qemu

FORK: QEMU emulator
git clone https://git.neptards.moe/neptards/qemu.git
Log | Files | Refs | Submodules | LICENSE

hvf-accel-ops.c (13360B)


      1 /*
      2  * Copyright 2008 IBM Corporation
      3  *           2008 Red Hat, Inc.
      4  * Copyright 2011 Intel Corporation
      5  * Copyright 2016 Veertu, Inc.
      6  * Copyright 2017 The Android Open Source Project
      7  *
      8  * QEMU Hypervisor.framework support
      9  *
     10  * This program is free software; you can redistribute it and/or
     11  * modify it under the terms of version 2 of the GNU General Public
     12  * License as published by the Free Software Foundation.
     13  *
     14  * This program is distributed in the hope that it will be useful,
     15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     17  * General Public License for more details.
     18  *
     19  * You should have received a copy of the GNU General Public License
     20  * along with this program; if not, see <http://www.gnu.org/licenses/>.
     21  *
     22  * This file contain code under public domain from the hvdos project:
     23  * https://github.com/mist64/hvdos
     24  *
     25  * Parts Copyright (c) 2011 NetApp, Inc.
     26  * All rights reserved.
     27  *
     28  * Redistribution and use in source and binary forms, with or without
     29  * modification, are permitted provided that the following conditions
     30  * are met:
     31  * 1. Redistributions of source code must retain the above copyright
     32  *    notice, this list of conditions and the following disclaimer.
     33  * 2. Redistributions in binary form must reproduce the above copyright
     34  *    notice, this list of conditions and the following disclaimer in the
     35  *    documentation and/or other materials provided with the distribution.
     36  *
     37  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
     38  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     39  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     40  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
     41  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     42  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     43  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     45  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     46  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     47  * SUCH DAMAGE.
     48  */
     49 
     50 #include "qemu/osdep.h"
     51 #include "qemu/error-report.h"
     52 #include "qemu/main-loop.h"
     53 #include "exec/address-spaces.h"
     54 #include "exec/exec-all.h"
     55 #include "sysemu/cpus.h"
     56 #include "sysemu/hvf.h"
     57 #include "sysemu/hvf_int.h"
     58 #include "sysemu/runstate.h"
     59 #include "qemu/guest-random.h"
     60 
     61 HVFState *hvf_state;
     62 
     63 #ifdef __aarch64__
     64 #define HV_VM_DEFAULT NULL
     65 #endif
     66 
     67 /* Memory slots */
     68 
     69 hvf_slot *hvf_find_overlap_slot(uint64_t start, uint64_t size)
     70 {
     71     hvf_slot *slot;
     72     int x;
     73     for (x = 0; x < hvf_state->num_slots; ++x) {
     74         slot = &hvf_state->slots[x];
     75         if (slot->size && start < (slot->start + slot->size) &&
     76             (start + size) > slot->start) {
     77             return slot;
     78         }
     79     }
     80     return NULL;
     81 }
     82 
     83 struct mac_slot {
     84     int present;
     85     uint64_t size;
     86     uint64_t gpa_start;
     87     uint64_t gva;
     88 };
     89 
     90 struct mac_slot mac_slots[32];
     91 
     92 static int do_hvf_set_memory(hvf_slot *slot, hv_memory_flags_t flags)
     93 {
     94     struct mac_slot *macslot;
     95     hv_return_t ret;
     96 
     97     macslot = &mac_slots[slot->slot_id];
     98 
     99     if (macslot->present) {
    100         if (macslot->size != slot->size) {
    101             macslot->present = 0;
    102             ret = hv_vm_unmap(macslot->gpa_start, macslot->size);
    103             assert_hvf_ok(ret);
    104         }
    105     }
    106 
    107     if (!slot->size) {
    108         return 0;
    109     }
    110 
    111     macslot->present = 1;
    112     macslot->gpa_start = slot->start;
    113     macslot->size = slot->size;
    114     ret = hv_vm_map(slot->mem, slot->start, slot->size, flags);
    115     assert_hvf_ok(ret);
    116     return 0;
    117 }
    118 
    119 static void hvf_set_phys_mem(MemoryRegionSection *section, bool add)
    120 {
    121     hvf_slot *mem;
    122     MemoryRegion *area = section->mr;
    123     bool writable = !area->readonly && !area->rom_device;
    124     hv_memory_flags_t flags;
    125     uint64_t page_size = qemu_real_host_page_size();
    126 
    127     if (!memory_region_is_ram(area)) {
    128         if (writable) {
    129             return;
    130         } else if (!memory_region_is_romd(area)) {
    131             /*
    132              * If the memory device is not in romd_mode, then we actually want
    133              * to remove the hvf memory slot so all accesses will trap.
    134              */
    135              add = false;
    136         }
    137     }
    138 
    139     if (!QEMU_IS_ALIGNED(int128_get64(section->size), page_size) ||
    140         !QEMU_IS_ALIGNED(section->offset_within_address_space, page_size)) {
    141         /* Not page aligned, so we can not map as RAM */
    142         add = false;
    143     }
    144 
    145     mem = hvf_find_overlap_slot(
    146             section->offset_within_address_space,
    147             int128_get64(section->size));
    148 
    149     if (mem && add) {
    150         if (mem->size == int128_get64(section->size) &&
    151             mem->start == section->offset_within_address_space &&
    152             mem->mem == (memory_region_get_ram_ptr(area) +
    153             section->offset_within_region)) {
    154             return; /* Same region was attempted to register, go away. */
    155         }
    156     }
    157 
    158     /* Region needs to be reset. set the size to 0 and remap it. */
    159     if (mem) {
    160         mem->size = 0;
    161         if (do_hvf_set_memory(mem, 0)) {
    162             error_report("Failed to reset overlapping slot");
    163             abort();
    164         }
    165     }
    166 
    167     if (!add) {
    168         return;
    169     }
    170 
    171     if (area->readonly ||
    172         (!memory_region_is_ram(area) && memory_region_is_romd(area))) {
    173         flags = HV_MEMORY_READ | HV_MEMORY_EXEC;
    174     } else {
    175         flags = HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC;
    176     }
    177 
    178     /* Now make a new slot. */
    179     int x;
    180 
    181     for (x = 0; x < hvf_state->num_slots; ++x) {
    182         mem = &hvf_state->slots[x];
    183         if (!mem->size) {
    184             break;
    185         }
    186     }
    187 
    188     if (x == hvf_state->num_slots) {
    189         error_report("No free slots");
    190         abort();
    191     }
    192 
    193     mem->size = int128_get64(section->size);
    194     mem->mem = memory_region_get_ram_ptr(area) + section->offset_within_region;
    195     mem->start = section->offset_within_address_space;
    196     mem->region = area;
    197 
    198     if (do_hvf_set_memory(mem, flags)) {
    199         error_report("Error registering new memory slot");
    200         abort();
    201     }
    202 }
    203 
    204 static void do_hvf_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
    205 {
    206     if (!cpu->vcpu_dirty) {
    207         hvf_get_registers(cpu);
    208         cpu->vcpu_dirty = true;
    209     }
    210 }
    211 
    212 static void hvf_cpu_synchronize_state(CPUState *cpu)
    213 {
    214     if (!cpu->vcpu_dirty) {
    215         run_on_cpu(cpu, do_hvf_cpu_synchronize_state, RUN_ON_CPU_NULL);
    216     }
    217 }
    218 
    219 static void do_hvf_cpu_synchronize_set_dirty(CPUState *cpu,
    220                                              run_on_cpu_data arg)
    221 {
    222     /* QEMU state is the reference, push it to HVF now and on next entry */
    223     cpu->vcpu_dirty = true;
    224 }
    225 
    226 static void hvf_cpu_synchronize_post_reset(CPUState *cpu)
    227 {
    228     run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL);
    229 }
    230 
    231 static void hvf_cpu_synchronize_post_init(CPUState *cpu)
    232 {
    233     run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL);
    234 }
    235 
    236 static void hvf_cpu_synchronize_pre_loadvm(CPUState *cpu)
    237 {
    238     run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL);
    239 }
    240 
    241 static void hvf_set_dirty_tracking(MemoryRegionSection *section, bool on)
    242 {
    243     hvf_slot *slot;
    244 
    245     slot = hvf_find_overlap_slot(
    246             section->offset_within_address_space,
    247             int128_get64(section->size));
    248 
    249     /* protect region against writes; begin tracking it */
    250     if (on) {
    251         slot->flags |= HVF_SLOT_LOG;
    252         hv_vm_protect((uintptr_t)slot->start, (size_t)slot->size,
    253                       HV_MEMORY_READ | HV_MEMORY_EXEC);
    254     /* stop tracking region*/
    255     } else {
    256         slot->flags &= ~HVF_SLOT_LOG;
    257         hv_vm_protect((uintptr_t)slot->start, (size_t)slot->size,
    258                       HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC);
    259     }
    260 }
    261 
    262 static void hvf_log_start(MemoryListener *listener,
    263                           MemoryRegionSection *section, int old, int new)
    264 {
    265     if (old != 0) {
    266         return;
    267     }
    268 
    269     hvf_set_dirty_tracking(section, 1);
    270 }
    271 
    272 static void hvf_log_stop(MemoryListener *listener,
    273                          MemoryRegionSection *section, int old, int new)
    274 {
    275     if (new != 0) {
    276         return;
    277     }
    278 
    279     hvf_set_dirty_tracking(section, 0);
    280 }
    281 
    282 static void hvf_log_sync(MemoryListener *listener,
    283                          MemoryRegionSection *section)
    284 {
    285     /*
    286      * sync of dirty pages is handled elsewhere; just make sure we keep
    287      * tracking the region.
    288      */
    289     hvf_set_dirty_tracking(section, 1);
    290 }
    291 
    292 static void hvf_region_add(MemoryListener *listener,
    293                            MemoryRegionSection *section)
    294 {
    295     hvf_set_phys_mem(section, true);
    296 }
    297 
    298 static void hvf_region_del(MemoryListener *listener,
    299                            MemoryRegionSection *section)
    300 {
    301     hvf_set_phys_mem(section, false);
    302 }
    303 
    304 static MemoryListener hvf_memory_listener = {
    305     .name = "hvf",
    306     .priority = 10,
    307     .region_add = hvf_region_add,
    308     .region_del = hvf_region_del,
    309     .log_start = hvf_log_start,
    310     .log_stop = hvf_log_stop,
    311     .log_sync = hvf_log_sync,
    312 };
    313 
    314 static void dummy_signal(int sig)
    315 {
    316 }
    317 
    318 bool hvf_allowed;
    319 
    320 static int hvf_accel_init(MachineState *ms)
    321 {
    322     int x;
    323     hv_return_t ret;
    324     HVFState *s;
    325 
    326     ret = hv_vm_create(HV_VM_DEFAULT);
    327     assert_hvf_ok(ret);
    328 
    329     s = g_new0(HVFState, 1);
    330 
    331     s->num_slots = ARRAY_SIZE(s->slots);
    332     for (x = 0; x < s->num_slots; ++x) {
    333         s->slots[x].size = 0;
    334         s->slots[x].slot_id = x;
    335     }
    336 
    337     hvf_state = s;
    338     memory_listener_register(&hvf_memory_listener, &address_space_memory);
    339 
    340     return hvf_arch_init();
    341 }
    342 
    343 static void hvf_accel_class_init(ObjectClass *oc, void *data)
    344 {
    345     AccelClass *ac = ACCEL_CLASS(oc);
    346     ac->name = "HVF";
    347     ac->init_machine = hvf_accel_init;
    348     ac->allowed = &hvf_allowed;
    349 }
    350 
    351 static const TypeInfo hvf_accel_type = {
    352     .name = TYPE_HVF_ACCEL,
    353     .parent = TYPE_ACCEL,
    354     .class_init = hvf_accel_class_init,
    355 };
    356 
    357 static void hvf_type_init(void)
    358 {
    359     type_register_static(&hvf_accel_type);
    360 }
    361 
    362 type_init(hvf_type_init);
    363 
    364 static void hvf_vcpu_destroy(CPUState *cpu)
    365 {
    366     hv_return_t ret = hv_vcpu_destroy(cpu->hvf->fd);
    367     assert_hvf_ok(ret);
    368 
    369     hvf_arch_vcpu_destroy(cpu);
    370     g_free(cpu->hvf);
    371     cpu->hvf = NULL;
    372 }
    373 
    374 static int hvf_init_vcpu(CPUState *cpu)
    375 {
    376     int r;
    377 
    378     cpu->hvf = g_malloc0(sizeof(*cpu->hvf));
    379 
    380     /* init cpu signals */
    381     struct sigaction sigact;
    382 
    383     memset(&sigact, 0, sizeof(sigact));
    384     sigact.sa_handler = dummy_signal;
    385     sigaction(SIG_IPI, &sigact, NULL);
    386 
    387     pthread_sigmask(SIG_BLOCK, NULL, &cpu->hvf->unblock_ipi_mask);
    388     sigdelset(&cpu->hvf->unblock_ipi_mask, SIG_IPI);
    389 
    390 #ifdef __aarch64__
    391     r = hv_vcpu_create(&cpu->hvf->fd, (hv_vcpu_exit_t **)&cpu->hvf->exit, NULL);
    392 #else
    393     r = hv_vcpu_create((hv_vcpuid_t *)&cpu->hvf->fd, HV_VCPU_DEFAULT);
    394 #endif
    395     cpu->vcpu_dirty = 1;
    396     assert_hvf_ok(r);
    397 
    398     return hvf_arch_init_vcpu(cpu);
    399 }
    400 
    401 /*
    402  * The HVF-specific vCPU thread function. This one should only run when the host
    403  * CPU supports the VMX "unrestricted guest" feature.
    404  */
    405 static void *hvf_cpu_thread_fn(void *arg)
    406 {
    407     CPUState *cpu = arg;
    408 
    409     int r;
    410 
    411     assert(hvf_enabled());
    412 
    413     rcu_register_thread();
    414 
    415     qemu_mutex_lock_iothread();
    416     qemu_thread_get_self(cpu->thread);
    417 
    418     cpu->thread_id = qemu_get_thread_id();
    419     cpu->can_do_io = 1;
    420     current_cpu = cpu;
    421 
    422     hvf_init_vcpu(cpu);
    423 
    424     /* signal CPU creation */
    425     cpu_thread_signal_created(cpu);
    426     qemu_guest_random_seed_thread_part2(cpu->random_seed);
    427 
    428     do {
    429         if (cpu_can_run(cpu)) {
    430             r = hvf_vcpu_exec(cpu);
    431             if (r == EXCP_DEBUG) {
    432                 cpu_handle_guest_debug(cpu);
    433             }
    434         }
    435         qemu_wait_io_event(cpu);
    436     } while (!cpu->unplug || cpu_can_run(cpu));
    437 
    438     hvf_vcpu_destroy(cpu);
    439     cpu_thread_signal_destroyed(cpu);
    440     qemu_mutex_unlock_iothread();
    441     rcu_unregister_thread();
    442     return NULL;
    443 }
    444 
    445 static void hvf_start_vcpu_thread(CPUState *cpu)
    446 {
    447     char thread_name[VCPU_THREAD_NAME_SIZE];
    448 
    449     /*
    450      * HVF currently does not support TCG, and only runs in
    451      * unrestricted-guest mode.
    452      */
    453     assert(hvf_enabled());
    454 
    455     cpu->thread = g_malloc0(sizeof(QemuThread));
    456     cpu->halt_cond = g_malloc0(sizeof(QemuCond));
    457     qemu_cond_init(cpu->halt_cond);
    458 
    459     snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HVF",
    460              cpu->cpu_index);
    461     qemu_thread_create(cpu->thread, thread_name, hvf_cpu_thread_fn,
    462                        cpu, QEMU_THREAD_JOINABLE);
    463 }
    464 
    465 static void hvf_accel_ops_class_init(ObjectClass *oc, void *data)
    466 {
    467     AccelOpsClass *ops = ACCEL_OPS_CLASS(oc);
    468 
    469     ops->create_vcpu_thread = hvf_start_vcpu_thread;
    470     ops->kick_vcpu_thread = hvf_kick_vcpu_thread;
    471 
    472     ops->synchronize_post_reset = hvf_cpu_synchronize_post_reset;
    473     ops->synchronize_post_init = hvf_cpu_synchronize_post_init;
    474     ops->synchronize_state = hvf_cpu_synchronize_state;
    475     ops->synchronize_pre_loadvm = hvf_cpu_synchronize_pre_loadvm;
    476 };
    477 static const TypeInfo hvf_accel_ops_type = {
    478     .name = ACCEL_OPS_NAME("hvf"),
    479 
    480     .parent = TYPE_ACCEL_OPS,
    481     .class_init = hvf_accel_ops_class_init,
    482     .abstract = true,
    483 };
    484 static void hvf_accel_ops_register_types(void)
    485 {
    486     type_register_static(&hvf_accel_ops_type);
    487 }
    488 type_init(hvf_accel_ops_register_types);