZE,
   2307      * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
   2308      * page size for the system though.
   2309      */
   2310     assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size());
   2311 
   2312     s->sigmask_len = 8;
   2313 
   2314 #ifdef KVM_CAP_SET_GUEST_DEBUG
   2315     QTAILQ_INIT(&s->kvm_sw_breakpoints);
   2316 #endif
   2317     QLIST_INIT(&s->kvm_parked_vcpus);
   2318     s->fd = qemu_open_old("/dev/kvm", O_RDWR);
   2319     if (s->fd == -1) {
   2320         fprintf(stderr, "Could not access KVM kernel module: %m\n");
   2321         ret = -errno;
   2322         goto err;
   2323     }
   2324 
   2325     ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
   2326     if (ret < KVM_API_VERSION) {
   2327         if (ret >= 0) {
   2328             ret = -EINVAL;
   2329         }
   2330         fprintf(stderr, "kvm version too old\n");
   2331         goto err;
   2332     }
   2333 
   2334     if (ret > KVM_API_VERSION) {
   2335         ret = -EINVAL;
   2336         fprintf(stderr, "kvm version not supported\n");
   2337         goto err;
   2338     }
   2339 
   2340     kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
   2341     s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
   2342 
   2343     /* If unspecified, use the default value */
   2344     if (!s->nr_slots) {
   2345         s->nr_slots = 32;
   2346     }
   2347 
   2348     s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
   2349     if (s->nr_as <= 1) {
   2350         s->nr_as = 1;
   2351     }
   2352     s->as = g_new0(struct KVMAs, s->nr_as);
   2353 
   2354     if (object_property_find(OBJECT(current_machine), "kvm-type")) {
   2355         g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
   2356                                                             "kvm-type",
   2357                                                             &error_abort);
   2358         type = mc->kvm_type(ms, kvm_type);
   2359     } else if (mc->kvm_type) {
   2360         type = mc->kvm_type(ms, NULL);
   2361     }
   2362 
   2363     do {
   2364         ret = kvm_ioctl(s, KVM_CREATE_VM, type);
   2365     } while (ret == -EINTR);
   2366 
   2367     if (ret < 0) {
   2368         fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
   2369                 strerror(-ret));
   2370 
   2371 #ifdef TARGET_S390X
   2372         if (ret == -EINVAL) {
   2373             fprintf(stderr,
   2374                     "Host kernel setup problem detected. Please verify:\n");
   2375             fprintf(stderr, "- for kernels supporting the switch_amode or"
   2376                     " user_mode parameters, whether\n");
   2377             fprintf(stderr,
   2378                     "  user space is running in primary address space\n");
   2379             fprintf(stderr,
   2380                     "- for kernels supporting the vm.allocate_pgste sysctl, "
   2381                     "whether it is enabled\n");
   2382         }
   2383 #elif defined(TARGET_PPC)
   2384         if (ret == -EINVAL) {
   2385             fprintf(stderr,
   2386                     "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
   2387                     (type == 2) ? "pr" : "hv");
   2388         }
   2389 #endif
   2390         goto err;
   2391     }
   2392 
   2393     s->vmfd = ret;
   2394 
   2395     /* check the vcpu limits */
   2396     soft_vcpus_limit = kvm_recommended_vcpus(s);
   2397     hard_vcpus_limit = kvm_max_vcpus(s);
   2398 
   2399     while (nc->name) {
   2400         if (nc->num > soft_vcpus_limit) {
   2401             warn_report("Number of %s cpus requested (%d) exceeds "
   2402                         "the recommended cpus supported by KVM (%d)",
   2403                         nc->name, nc->num, soft_vcpus_limit);
   2404 
   2405             if (nc->num > hard_vcpus_limit) {
   2406                 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
   2407                         "the maximum cpus supported by KVM (%d)\n",
   2408                         nc->name, nc->num, hard_vcpus_limit);
   2409                 exit(1);
   2410             }
   2411         }
   2412         nc++;
   2413     }
   2414 
   2415     missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
   2416     if (!missing_cap) {
   2417         missing_cap =
   2418             kvm_check_extension_list(s, kvm_arch_required_capabilities);
   2419     }
   2420     if (missing_cap) {
   2421         ret = -EINVAL;
   2422         fprintf(stderr, "kvm does not support %s\n%s",
   2423                 missing_cap->name, upgrade_note);
   2424         goto err;
   2425     }
   2426 
   2427     s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
   2428     s->coalesced_pio = s->coalesced_mmio &&
   2429                        kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
   2430 
   2431     /*
   2432      * Enable KVM dirty ring if supported, otherwise fall back to
   2433      * dirty logging mode
   2434      */
   2435     if (s->kvm_dirty_ring_size > 0) {
   2436         uint64_t ring_bytes;
   2437 
   2438         ring_bytes = s->kvm_dirty_ring_size * sizeof(struct kvm_dirty_gfn);
   2439 
   2440         /* Read the max supported pages */
   2441         ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING);
   2442         if (ret > 0) {
   2443             if (ring_bytes > ret) {
   2444                 error_report("KVM dirty ring size %" PRIu32 " too big "
   2445                              "(maximum is %ld).  Please use a smaller value.",
   2446                              s->kvm_dirty_ring_size,
   2447                              (long)ret / sizeof(struct kvm_dirty_gfn));
   2448                 ret = -EINVAL;
   2449                 goto err;
   2450             }
   2451 
   2452             ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING, 0, ring_bytes);
   2453             if (ret) {
   2454                 error_report("Enabling of KVM dirty ring failed: %s. "
   2455                              "Suggested minimum value is 1024.", strerror(-ret));
   2456                 goto err;
   2457             }
   2458 
   2459             s->kvm_dirty_ring_bytes = ring_bytes;
   2460          } else {
   2461              warn_report("KVM dirty ring not available, using bitmap method");
   2462              s->kvm_dirty_ring_size = 0;
   2463         }
   2464     }
   2465 
   2466     /*
   2467      * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
   2468      * enabled.  More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
   2469      * page is wr-protected initially, which is against how kvm dirty ring is
   2470      * usage - kvm dirty ring requires all pages are wr-protected at the very
   2471      * beginning.  Enabling this feature for dirty ring causes data corruption.
   2472      *
   2473      * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
   2474      * we may expect a higher stall time when starting the migration.  In the
   2475      * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
   2476      * instead of clearing dirty bit, it can be a way to explicitly wr-protect
   2477      * guest pages.
   2478      */
   2479     if (!s->kvm_dirty_ring_size) {
   2480         dirty_log_manual_caps =
   2481             kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
   2482         dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
   2483                                   KVM_DIRTY_LOG_INITIALLY_SET);
   2484         s->manual_dirty_log_protect = dirty_log_manual_caps;
   2485         if (dirty_log_manual_caps) {
   2486             ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
   2487                                     dirty_log_manual_caps);
   2488             if (ret) {
   2489                 warn_report("Trying to enable capability %"PRIu64" of "
   2490                             "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
   2491                             "Falling back to the legacy mode. ",
   2492                             dirty_log_manual_caps);
   2493                 s->manual_dirty_log_protect = 0;
   2494             }
   2495         }
   2496     }
   2497 
   2498 #ifdef KVM_CAP_VCPU_EVENTS
   2499     s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
   2500 #endif
   2501 
   2502     s->robust_singlestep =
   2503         kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
   2504 
   2505 #ifdef KVM_CAP_DEBUGREGS
   2506     s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
   2507 #endif
   2508 
   2509     s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
   2510 
   2511 #ifdef KVM_CAP_IRQ_ROUTING
   2512     kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
   2513 #endif
   2514 
   2515     s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
   2516 
   2517     s->irq_set_ioctl = KVM_IRQ_LINE;
   2518     if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
   2519         s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
   2520     }
   2521 
   2522     kvm_readonly_mem_allowed =
   2523         (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
   2524 
   2525     kvm_eventfds_allowed =
   2526         (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
   2527 
   2528     kvm_irqfds_allowed =
   2529         (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
   2530 
   2531     kvm_resamplefds_allowed =
   2532         (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
   2533 
   2534     kvm_vm_attributes_allowed =
   2535         (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
   2536 
   2537     kvm_ioeventfd_any_length_allowed =
   2538         (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
   2539 
   2540 #ifdef KVM_CAP_SET_GUEST_DEBUG
   2541     kvm_has_guest_debug =
   2542         (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0);
   2543 #endif
   2544 
   2545     kvm_sstep_flags = 0;
   2546     if (kvm_has_guest_debug) {
   2547         kvm_sstep_flags = SSTEP_ENABLE;
   2548 
   2549 #if defined KVM_CAP_SET_GUEST_DEBUG2
   2550         int guest_debug_flags =
   2551             kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2);
   2552 
   2553         if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) {
   2554             kvm_sstep_flags |= SSTEP_NOIRQ;
   2555         }
   2556 #endif
   2557     }
   2558 
   2559     kvm_state = s;
   2560 
   2561     ret = kvm_arch_init(ms, s);
   2562     if (ret < 0) {
   2563         goto err;
   2564     }
   2565 
   2566     if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
   2567         s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
   2568     }
   2569 
   2570     qemu_register_reset(kvm_unpoison_all, NULL);
   2571 
   2572     if (s->kernel_irqchip_allowed) {
   2573         kvm_irqchip_create(s);
   2574     }
   2575 
   2576     if (kvm_eventfds_allowed) {
   2577         s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
   2578         s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
   2579     }
   2580     s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
   2581     s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
   2582 
   2583     kvm_memory_listener_register(s, &s->memory_listener,
   2584                                  &address_space_memory, 0, "kvm-memory");
   2585     if (kvm_eventfds_allowed) {
   2586         memory_listener_register(&kvm_io_listener,
   2587                                  &address_space_io);
   2588     }
   2589     memory_listener_register(&kvm_coalesced_pio_listener,
   2590                              &address_space_io);
   2591 
   2592     s->many_ioeventfds = kvm_check_many_ioeventfds();
   2593 
   2594     s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
   2595     if (!s->sync_mmu) {
   2596         ret = ram_block_discard_disable(true);
   2597         assert(!ret);
   2598     }
   2599 
   2600     if (s->kvm_dirty_ring_size) {
   2601         ret = kvm_dirty_ring_reaper_init(s);
   2602         if (ret) {
   2603             goto err;
   2604         }
   2605     }
   2606 
   2607     if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) {
   2608         add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb,
   2609                             query_stats_schemas_cb);
   2610     }
   2611 
   2612     return 0;
   2613 
   2614 err:
   2615     assert(ret < 0);
   2616     if (s->vmfd >= 0) {
   2617         close(s->vmfd);
   2618     }
   2619     if (s->fd != -1) {
   2620         close(s->fd);
   2621     }
   2622     g_free(s->memory_listener.slots);
   2623 
   2624     return ret;
   2625 }
   2626 
   2627 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
   2628 {
   2629     s->sigmask_len = sigmask_len;
   2630 }
   2631 
   2632 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
   2633                           int size, uint32_t count)
   2634 {
   2635     int i;
   2636     uint8_t *ptr = data;
   2637 
   2638     for (i = 0; i < count; i++) {
   2639         address_space_rw(&address_space_io, port, attrs,
   2640                          ptr, size,
   2641                          direction == KVM_EXIT_IO_OUT);
   2642         ptr += size;
   2643     }
   2644 }
   2645 
   2646 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
   2647 {
   2648     fprintf(stderr, "KVM internal error. Suberror: %d\n",
   2649             run->internal.suberror);
   2650 
   2651     if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
   2652         int i;
   2653 
   2654         for (i = 0; i < run->internal.ndata; ++i) {
   2655             fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
   2656                     i, (uint64_t)run->internal.data[i]);
   2657         }
   2658     }
   2659     if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
   2660         fprintf(stderr, "emulation failure\n");
   2661         if (!kvm_arch_stop_on_emulation_error(cpu)) {
   2662             cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
   2663             return EXCP_INTERRUPT;
   2664         }
   2665     }
   2666     /* FIXME: Should trigger a qmp message to let management know
   2667      * something went wrong.
   2668      */
   2669     return -1;
   2670 }
   2671 
   2672 void kvm_flush_coalesced_mmio_buffer(void)
   2673 {
   2674     KVMState *s = kvm_state;
   2675 
   2676     if (s->coalesced_flush_in_progress) {
   2677         return;
   2678     }
   2679 
   2680     s->coalesced_flush_in_progress = true;
   2681 
   2682     if (s->coalesced_mmio_ring) {
   2683         struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
   2684         while (ring->first != ring->last) {
   2685             struct kvm_coalesced_mmio *ent;
   2686 
   2687             ent = &ring->coalesced_mmio[ring->first];
   2688 
   2689             if (ent->pio == 1) {
   2690                 address_space_write(&address_space_io, ent->phys_addr,
   2691                                     MEMTXATTRS_UNSPECIFIED, ent->data,
   2692                                     ent->len);
   2693             } else {
   2694                 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
   2695             }
   2696             smp_wmb();
   2697             ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
   2698         }
   2699     }
   2700 
   2701     s->coalesced_flush_in_progress = false;
   2702 }
   2703 
   2704 bool kvm_cpu_check_are_resettable(void)
   2705 {
   2706     return kvm_arch_cpu_check_are_resettable();
   2707 }
   2708 
   2709 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
   2710 {
   2711     if (!cpu->vcpu_dirty) {
   2712         kvm_arch_get_registers(cpu);
   2713         cpu->vcpu_dirty = true;
   2714     }
   2715 }
   2716 
   2717 void kvm_cpu_synchronize_state(CPUState *cpu)
   2718 {
   2719     if (!cpu->vcpu_dirty) {
   2720         run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
   2721     }
   2722 }
   2723 
   2724 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
   2725 {
   2726     kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
   2727     cpu->vcpu_dirty = false;
   2728 }
   2729 
   2730 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
   2731 {
   2732     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
   2733 }
   2734 
   2735 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
   2736 {
   2737     kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
   2738     cpu->vcpu_dirty = false;
   2739 }
   2740 
   2741 void kvm_cpu_synchronize_post_init(CPUState *cpu)
   2742 {
   2743     run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
   2744 }
   2745 
   2746 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
   2747 {
   2748     cpu->vcpu_dirty = true;
   2749 }
   2750 
   2751 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
   2752 {
   2753     run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
   2754 }
   2755 
   2756 #ifdef KVM_HAVE_MCE_INJECTION
   2757 static __thread void *pending_sigbus_addr;
   2758 static __thread int pending_sigbus_code;
   2759 static __thread bool have_sigbus_pending;
   2760 #endif
   2761 
   2762 static void kvm_cpu_kick(CPUState *cpu)
   2763 {
   2764     qatomic_set(&cpu->kvm_run->immediate_exit, 1);
   2765 }
   2766 
   2767 static void kvm_cpu_kick_self(void)
   2768 {
   2769     if (kvm_immediate_exit) {
   2770         kvm_cpu_kick(current_cpu);
   2771     } else {
   2772         qemu_cpu_kick_self();
   2773     }
   2774 }
   2775 
   2776 static void kvm_eat_signals(CPUState *cpu)
   2777 {
   2778     struct timespec ts = { 0, 0 };
   2779     siginfo_t siginfo;
   2780     sigset_t waitset;
   2781     sigset_t chkset;
   2782     int r;
   2783 
   2784     if (kvm_immediate_exit) {
   2785         qatomic_set(&cpu->kvm_run->immediate_exit, 0);
   2786         /* Write kvm_run->immediate_exit before the cpu->exit_request
   2787          * write in kvm_cpu_exec.
   2788          */
   2789         smp_wmb();
   2790         return;
   2791     }
   2792 
   2793     sigemptyset(&waitset);
   2794     sigaddset(&waitset, SIG_IPI);
   2795 
   2796     do {
   2797         r = sigtimedwait(&waitset, &siginfo, &ts);
   2798         if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
   2799             perror("sigtimedwait");
   2800             exit(1);
   2801         }
   2802 
   2803         r = sigpending(&chkset);
   2804         if (r == -1) {
   2805             perror("sigpending");
   2806             exit(1);
   2807         }
   2808     } while (sigismember(&chkset, SIG_IPI));
   2809 }
   2810 
   2811 int kvm_cpu_exec(CPUState *cpu)
   2812 {
   2813     struct kvm_run *run = cpu->kvm_run;
   2814     int ret, run_ret;
   2815 
   2816     DPRINTF("kvm_cpu_exec()\n");
   2817 
   2818     if (kvm_arch_process_async_events(cpu)) {
   2819         qatomic_set(&cpu->exit_request, 0);
   2820         return EXCP_HLT;
   2821     }
   2822 
   2823     qemu_mutex_unlock_iothread();
   2824     cpu_exec_start(cpu);
   2825 
   2826     do {
   2827         MemTxAttrs attrs;
   2828 
   2829         if (cpu->vcpu_dirty) {
   2830             kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
   2831             cpu->vcpu_dirty = false;
   2832         }
   2833 
   2834         kvm_arch_pre_run(cpu, run);
   2835         if (qatomic_read(&cpu->exit_request)) {
   2836             DPRINTF("interrupt exit requested\n");
   2837             /*
   2838              * KVM requires us to reenter the kernel after IO exits to complete
   2839              * instruction emulation. This self-signal will ensure that we
   2840              * leave ASAP again.
   2841              */
   2842             kvm_cpu_kick_self();
   2843         }
   2844 
   2845         /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
   2846          * Matching barrier in kvm_eat_signals.
   2847          */
   2848         smp_rmb();
   2849 
   2850         run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
   2851 
   2852         attrs = kvm_arch_post_run(cpu, run);
   2853 
   2854 #ifdef KVM_HAVE_MCE_INJECTION
   2855         if (unlikely(have_sigbus_pending)) {
   2856             qemu_mutex_lock_iothread();
   2857             kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
   2858                                     pending_sigbus_addr);
   2859             have_sigbus_pending = false;
   2860             qemu_mutex_unlock_iothread();
   2861         }
   2862 #endif
   2863 
   2864         if (run_ret < 0) {
   2865             if (run_ret == -EINTR || run_ret == -EAGAIN) {
   2866                 DPRINTF("io window exit\n");
   2867                 kvm_eat_signals(cpu);
   2868                 ret = EXCP_INTERRUPT;
   2869                 break;
   2870             }
   2871             fprintf(stderr, "error: kvm run failed %s\n",
   2872                     strerror(-run_ret));
   2873 #ifdef TARGET_PPC
   2874             if (run_ret == -EBUSY) {
   2875                 fprintf(stderr,
   2876                         "This is probably because your SMT is enabled.\n"
   2877                         "VCPU can only run on primary threads with all "
   2878                         "secondary threads offline.\n");
   2879             }
   2880 #endif
   2881             ret = -1;
   2882             break;
   2883         }
   2884 
   2885         trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
   2886         switch (run->exit_reason) {
   2887         case KVM_EXIT_IO:
   2888             DPRINTF("handle_io\n");
   2889             /* Called outside BQL */
   2890             kvm_handle_io(run->io.port, attrs,
   2891                           (uint8_t *)run + run->io.data_offset,
   2892                           run->io.direction,
   2893                           run->io.size,
   2894                           run->io.count);
   2895             ret = 0;
   2896             break;
   2897         case KVM_EXIT_MMIO:
   2898             DPRINTF("handle_mmio\n");
   2899             /* Called outside BQL */
   2900             address_space_rw(&address_space_memory,
   2901                              run->mmio.phys_addr, attrs,
   2902                              run->mmio.data,
   2903                              run->mmio.len,
   2904                              run->mmio.is_write);
   2905             ret = 0;
   2906             break;
   2907         case KVM_EXIT_IRQ_WINDOW_OPEN:
   2908             DPRINTF("irq_window_open\n");
   2909             ret = EXCP_INTERRUPT;
   2910             break;
   2911         case KVM_EXIT_SHUTDOWN:
   2912             DPRINTF("shutdown\n");
   2913             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
   2914             ret = EXCP_INTERRUPT;
   2915             break;
   2916         case KVM_EXIT_UNKNOWN:
   2917             fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
   2918                     (uint64_t)run->hw.hardware_exit_reason);
   2919             ret = -1;
   2920             break;
   2921         case KVM_EXIT_INTERNAL_ERROR:
   2922             ret = kvm_handle_internal_error(cpu, run);
   2923             break;
   2924         case KVM_EXIT_DIRTY_RING_FULL:
   2925             /*
   2926              * We shouldn't continue if the dirty ring of this vcpu is
   2927              * still full.  Got kicked by KVM_RESET_DIRTY_RINGS.
   2928              */
   2929             trace_kvm_dirty_ring_full(cpu->cpu_index);
   2930             qemu_mutex_lock_iothread();
   2931             /*
   2932              * We throttle vCPU by making it sleep once it exit from kernel
   2933              * due to dirty ring full. In the dirtylimit scenario, reaping
   2934              * all vCPUs after a single vCPU dirty ring get full result in
   2935              * the miss of sleep, so just reap the ring-fulled vCPU.
   2936              */
   2937             if (dirtylimit_in_service()) {
   2938                 kvm_dirty_ring_reap(kvm_state, cpu);
   2939             } else {
   2940                 kvm_dirty_ring_reap(kvm_state, NULL);
   2941             }
   2942             qemu_mutex_unlock_iothread();
   2943             dirtylimit_vcpu_execute(cpu);
   2944             ret = 0;
   2945             break;
   2946         case KVM_EXIT_SYSTEM_EVENT:
   2947             switch (run->system_event.type) {
   2948             case KVM_SYSTEM_EVENT_SHUTDOWN:
   2949                 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
   2950                 ret = EXCP_INTERRUPT;
   2951                 break;
   2952             case KVM_SYSTEM_EVENT_RESET:
   2953                 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
   2954                 ret = EXCP_INTERRUPT;
   2955                 break;
   2956             case KVM_SYSTEM_EVENT_CRASH:
   2957                 kvm_cpu_synchronize_state(cpu);
   2958                 qemu_mutex_lock_iothread();
   2959                 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
   2960                 qemu_mutex_unlock_iothread();
   2961                 ret = 0;
   2962                 break;
   2963             default:
   2964                 DPRINTF("kvm_arch_handle_exit\n");
   2965                 ret = kvm_arch_handle_exit(cpu, run);
   2966                 break;
   2967             }
   2968             break;
   2969         default:
   2970             DPRINTF("kvm_arch_handle_exit\n");
   2971             ret = kvm_arch_handle_exit(cpu, run);
   2972             break;
   2973         }
   2974     } while (ret == 0);
   2975 
   2976     cpu_exec_end(cpu);
   2977     qemu_mutex_lock_iothread();
   2978 
   2979     if (ret < 0) {
   2980         cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
   2981         vm_stop(RUN_STATE_INTERNAL_ERROR);
   2982     }
   2983 
   2984     qatomic_set(&cpu->exit_request, 0);
   2985     return ret;
   2986 }
   2987 
   2988 int kvm_ioctl(KVMState *s, int type, ...)
   2989 {
   2990     int ret;
   2991     void *arg;
   2992     va_list ap;
   2993 
   2994     va_start(ap, type);
   2995     arg = va_arg(ap, void *);
   2996     va_end(ap);
   2997 
   2998     trace_kvm_ioctl(type, arg);
   2999     ret = ioctl(s->fd, type, arg);
   3000     if (ret == -1) {
   3001         ret = -errno;
   3002     }
   3003     return ret;
   3004 }
   3005 
   3006 int kvm_vm_ioctl(KVMState *s, int type, ...)
   3007 {
   3008     int ret;
   3009     void *arg;
   3010     va_list ap;
   3011 
   3012     va_start(ap, type);
   3013     arg = va_arg(ap, void *);
   3014     va_end(ap);
   3015 
   3016     trace_kvm_vm_ioctl(type, arg);
   3017     ret = ioctl(s->vmfd, type, arg);
   3018     if (ret == -1) {
   3019         ret = -errno;
   3020     }
   3021     return ret;
   3022 }
   3023 
   3024 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
   3025 {
   3026     int ret;
   3027     void *arg;
   3028     va_list ap;
   3029 
   3030     va_start(ap, type);
   3031     arg = va_arg(ap, void *);
   3032     va_end(ap);
   3033 
   3034     trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
   3035     ret = ioctl(cpu->kvm_fd, type, arg);
   3036     if (ret == -1) {
   3037         ret = -errno;
   3038     }
   3039     return ret;
   3040 }
   3041 
   3042 int kvm_device_ioctl(int fd, int type, ...)
   3043 {
   3044     int ret;
   3045     void *arg;
   3046     va_list ap;
   3047 
   3048     va_start(ap, type);
   3049     arg = va_arg(ap, void *);
   3050     va_end(ap);
   3051 
   3052     trace_kvm_device_ioctl(fd, type, arg);
   3053     ret = ioctl(fd, type, arg);
   3054     if (ret == -1) {
   3055         ret = -errno;
   3056     }
   3057     return ret;
   3058 }
   3059 
   3060 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
   3061 {
   3062     int ret;
   3063     struct kvm_device_attr attribute = {
   3064         .group = group,
   3065         .attr = attr,
   3066     };
   3067 
   3068     if (!kvm_vm_attributes_allowed) {
   3069         return 0;
   3070     }
   3071 
   3072     ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
   3073     /* kvm returns 0 on success for HAS_DEVICE_ATTR */
   3074     return ret ? 0 : 1;
   3075 }
   3076 
   3077 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
   3078 {
   3079     struct kvm_device_attr attribute = {
   3080         .group = group,
   3081         .attr = attr,
   3082         .flags = 0,
   3083     };
   3084 
   3085     return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
   3086 }
   3087 
   3088 int kvm_device_access(int fd, int group, uint64_t attr,
   3089                       void *val, bool write, Error **errp)
   3090 {
   3091     struct kvm_device_attr kvmattr;
   3092     int err;
   3093 
   3094     kvmattr.flags = 0;
   3095     kvmattr.group = group;
   3096     kvmattr.attr = attr;
   3097     kvmattr.addr = (uintptr_t)val;
   3098 
   3099     err = kvm_device_ioctl(fd,
   3100                            write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
   3101                            &kvmattr);
   3102     if (err < 0) {
   3103         error_setg_errno(errp, -err,
   3104                          "KVM_%s_DEVICE_ATTR failed: Group %d "
   3105                          "attr 0x%016" PRIx64,
   3106                          write ? "SET" : "GET", group, attr);
   3107     }
   3108     return err;
   3109 }
   3110 
   3111 bool kvm_has_sync_mmu(void)
   3112 {
   3113     return kvm_state->sync_mmu;
   3114 }
   3115 
   3116 int kvm_has_vcpu_events(void)
   3117 {
   3118     return kvm_state->vcpu_events;
   3119 }
   3120 
   3121 int kvm_has_robust_singlestep(void)
   3122 {
   3123     return kvm_state->robust_singlestep;
   3124 }
   3125 
   3126 int kvm_has_debugregs(void)
   3127 {
   3128     return kvm_state->debugregs;
   3129 }
   3130 
   3131 int kvm_max_nested_state_length(void)
   3132 {
   3133     return kvm_state->max_nested_state_len;
   3134 }
   3135 
   3136 int kvm_has_many_ioeventfds(void)
   3137 {
   3138     if (!kvm_enabled()) {
   3139         return 0;
   3140     }
   3141     return kvm_state->many_ioeventfds;
   3142 }
   3143 
   3144 int kvm_has_gsi_routing(void)
   3145 {
   3146 #ifdef KVM_CAP_IRQ_ROUTING
   3147     return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
   3148 #else
   3149     return false;
   3150 #endif
   3151 }
   3152 
   3153 int kvm_has_intx_set_mask(void)
   3154 {
   3155     return kvm_state->intx_set_mask;
   3156 }
   3157 
   3158 bool kvm_arm_supports_user_irq(void)
   3159 {
   3160     return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
   3161 }
   3162 
   3163 #ifdef KVM_CAP_SET_GUEST_DEBUG
   3164 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
   3165                                                  target_ulong pc)
   3166 {
   3167     struct kvm_sw_breakpoint *bp;
   3168 
   3169     QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
   3170         if (bp->pc == pc) {
   3171             return bp;
   3172         }
   3173     }
   3174     return NULL;
   3175 }
   3176 
   3177 int kvm_sw_breakpoints_active(CPUState *cpu)
   3178 {
   3179     return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
   3180 }
   3181 
   3182 struct kvm_set_guest_debug_data {
   3183     struct kvm_guest_debug dbg;
   3184     int err;
   3185 };
   3186 
   3187 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
   3188 {
   3189     struct kvm_set_guest_debug_data *dbg_data =
   3190         (struct kvm_set_guest_debug_data *) data.host_ptr;
   3191 
   3192     dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
   3193                                    &dbg_data->dbg);
   3194 }
   3195 
   3196 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
   3197 {
   3198     struct kvm_set_guest_debug_data data;
   3199 
   3200     data.dbg.control = reinject_trap;
   3201 
   3202     if (cpu->singlestep_enabled) {
   3203         data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
   3204 
   3205         if (cpu->singlestep_enabled & SSTEP_NOIRQ) {
   3206             data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ;
   3207         }
   3208     }
   3209     kvm_arch_update_guest_debug(cpu, &data.dbg);
   3210 
   3211     run_on_cpu(cpu, kvm_invoke_set_guest_debug,
   3212                RUN_ON_CPU_HOST_PTR(&data));
   3213     return data.err;
   3214 }
   3215 
   3216 bool kvm_supports_guest_debug(void)
   3217 {
   3218     /* probed during kvm_init() */
   3219     return kvm_has_guest_debug;
   3220 }
   3221 
   3222 int kvm_insert_breakpoint(CPUState *cpu, int type, hwaddr addr, hwaddr len)
   3223 {
   3224     struct kvm_sw_breakpoint *bp;
   3225     int err;
   3226 
   3227     if (type == GDB_BREAKPOINT_SW) {
   3228         bp = kvm_find_sw_breakpoint(cpu, addr);
   3229         if (bp) {
   3230             bp->use_count++;
   3231             return 0;
   3232         }
   3233 
   3234         bp = g_new(struct kvm_sw_breakpoint, 1);
   3235         bp->pc = addr;
   3236         bp->use_count = 1;
   3237         err = kvm_arch_insert_sw_breakpoint(cpu, bp);
   3238         if (err) {
   3239             g_free(bp);
   3240             return err;
   3241         }
   3242 
   3243         QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
   3244     } else {
   3245         err = kvm_arch_insert_hw_breakpoint(addr, len, type);
   3246         if (err) {
   3247             return err;
   3248         }
   3249     }
   3250 
   3251     CPU_FOREACH(cpu) {
   3252         err = kvm_update_guest_debug(cpu, 0);
   3253         if (err) {
   3254             return err;
   3255         }
   3256     }
   3257     return 0;
   3258 }
   3259 
   3260 int kvm_remove_breakpoint(CPUState *cpu, int type, hwaddr addr, hwaddr len)
   3261 {
   3262     struct kvm_sw_breakpoint *bp;
   3263     int err;
   3264 
   3265     if (type == GDB_BREAKPOINT_SW) {
   3266         bp = kvm_find_sw_breakpoint(cpu, addr);
   3267         if (!bp) {
   3268             return -ENOENT;
   3269         }
   3270 
   3271         if (bp->use_count > 1) {
   3272             bp->use_count--;
   3273             return 0;
   3274         }
   3275 
   3276         err = kvm_arch_remove_sw_breakpoint(cpu, bp);
   3277         if (err) {
   3278             return err;
   3279         }
   3280 
   3281         QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
   3282         g_free(bp);
   3283     } else {
   3284         err = kvm_arch_remove_hw_breakpoint(addr, len, type);
   3285         if (err) {
   3286             return err;
   3287         }
   3288     }
   3289 
   3290     CPU_FOREACH(cpu) {
   3291         err = kvm_update_guest_debug(cpu, 0);
   3292         if (err) {
   3293             return err;
   3294         }
   3295     }
   3296     return 0;
   3297 }
   3298 
   3299 void kvm_remove_all_breakpoints(CPUState *cpu)
   3300 {
   3301     struct kvm_sw_breakpoint *bp, *next;
   3302     KVMState *s = cpu->kvm_state;
   3303     CPUState *tmpcpu;
   3304 
   3305     QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
   3306         if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
   3307             /* Try harder to find a CPU that currently sees the breakpoint. */
   3308             CPU_FOREACH(tmpcpu) {
   3309                 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
   3310                     break;
   3311                 }
   3312             }
   3313         }
   3314         QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
   3315         g_free(bp);
   3316     }
   3317     kvm_arch_remove_all_hw_breakpoints();
   3318 
   3319     CPU_FOREACH(cpu) {
   3320         kvm_update_guest_debug(cpu, 0);
   3321     }
   3322 }
   3323 
   3324 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
   3325 
   3326 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
   3327 {
   3328     KVMState *s = kvm_state;
   3329     struct kvm_signal_mask *sigmask;
   3330     int r;
   3331 
   3332     sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
   3333 
   3334     sigmask->len = s->sigmask_len;
   3335     memcpy(sigmask->sigset, sigset, sizeof(*sigset));
   3336     r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
   3337     g_free(sigmask);
   3338 
   3339     return r;
   3340 }
   3341 
   3342 static void kvm_ipi_signal(int sig)
   3343 {
   3344     if (current_cpu) {
   3345         assert(kvm_immediate_exit);
   3346         kvm_cpu_kick(current_cpu);
   3347     }
   3348 }
   3349 
   3350 void kvm_init_cpu_signals(CPUState *cpu)
   3351 {
   3352     int r;
   3353     sigset_t set;
   3354     struct sigaction sigact;
   3355 
   3356     memset(&sigact, 0, sizeof(sigact));
   3357     sigact.sa_handler = kvm_ipi_signal;
   3358     sigaction(SIG_IPI, &sigact, NULL);
   3359 
   3360     pthread_sigmask(SIG_BLOCK, NULL, &set);
   3361 #if defined KVM_HAVE_MCE_INJECTION
   3362     sigdelset(&set, SIGBUS);
   3363     pthread_sigmask(SIG_SETMASK, &set, NULL);
   3364 #endif
   3365     sigdelset(&set, SIG_IPI);
   3366     if (kvm_immediate_exit) {
   3367         r = pthread_sigmask(SIG_SETMASK, &set, NULL);
   3368     } else {
   3369         r = kvm_set_signal_mask(cpu, &set);
   3370     }
   3371     if (r) {
   3372         fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
   3373         exit(1);
   3374     }
   3375 }
   3376 
   3377 /* Called asynchronously in VCPU thread.  */
   3378 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
   3379 {
   3380 #ifdef KVM_HAVE_MCE_INJECTION
   3381     if (have_sigbus_pending) {
   3382         return 1;
   3383     }
   3384     have_sigbus_pending = true;
   3385     pending_sigbus_addr = addr;
   3386     pending_sigbus_code = code;
   3387     qatomic_set(&cpu->exit_request, 1);
   3388     return 0;
   3389 #else
   3390     return 1;
   3391 #endif
   3392 }
   3393 
   3394 /* Called synchronously (via signalfd) in main thread.  */
   3395 int kvm_on_sigbus(int code, void *addr)
   3396 {
   3397 #ifdef KVM_HAVE_MCE_INJECTION
   3398     /* Action required MCE kills the process if SIGBUS is blocked.  Because
   3399      * that's what happens in the I/O thread, where we handle MCE via signalfd,
   3400      * we can only get action optional here.
   3401      */
   3402     assert(code != BUS_MCEERR_AR);
   3403     kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
   3404     return 0;
   3405 #else
   3406     return 1;
   3407 #endif
   3408 }
   3409 
   3410 int kvm_create_device(KVMState *s, uint64_t type, bool test)
   3411 {
   3412     int ret;
   3413     struct kvm_create_device create_dev;
   3414 
   3415     create_dev.type = type;
   3416     create_dev.fd = -1;
   3417     create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
   3418 
   3419     if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
   3420         return -ENOTSUP;
   3421     }
   3422 
   3423     ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
   3424     if (ret) {
   3425         return ret;
   3426     }
   3427 
   3428     return test ? 0 : create_dev.fd;
   3429 }
   3430 
   3431 bool kvm_device_supported(int vmfd, uint64_t type)
   3432 {
   3433     struct kvm_create_device create_dev = {
   3434         .type = type,
   3435         .fd = -1,
   3436         .flags = KVM_CREATE_DEVICE_TEST,
   3437     };
   3438 
   3439     if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
   3440         return false;
   3441     }
   3442 
   3443     return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
   3444 }
   3445 
   3446 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
   3447 {
   3448     struct kvm_one_reg reg;
   3449     int r;
   3450 
   3451     reg.id = id;
   3452     reg.addr = (uintptr_t) source;
   3453     r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
   3454     if (r) {
   3455         trace_kvm_failed_reg_set(id, strerror(-r));
   3456     }
   3457     return r;
   3458 }
   3459 
   3460 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
   3461 {
   3462     struct kvm_one_reg reg;
   3463     int r;
   3464 
   3465     reg.id = id;
   3466     reg.addr = (uintptr_t) target;
   3467     r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
   3468     if (r) {
   3469         trace_kvm_failed_reg_get(id, strerror(-r));
   3470     }
   3471     return r;
   3472 }
   3473 
   3474 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
   3475                                  hwaddr start_addr, hwaddr size)
   3476 {
   3477     KVMState *kvm = KVM_STATE(ms->accelerator);
   3478     int i;
   3479 
   3480     for (i = 0; i < kvm->nr_as; ++i) {
   3481         if (kvm->as[i].as == as && kvm->as[i].ml) {
   3482             size = MIN(kvm_max_slot_size, size);
   3483             return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
   3484                                                     start_addr, size);
   3485         }
   3486     }
   3487 
   3488     return false;
   3489 }
   3490 
   3491 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
   3492                                    const char *name, void *opaque,
   3493                                    Error **errp)
   3494 {
   3495     KVMState *s = KVM_STATE(obj);
   3496     int64_t value = s->kvm_shadow_mem;
   3497 
   3498     visit_type_int(v, name, &value, errp);
   3499 }
   3500 
   3501 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
   3502                                    const char *name, void *opaque,
   3503                                    Error **errp)
   3504 {
   3505     KVMState *s = KVM_STATE(obj);
   3506     int64_t value;
   3507 
   3508     if (s->fd != -1) {
   3509         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
   3510         return;
   3511     }
   3512 
   3513     if (!visit_type_int(v, name, &value, errp)) {
   3514         return;
   3515     }
   3516 
   3517     s->kvm_shadow_mem = value;
   3518 }
   3519 
   3520 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
   3521                                    const char *name, void *opaque,
   3522                                    Error **errp)
   3523 {
   3524     KVMState *s = KVM_STATE(obj);
   3525     OnOffSplit mode;
   3526 
   3527     if (s->fd != -1) {
   3528         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
   3529         return;
   3530     }
   3531 
   3532     if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
   3533         return;
   3534     }
   3535     switch (mode) {
   3536     case ON_OFF_SPLIT_ON:
   3537         s->kernel_irqchip_allowed = true;
   3538         s->kernel_irqchip_required = true;
   3539         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
   3540         break;
   3541     case ON_OFF_SPLIT_OFF:
   3542         s->kernel_irqchip_allowed = false;
   3543         s->kernel_irqchip_required = false;
   3544         s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
   3545         break;
   3546     case ON_OFF_SPLIT_SPLIT:
   3547         s->kernel_irqchip_allowed = true;
   3548         s->kernel_irqchip_required = true;
   3549         s->kernel_irqchip_split = ON_OFF_AUTO_ON;
   3550         break;
   3551     default:
   3552         /* The value was checked in visit_type_OnOffSplit() above. If
   3553          * we get here, then something is wrong in QEMU.
   3554          */
   3555         abort();
   3556     }
   3557 }
   3558 
   3559 bool kvm_kernel_irqchip_allowed(void)
   3560 {
   3561     return kvm_state->kernel_irqchip_allowed;
   3562 }
   3563 
   3564 bool kvm_kernel_irqchip_required(void)
   3565 {
   3566     return kvm_state->kernel_irqchip_required;
   3567 }
   3568 
   3569 bool kvm_kernel_irqchip_split(void)
   3570 {
   3571     return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
   3572 }
   3573 
   3574 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
   3575                                     const char *name, void *opaque,
   3576                                     Error **errp)
   3577 {
   3578     KVMState *s = KVM_STATE(obj);
   3579     uint32_t value = s->kvm_dirty_ring_size;
   3580 
   3581     visit_type_uint32(v, name, &value, errp);
   3582 }
   3583 
   3584 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
   3585                                     const char *name, void *opaque,
   3586                                     Error **errp)
   3587 {
   3588     KVMState *s = KVM_STATE(obj);
   3589     Error *error = NULL;
   3590     uint32_t value;
   3591 
   3592     if (s->fd != -1) {
   3593         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
   3594         return;
   3595     }
   3596 
   3597     visit_type_uint32(v, name, &value, &error);
   3598     if (error) {
   3599         error_propagate(errp, error);
   3600         return;
   3601     }
   3602     if (value & (value - 1)) {
   3603         error_setg(errp, "dirty-ring-size must be a power of two.");
   3604         return;
   3605     }
   3606 
   3607     s->kvm_dirty_ring_size = value;
   3608 }
   3609 
   3610 static void kvm_accel_instance_init(Object *obj)
   3611 {
   3612     KVMState *s = KVM_STATE(obj);
   3613 
   3614     s->fd = -1;
   3615     s->vmfd = -1;
   3616     s->kvm_shadow_mem = -1;
   3617     s->kernel_irqchip_allowed = true;
   3618     s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
   3619     /* KVM dirty ring is by default off */
   3620     s->kvm_dirty_ring_size = 0;
   3621     s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN;
   3622     s->notify_window = 0;
   3623 }
   3624 
   3625 /**
   3626  * kvm_gdbstub_sstep_flags():
   3627  *
   3628  * Returns: SSTEP_* flags that KVM supports for guest debug. The
   3629  * support is probed during kvm_init()
   3630  */
   3631 static int kvm_gdbstub_sstep_flags(void)
   3632 {
   3633     return kvm_sstep_flags;
   3634 }
   3635 
   3636 static void kvm_accel_class_init(ObjectClass *oc, void *data)
   3637 {
   3638     AccelClass *ac = ACCEL_CLASS(oc);
   3639     ac->name = "KVM";
   3640     ac->init_machine = kvm_init;
   3641     ac->has_memory = kvm_accel_has_memory;
   3642     ac->allowed = &kvm_allowed;
   3643     ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags;
   3644 
   3645     object_class_property_add(oc, "kernel-irqchip", "on|off|split",
   3646         NULL, kvm_set_kernel_irqchip,
   3647         NULL, NULL);
   3648     object_class_property_set_description(oc, "kernel-irqchip",
   3649         "Configure KVM in-kernel irqchip");
   3650 
   3651     object_class_property_add(oc, "kvm-shadow-mem", "int",
   3652         kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
   3653         NULL, NULL);
   3654     object_class_property_set_description(oc, "kvm-shadow-mem",
   3655         "KVM shadow MMU size");
   3656 
   3657     object_class_property_add(oc, "dirty-ring-size", "uint32",
   3658         kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
   3659         NULL, NULL);
   3660     object_class_property_set_description(oc, "dirty-ring-size",
   3661         "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
   3662 
   3663     kvm_arch_accel_class_init(oc);
   3664 }
   3665 
   3666 static const TypeInfo kvm_accel_type = {
   3667     .name = TYPE_KVM_ACCEL,
   3668     .parent = TYPE_ACCEL,
   3669     .instance_init = kvm_accel_instance_init,
   3670     .class_init = kvm_accel_class_init,
   3671     .instance_size = sizeof(KVMState),
   3672 };
   3673 
   3674 static void kvm_type_init(void)
   3675 {
   3676     type_register_static(&kvm_accel_type);
   3677 }
   3678 
   3679 type_init(kvm_type_init);
   3680 
   3681 typedef struct StatsArgs {
   3682     union StatsResultsType {
   3683         StatsResultList **stats;
   3684         StatsSchemaList **schema;
   3685     } result;
   3686     strList *names;
   3687     Error **errp;
   3688 } StatsArgs;
   3689 
   3690 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc,
   3691                                     uint64_t *stats_data,
   3692                                     StatsList *stats_list,
   3693                                     Error **errp)
   3694 {
   3695 
   3696     Stats *stats;
   3697     uint64List *val_list = NULL;
   3698 
   3699     /* Only add stats that we understand.  */
   3700     switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
   3701     case KVM_STATS_TYPE_CUMULATIVE:
   3702     case KVM_STATS_TYPE_INSTANT:
   3703     case KVM_STATS_TYPE_PEAK:
   3704     case KVM_STATS_TYPE_LINEAR_HIST:
   3705     case KVM_STATS_TYPE_LOG_HIST:
   3706         break;
   3707     default:
   3708         return stats_list;
   3709     }
   3710 
   3711     switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
   3712     case KVM_STATS_UNIT_NONE:
   3713     case KVM_STATS_UNIT_BYTES:
   3714     case KVM_STATS_UNIT_CYCLES:
   3715     case KVM_STATS_UNIT_SECONDS:
   3716     case KVM_STATS_UNIT_BOOLEAN:
   3717         break;
   3718     default:
   3719         return stats_list;
   3720     }
   3721 
   3722     switch (pdesc->flags & KVM_STATS_BASE_MASK) {
   3723     case KVM_STATS_BASE_POW10:
   3724     case KVM_STATS_BASE_POW2:
   3725         break;
   3726     default:
   3727         return stats_list;
   3728     }
   3729 
   3730     /* Alloc and populate data list */
   3731     stats = g_new0(Stats, 1);
   3732     stats->name = g_strdup(pdesc->name);
   3733     stats->value = g_new0(StatsValue, 1);;
   3734 
   3735     if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) {
   3736         stats->value->u.boolean = *stats_data;
   3737         stats->value->type = QTYPE_QBOOL;
   3738     } else if (pdesc->size == 1) {
   3739         stats->value->u.scalar = *stats_data;
   3740         stats->value->type = QTYPE_QNUM;
   3741     } else {
   3742         int i;
   3743         for (i = 0; i < pdesc->size; i++) {
   3744             QAPI_LIST_PREPEND(val_list, stats_data[i]);
   3745         }
   3746         stats->value->u.list = val_list;
   3747         stats->value->type = QTYPE_QLIST;
   3748     }
   3749 
   3750     QAPI_LIST_PREPEND(stats_list, stats);
   3751     return stats_list;
   3752 }
   3753 
   3754 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc,
   3755                                                  StatsSchemaValueList *list,
   3756                                                  Error **errp)
   3757 {
   3758     StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1);
   3759     schema_entry->value = g_new0(StatsSchemaValue, 1);
   3760 
   3761     switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
   3762     case KVM_STATS_TYPE_CUMULATIVE:
   3763         schema_entry->value->type = STATS_TYPE_CUMULATIVE;
   3764         break;
   3765     case KVM_STATS_TYPE_INSTANT:
   3766         schema_entry->value->type = STATS_TYPE_INSTANT;
   3767         break;
   3768     case KVM_STATS_TYPE_PEAK:
   3769         schema_entry->value->type = STATS_TYPE_PEAK;
   3770         break;
   3771     case KVM_STATS_TYPE_LINEAR_HIST:
   3772         schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM;
   3773         schema_entry->value->bucket_size = pdesc->bucket_size;
   3774         schema_entry->value->has_bucket_size = true;
   3775         break;
   3776     case KVM_STATS_TYPE_LOG_HIST:
   3777         schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM;
   3778         break;
   3779     default:
   3780         goto exit;
   3781     }
   3782 
   3783     switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
   3784     case KVM_STATS_UNIT_NONE:
   3785         break;
   3786     case KVM_STATS_UNIT_BOOLEAN:
   3787         schema_entry->value->has_unit = true;
   3788         schema_entry->value->unit = STATS_UNIT_BOOLEAN;
   3789         break;
   3790     case KVM_STATS_UNIT_BYTES:
   3791         schema_entry->value->has_unit = true;
   3792         schema_entry->value->unit = STATS_UNIT_BYTES;
   3793         break;
   3794     case KVM_STATS_UNIT_CYCLES:
   3795         schema_entry->value->has_unit = true;
   3796         schema_entry->value->unit = STATS_UNIT_CYCLES;
   3797         break;
   3798     case KVM_STATS_UNIT_SECONDS:
   3799         schema_entry->value->has_unit = true;
   3800         schema_entry->value->unit = STATS_UNIT_SECONDS;
   3801         break;
   3802     default:
   3803         goto exit;
   3804     }
   3805 
   3806     schema_entry->value->exponent = pdesc->exponent;
   3807     if (pdesc->exponent) {
   3808         switch (pdesc->flags & KVM_STATS_BASE_MASK) {
   3809         case KVM_STATS_BASE_POW10:
   3810             schema_entry->value->has_base = true;
   3811             schema_entry->value->base = 10;
   3812             break;
   3813         case KVM_STATS_BASE_POW2:
   3814             schema_entry->value->has_base = true;
   3815             schema_entry->value->base = 2;
   3816             break;
   3817         default:
   3818             goto exit;
   3819         }
   3820     }
   3821 
   3822     schema_entry->value->name = g_strdup(pdesc->name);
   3823     schema_entry->next = list;
   3824     return schema_entry;
   3825 exit:
   3826     g_free(schema_entry->value);
   3827     g_free(schema_entry);
   3828     return list;
   3829 }
   3830 
   3831 /* Cached stats descriptors */
   3832 typedef struct StatsDescriptors {
   3833     const char *ident; /* cache key, currently the StatsTarget */
   3834     struct kvm_stats_desc *kvm_stats_desc;
   3835     struct kvm_stats_header kvm_stats_header;
   3836     QTAILQ_ENTRY(StatsDescriptors) next;
   3837 } StatsDescriptors;
   3838 
   3839 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors =
   3840     QTAILQ_HEAD_INITIALIZER(stats_descriptors);
   3841 
   3842 /*
   3843  * Return the descriptors for 'target', that either have already been read
   3844  * or are retrieved from 'stats_fd'.
   3845  */
   3846 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd,
   3847                                                 Error **errp)
   3848 {
   3849     StatsDescriptors *descriptors;
   3850     const char *ident;
   3851     struct kvm_stats_desc *kvm_stats_desc;
   3852     struct kvm_stats_header *kvm_stats_header;
   3853     size_t size_desc;
   3854     ssize_t ret;
   3855 
   3856     ident = StatsTarget_str(target);
   3857     QTAILQ_FOREACH(descriptors, &stats_descriptors, next) {
   3858         if (g_str_equal(descriptors->ident, ident)) {
   3859             return descriptors;
   3860         }
   3861     }
   3862 
   3863     descriptors = g_new0(StatsDescriptors, 1);
   3864 
   3865     /* Read stats header */
   3866     kvm_stats_header = &descriptors->kvm_stats_header;
   3867     ret = read(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header));
   3868     if (ret != sizeof(*kvm_stats_header)) {
   3869         error_setg(errp, "KVM stats: failed to read stats header: "
   3870                    "expected %zu actual %zu",
   3871                    sizeof(*kvm_stats_header), ret);
   3872         g_free(descriptors);
   3873         return NULL;
   3874     }
   3875     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
   3876 
   3877     /* Read stats descriptors */
   3878     kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc);
   3879     ret = pread(stats_fd, kvm_stats_desc,
   3880                 size_desc * kvm_stats_header->num_desc,
   3881                 kvm_stats_header->desc_offset);
   3882 
   3883     if (ret != size_desc * kvm_stats_header->num_desc) {
   3884         error_setg(errp, "KVM stats: failed to read stats descriptors: "
   3885                    "expected %zu actual %zu",
   3886                    size_desc * kvm_stats_header->num_desc, ret);
   3887         g_free(descriptors);
   3888         g_free(kvm_stats_desc);
   3889         return NULL;
   3890     }
   3891     descriptors->kvm_stats_desc = kvm_stats_desc;
   3892     descriptors->ident = ident;
   3893     QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next);
   3894     return descriptors;
   3895 }
   3896 
   3897 static void query_stats(StatsResultList **result, StatsTarget target,
   3898                         strList *names, int stats_fd, Error **errp)
   3899 {
   3900     struct kvm_stats_desc *kvm_stats_desc;
   3901     struct kvm_stats_header *kvm_stats_header;
   3902     StatsDescriptors *descriptors;
   3903     g_autofree uint64_t *stats_data = NULL;
   3904     struct kvm_stats_desc *pdesc;
   3905     StatsList *stats_list = NULL;
   3906     size_t size_desc, size_data = 0;
   3907     ssize_t ret;
   3908     int i;
   3909 
   3910     descriptors = find_stats_descriptors(target, stats_fd, errp);
   3911     if (!descriptors) {
   3912         return;
   3913     }
   3914 
   3915     kvm_stats_header = &descriptors->kvm_stats_header;
   3916     kvm_stats_desc = descriptors->kvm_stats_desc;
   3917     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
   3918 
   3919     /* Tally the total data size; read schema data */
   3920     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
   3921         pdesc = (void *)kvm_stats_desc + i * size_desc;
   3922         size_data += pdesc->size * sizeof(*stats_data);
   3923     }
   3924 
   3925     stats_data = g_malloc0(size_data);
   3926     ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset);
   3927 
   3928     if (ret != size_data) {
   3929         error_setg(errp, "KVM stats: failed to read data: "
   3930                    "expected %zu actual %zu", size_data, ret);
   3931         return;
   3932     }
   3933 
   3934     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
   3935         uint64_t *stats;
   3936         pdesc = (void *)kvm_stats_desc + i * size_desc;
   3937 
   3938         /* Add entry to the list */
   3939         stats = (void *)stats_data + pdesc->offset;
   3940         if (!apply_str_list_filter(pdesc->name, names)) {
   3941             continue;
   3942         }
   3943         stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp);
   3944     }
   3945 
   3946     if (!stats_list) {
   3947         return;
   3948     }
   3949 
   3950     switch (target) {
   3951     case STATS_TARGET_VM:
   3952         add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list);
   3953         break;
   3954     case STATS_TARGET_VCPU:
   3955         add_stats_entry(result, STATS_PROVIDER_KVM,
   3956                         current_cpu->parent_obj.canonical_path,
   3957                         stats_list);
   3958         break;
   3959     default:
   3960         g_assert_not_reached();
   3961     }
   3962 }
   3963 
   3964 static void query_stats_schema(StatsSchemaList **result, StatsTarget target,
   3965                                int stats_fd, Error **errp)
   3966 {
   3967     struct kvm_stats_desc *kvm_stats_desc;
   3968     struct kvm_stats_header *kvm_stats_header;
   3969     StatsDescriptors *descriptors;
   3970     struct kvm_stats_desc *pdesc;
   3971     StatsSchemaValueList *stats_list = NULL;
   3972     size_t size_desc;
   3973     int i;
   3974 
   3975     descriptors = find_stats_descriptors(target, stats_fd, errp);
   3976     if (!descriptors) {
   3977         return;
   3978     }
   3979 
   3980     kvm_stats_header = &descriptors->kvm_stats_header;
   3981     kvm_stats_desc = descriptors->kvm_stats_desc;
   3982     size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
   3983 
   3984     /* Tally the total data size; read schema data */
   3985     for (i = 0; i < kvm_stats_header->num_desc; ++i) {
   3986         pdesc = (void *)kvm_stats_desc + i * size_desc;
   3987         stats_list = add_kvmschema_entry(pdesc, stats_list, errp);
   3988     }
   3989 
   3990     add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list);
   3991 }
   3992 
   3993 static void query_stats_vcpu(CPUState *cpu, run_on_cpu_data data)
   3994 {
   3995     StatsArgs *kvm_stats_args = (StatsArgs *) data.host_ptr;
   3996     int stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
   3997     Error *local_err = NULL;
   3998 
   3999     if (stats_fd == -1) {
   4000         error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
   4001         error_propagate(kvm_stats_args->errp, local_err);
   4002         return;
   4003     }
   4004     query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU,
   4005                 kvm_stats_args->names, stats_fd, kvm_stats_args->errp);
   4006     close(stats_fd);
   4007 }
   4008 
   4009 static void query_stats_schema_vcpu(CPUState *cpu, run_on_cpu_data data)
   4010 {
   4011     StatsArgs *kvm_stats_args = (StatsArgs *) data.host_ptr;
   4012     int stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
   4013     Error *local_err = NULL;
   4014 
   4015     if (stats_fd == -1) {
   4016         error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
   4017         error_propagate(kvm_stats_args->errp, local_err);
   4018         return;
   4019     }
   4020     query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd,
   4021                        kvm_stats_args->errp);
   4022     close(stats_fd);
   4023 }
   4024 
   4025 static void query_stats_cb(StatsResultList **result, StatsTarget target,
   4026                            strList *names, strList *targets, Error **errp)
   4027 {
   4028     KVMState *s = kvm_state;
   4029     CPUState *cpu;
   4030     int stats_fd;
   4031 
   4032     switch (target) {
   4033     case STATS_TARGET_VM:
   4034     {
   4035         stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
   4036         if (stats_fd == -1) {
   4037             error_setg_errno(errp, errno, "KVM stats: ioctl failed");
   4038             return;
   4039         }
   4040         query_stats(result, target, names, stats_fd, errp);
   4041         close(stats_fd);
   4042         break;
   4043     }
   4044     case STATS_TARGET_VCPU:
   4045     {
   4046         StatsArgs stats_args;
   4047         stats_args.result.stats = result;
   4048         stats_args.names = names;
   4049         stats_args.errp = errp;
   4050         CPU_FOREACH(cpu) {
   4051             if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) {
   4052                 continue;
   4053             }
   4054             run_on_cpu(cpu, query_stats_vcpu, RUN_ON_CPU_HOST_PTR(&stats_args));
   4055         }
   4056         break;
   4057     }
   4058     default:
   4059         break;
   4060     }
   4061 }
   4062 
   4063 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp)
   4064 {
   4065     StatsArgs stats_args;
   4066     KVMState *s = kvm_state;
   4067     int stats_fd;
   4068 
   4069     stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
   4070     if (stats_fd == -1) {
   4071         error_setg_errno(errp, errno, "KVM stats: ioctl failed");
   4072         return;
   4073     }
   4074     query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp);
   4075     close(stats_fd);
   4076 
   4077     if (first_cpu) {
   4078         stats_args.result.schema = result;
   4079         stats_args.errp = errp;
   4080         run_on_cpu(first_cpu, query_stats_schema_vcpu, RUN_ON_CPU_HOST_PTR(&stats_args));
   4081     }
   4082 }