ljx

FORK: LuaJIT with native 5.2 and 5.3 support
git clone https://git.neptards.moe/neptards/ljx.git
Log | Files | Refs | README

lj_strscan.c (16727B)


      1 /*
      2 ** String scanning.
      3 ** Copyright (C) 2005-2016 Mike Pall. See Copyright Notice in luajit.h
      4 */
      5 
      6 #include <math.h>
      7 
      8 #define lj_strscan_c
      9 #define LUA_CORE
     10 
     11 #include "lj_obj.h"
     12 #include "lj_char.h"
     13 #include "lj_strscan.h"
     14 
     15 /* -- Scanning numbers ---------------------------------------------------- */
     16 
     17 /*
     18 ** Rationale for the builtin string to number conversion library:
     19 **
     20 ** It removes a dependency on libc's strtod(), which is a true portability
     21 ** nightmare. Mainly due to the plethora of supported OS and toolchain
     22 ** combinations. Sadly, the various implementations
     23 ** a) are often buggy, incomplete (no hex floats) and/or imprecise,
     24 ** b) sometimes crash or hang on certain inputs,
     25 ** c) return non-standard NaNs that need to be filtered out, and
     26 ** d) fail if the locale-specific decimal separator is not a dot,
     27 **    which can only be fixed with atrocious workarounds.
     28 **
     29 ** Also, most of the strtod() implementations are hopelessly bloated,
     30 ** which is not just an I-cache hog, but a problem for static linkage
     31 ** on embedded systems, too.
     32 **
     33 ** OTOH the builtin conversion function is very compact. Even though it
     34 ** does a lot more, like parsing long longs, octal or imaginary numbers
     35 ** and returning the result in different formats:
     36 ** a) It needs less than 3 KB (!) of machine code (on x64 with -Os),
     37 ** b) it doesn't perform any dynamic allocation and,
     38 ** c) it needs only around 600 bytes of stack space.
     39 **
     40 ** The builtin function is faster than strtod() for typical inputs, e.g.
     41 ** "123", "1.5" or "1e6". Arguably, it's slower for very large exponents,
     42 ** which are not very common (this could be fixed, if needed).
     43 **
     44 ** And most importantly, the builtin function is equally precise on all
     45 ** platforms. It correctly converts and rounds any input to a double.
     46 ** If this is not the case, please send a bug report -- but PLEASE verify
     47 ** that the implementation you're comparing to is not the culprit!
     48 **
     49 ** The implementation quickly pre-scans the entire string first and
     50 ** handles simple integers on-the-fly. Otherwise, it dispatches to the
     51 ** base-specific parser. Hex and octal is straightforward.
     52 **
     53 ** Decimal to binary conversion uses a fixed-length circular buffer in
     54 ** base 100. Some simple cases are handled directly. For other cases, the
     55 ** number in the buffer is up-scaled or down-scaled until the integer part
     56 ** is in the proper range. Then the integer part is rounded and converted
     57 ** to a double which is finally rescaled to the result. Denormals need
     58 ** special treatment to prevent incorrect 'double rounding'.
     59 */
     60 
     61 /* Definitions for circular decimal digit buffer (base 100 = 2 digits/byte). */
     62 #define STRSCAN_DIG	1024
     63 #define STRSCAN_MAXDIG	800		/* 772 + extra are sufficient. */
     64 #define STRSCAN_DDIG	(STRSCAN_DIG/2)
     65 #define STRSCAN_DMASK	(STRSCAN_DDIG-1)
     66 
     67 /* Helpers for circular buffer. */
     68 #define DNEXT(a)	(((a)+1) & STRSCAN_DMASK)
     69 #define DPREV(a)	(((a)-1) & STRSCAN_DMASK)
     70 #define DLEN(lo, hi)	((int32_t)(((lo)-(hi)) & STRSCAN_DMASK))
     71 
     72 #define casecmp(c, k)	(((c) | 0x20) == k)
     73 
     74 /* Final conversion to double. */
     75 static void strscan_double(uint64_t x, TValue *o, int32_t ex2, int32_t neg)
     76 {
     77   double n;
     78 
     79   /* Avoid double rounding for denormals. */
     80   if (LJ_UNLIKELY(ex2 <= -1075 && x != 0)) {
     81     /* NYI: all of this generates way too much code on 32 bit CPUs. */
     82 #if defined(__GNUC__) && LJ_64
     83     int32_t b = (int32_t)(__builtin_clzll(x)^63);
     84 #else
     85     int32_t b = (x>>32) ? 32+(int32_t)lj_fls((uint32_t)(x>>32)) :
     86 			  (int32_t)lj_fls((uint32_t)x);
     87 #endif
     88     if ((int32_t)b + ex2 <= -1023 && (int32_t)b + ex2 >= -1075) {
     89       uint64_t rb = (uint64_t)1 << (-1075-ex2);
     90       if ((x & rb) && ((x & (rb+rb+rb-1)))) x += rb+rb;
     91       x = (x & ~(rb+rb-1));
     92     }
     93   }
     94 
     95   /* Convert to double using a signed int64_t conversion, then rescale. */
     96   lua_assert((int64_t)x >= 0);
     97   n = (double)(int64_t)x;
     98   if (neg) n = -n;
     99   if (ex2) n = ldexp(n, ex2);
    100   o->n = n;
    101 }
    102 
    103 /* Parse hexadecimal number. */
    104 static StrScanFmt strscan_hex(const uint8_t *p, TValue *o,
    105 			      StrScanFmt fmt, uint32_t opt,
    106 			      int32_t ex2, int32_t neg, uint32_t dig)
    107 {
    108   uint64_t x = 0;
    109   uint32_t i;
    110 
    111   /* Scan hex digits. */
    112   for (i = dig > 16 ? 16 : dig ; i; i--, p++) {
    113     uint32_t d = (*p != '.' ? *p : *++p); if (d > '9') d += 9;
    114     x = (x << 4) + (d & 15);
    115   }
    116 
    117   /* Summarize rounding-effect of excess digits. */
    118   for (i = 16; i < dig; i++, p++)
    119     x |= ((*p != '.' ? *p : *++p) != '0'), ex2 += 4;
    120 
    121   /* Format-specific handling. */
    122   switch (fmt) {
    123   case STRSCAN_INT:
    124     if (!(opt & STRSCAN_OPT_TONUM) && x < 0x80000000u+neg) {
    125       o->i = neg ? -(int32_t)x : (int32_t)x;
    126       return STRSCAN_INT;  /* Fast path for 32 bit integers. */
    127     }
    128     if (!(opt & STRSCAN_OPT_C)) { fmt = STRSCAN_NUM; break; }
    129     /* fallthrough */
    130   case STRSCAN_U32:
    131     if (dig > 8) return STRSCAN_ERROR;
    132     o->i = neg ? -(int32_t)x : (int32_t)x;
    133     return STRSCAN_U32;
    134   case STRSCAN_I64:
    135   case STRSCAN_U64:
    136     if (dig > 16) return STRSCAN_ERROR;
    137     o->u64 = neg ? (uint64_t)-(int64_t)x : x;
    138     return fmt;
    139   default:
    140     break;
    141   }
    142 
    143   /* Reduce range, then convert to double. */
    144   if ((x & U64x(c0000000,0000000))) { x = (x >> 2) | (x & 3); ex2 += 2; }
    145   strscan_double(x, o, ex2, neg);
    146   return fmt;
    147 }
    148 
    149 /* Parse octal number. */
    150 static StrScanFmt strscan_oct(const uint8_t *p, TValue *o,
    151 			      StrScanFmt fmt, int32_t neg, uint32_t dig)
    152 {
    153   uint64_t x = 0;
    154 
    155   /* Scan octal digits. */
    156   if (dig > 22 || (dig == 22 && *p > '1')) return STRSCAN_ERROR;
    157   while (dig-- > 0) {
    158     if (!(*p >= '0' && *p <= '7')) return STRSCAN_ERROR;
    159     x = (x << 3) + (*p++ & 7);
    160   }
    161 
    162   /* Format-specific handling. */
    163   switch (fmt) {
    164   case STRSCAN_INT:
    165     if (x >= 0x80000000u+neg) fmt = STRSCAN_U32;
    166     /* fallthrough */
    167   case STRSCAN_U32:
    168     if ((x >> 32)) return STRSCAN_ERROR;
    169     o->i = neg ? -(int32_t)x : (int32_t)x;
    170     break;
    171   default:
    172   case STRSCAN_I64:
    173   case STRSCAN_U64:
    174     o->u64 = neg ? (uint64_t)-(int64_t)x : x;
    175     break;
    176   }
    177   return fmt;
    178 }
    179 
    180 /* Parse decimal number. */
    181 static StrScanFmt strscan_dec(const uint8_t *p, TValue *o,
    182 			      StrScanFmt fmt, uint32_t opt,
    183 			      int32_t ex10, int32_t neg, uint32_t dig)
    184 {
    185   uint8_t xi[STRSCAN_DDIG], *xip = xi;
    186 
    187   if (dig) {
    188     uint32_t i = dig;
    189     if (i > STRSCAN_MAXDIG) {
    190       ex10 += (int32_t)(i - STRSCAN_MAXDIG);
    191       i = STRSCAN_MAXDIG;
    192     }
    193     /* Scan unaligned leading digit. */
    194     if (((ex10^i) & 1))
    195       *xip++ = ((*p != '.' ? *p : *++p) & 15), i--, p++;
    196     /* Scan aligned double-digits. */
    197     for ( ; i > 1; i -= 2) {
    198       uint32_t d = 10 * ((*p != '.' ? *p : *++p) & 15); p++;
    199       *xip++ = d + ((*p != '.' ? *p : *++p) & 15); p++;
    200     }
    201     /* Scan and realign trailing digit. */
    202     if (i) *xip++ = 10 * ((*p != '.' ? *p : *++p) & 15), ex10--, dig++, p++;
    203 
    204     /* Summarize rounding-effect of excess digits. */
    205     if (dig > STRSCAN_MAXDIG) {
    206       do {
    207 	if ((*p != '.' ? *p : *++p) != '0') { xip[-1] |= 1; break; }
    208 	p++;
    209       } while (--dig > STRSCAN_MAXDIG);
    210       dig = STRSCAN_MAXDIG;
    211     } else {  /* Simplify exponent. */
    212       while (ex10 > 0 && dig <= 18) *xip++ = 0, ex10 -= 2, dig += 2;
    213     }
    214   } else {  /* Only got zeros. */
    215     ex10 = 0;
    216     xi[0] = 0;
    217   }
    218 
    219   /* Fast path for numbers in integer format (but handles e.g. 1e6, too). */
    220   if (dig <= 20 && ex10 == 0) {
    221     uint8_t *xis;
    222     uint64_t x = xi[0];
    223     double n;
    224     for (xis = xi+1; xis < xip; xis++) x = x * 100 + *xis;
    225     if (!(dig == 20 && (xi[0] > 18 || (int64_t)x >= 0))) {  /* No overflow? */
    226       /* Format-specific handling. */
    227       switch (fmt) {
    228       case STRSCAN_INT:
    229 	if (!(opt & STRSCAN_OPT_TONUM) && x < 0x80000000u+neg) {
    230 	  o->i = neg ? -(int32_t)x : (int32_t)x;
    231 	  return STRSCAN_INT;  /* Fast path for 32 bit integers. */
    232 	}
    233 	if (!(opt & STRSCAN_OPT_C)) { fmt = STRSCAN_NUM; goto plainnumber; }
    234 	/* fallthrough */
    235       case STRSCAN_U32:
    236 	if ((x >> 32) != 0) return STRSCAN_ERROR;
    237 	o->i = neg ? -(int32_t)x : (int32_t)x;
    238 	return STRSCAN_U32;
    239       case STRSCAN_I64:
    240       case STRSCAN_U64:
    241 	o->u64 = neg ? (uint64_t)-(int64_t)x : x;
    242 	return fmt;
    243       default:
    244       plainnumber:  /* Fast path for plain numbers < 2^63. */
    245 	if ((int64_t)x < 0) break;
    246 	n = (double)(int64_t)x;
    247 	if (neg) n = -n;
    248 	o->n = n;
    249 	return fmt;
    250       }
    251     }
    252   }
    253 
    254   /* Slow non-integer path. */
    255   if (fmt == STRSCAN_INT) {
    256     if ((opt & STRSCAN_OPT_C)) return STRSCAN_ERROR;
    257     fmt = STRSCAN_NUM;
    258   } else if (fmt > STRSCAN_INT) {
    259     return STRSCAN_ERROR;
    260   }
    261   {
    262     uint32_t hi = 0, lo = (uint32_t)(xip-xi);
    263     int32_t ex2 = 0, idig = (int32_t)lo + (ex10 >> 1);
    264 
    265     lua_assert(lo > 0 && (ex10 & 1) == 0);
    266 
    267     /* Handle simple overflow/underflow. */
    268     if (idig > 310/2) { if (neg) setminfV(o); else setpinfV(o); return fmt; }
    269     else if (idig < -326/2) { o->n = neg ? -0.0 : 0.0; return fmt; }
    270 
    271     /* Scale up until we have at least 17 or 18 integer part digits. */
    272     while (idig < 9 && idig < DLEN(lo, hi)) {
    273       uint32_t i, cy = 0;
    274       ex2 -= 6;
    275       for (i = DPREV(lo); ; i = DPREV(i)) {
    276 	uint32_t d = (xi[i] << 6) + cy;
    277 	cy = (((d >> 2) * 5243) >> 17); d = d - cy * 100;  /* Div/mod 100. */
    278 	xi[i] = (uint8_t)d;
    279 	if (i == hi) break;
    280 	if (d == 0 && i == DPREV(lo)) lo = i;
    281       }
    282       if (cy) {
    283 	hi = DPREV(hi);
    284 	if (xi[DPREV(lo)] == 0) lo = DPREV(lo);
    285 	else if (hi == lo) { lo = DPREV(lo); xi[DPREV(lo)] |= xi[lo]; }
    286 	xi[hi] = (uint8_t)cy; idig++;
    287       }
    288     }
    289 
    290     /* Scale down until no more than 17 or 18 integer part digits remain. */
    291     while (idig > 9) {
    292       uint32_t i = hi, cy = 0;
    293       ex2 += 6;
    294       do {
    295 	cy += xi[i];
    296 	xi[i] = (cy >> 6);
    297 	cy = 100 * (cy & 0x3f);
    298 	if (xi[i] == 0 && i == hi) hi = DNEXT(hi), idig--;
    299 	i = DNEXT(i);
    300       } while (i != lo);
    301       while (cy) {
    302 	if (hi == lo) { xi[DPREV(lo)] |= 1; break; }
    303 	xi[lo] = (cy >> 6); lo = DNEXT(lo);
    304 	cy = 100 * (cy & 0x3f);
    305       }
    306     }
    307 
    308     /* Collect integer part digits and convert to rescaled double. */
    309     {
    310       uint64_t x = xi[hi];
    311       uint32_t i;
    312       for (i = DNEXT(hi); --idig > 0 && i != lo; i = DNEXT(i))
    313 	x = x * 100 + xi[i];
    314       if (i == lo) {
    315 	while (--idig >= 0) x = x * 100;
    316       } else {  /* Gather round bit from remaining digits. */
    317 	x <<= 1; ex2--;
    318 	do {
    319 	  if (xi[i]) { x |= 1; break; }
    320 	  i = DNEXT(i);
    321 	} while (i != lo);
    322       }
    323       strscan_double(x, o, ex2, neg);
    324     }
    325   }
    326   return fmt;
    327 }
    328 
    329 /* Parse binary number. */
    330 static StrScanFmt strscan_bin(const uint8_t *p, TValue *o,
    331 			      StrScanFmt fmt, uint32_t opt,
    332 			      int32_t ex2, int32_t neg, uint32_t dig)
    333 {
    334   uint64_t x = 0;
    335   uint32_t i;
    336 
    337   if (ex2 || dig > 64) return STRSCAN_ERROR;
    338 
    339   /* Scan binary digits. */
    340   for (i = dig; i; i--, p++) {
    341     if ((*p & ~1) != '0') return STRSCAN_ERROR;
    342     x = (x << 1) | (*p & 1);
    343   }
    344 
    345   /* Format-specific handling. */
    346   switch (fmt) {
    347   case STRSCAN_INT:
    348     if (!(opt & STRSCAN_OPT_TONUM) && x < 0x80000000u+neg) {
    349       o->i = neg ? -(int32_t)x : (int32_t)x;
    350       return STRSCAN_INT;  /* Fast path for 32 bit integers. */
    351     }
    352     if (!(opt & STRSCAN_OPT_C)) { fmt = STRSCAN_NUM; break; }
    353     /* fallthrough */
    354   case STRSCAN_U32:
    355     if (dig > 32) return STRSCAN_ERROR;
    356     o->i = neg ? -(int32_t)x : (int32_t)x;
    357     return STRSCAN_U32;
    358   case STRSCAN_I64:
    359   case STRSCAN_U64:
    360     o->u64 = neg ? (uint64_t)-(int64_t)x : x;
    361     return fmt;
    362   default:
    363     break;
    364   }
    365 
    366   /* Reduce range, then convert to double. */
    367   if ((x & U64x(c0000000,0000000))) { x = (x >> 2) | (x & 3); ex2 += 2; }
    368   strscan_double(x, o, ex2, neg);
    369   return fmt;
    370 }
    371 
    372 /* Scan string containing a number. Returns format. Returns value in o. */
    373 StrScanFmt lj_strscan_scan(const uint8_t *p, TValue *o, uint32_t opt)
    374 {
    375   int32_t neg = 0;
    376 
    377   /* Remove leading space, parse sign and non-numbers. */
    378   if (LJ_UNLIKELY(!lj_char_isdigit(*p))) {
    379     while (lj_char_isspace(*p)) p++;
    380     if (*p == '+' || *p == '-') neg = (*p++ == '-');
    381 #if LJ_51
    382     if (LJ_UNLIKELY(*p >= 'A')) {  /* Parse "inf", "infinity" or "nan". */
    383       TValue tmp;
    384       setnanV(&tmp);
    385       if (casecmp(p[0],'i') && casecmp(p[1],'n') && casecmp(p[2],'f')) {
    386 	if (neg) setminfV(&tmp); else setpinfV(&tmp);
    387 	p += 3;
    388 	if (casecmp(p[0],'i') && casecmp(p[1],'n') && casecmp(p[2],'i') &&
    389 	    casecmp(p[3],'t') && casecmp(p[4],'y')) p += 5;
    390       } else if (casecmp(p[0],'n') && casecmp(p[1],'a') && casecmp(p[2],'n')) {
    391 	p += 3;
    392       }
    393       while (lj_char_isspace(*p)) p++;
    394       if (*p) return STRSCAN_ERROR;
    395       o->u64 = tmp.u64;
    396       return STRSCAN_NUM;
    397     }
    398 #endif
    399   }
    400 
    401   /* Parse regular number. */
    402   {
    403     StrScanFmt fmt = STRSCAN_INT;
    404     int cmask = LJ_CHAR_DIGIT;
    405     int base = (opt & STRSCAN_OPT_C) && *p == '0' ? 0 : 10;
    406     const uint8_t *sp, *dp = NULL;
    407     uint32_t dig = 0, hasdig = 0, x = 0;
    408     int32_t ex = 0;
    409 
    410     /* Determine base and skip leading zeros. */
    411     if (LJ_UNLIKELY(*p <= '0')) {
    412       if (*p == '0') {
    413 	if (casecmp(p[1], 'x'))
    414 	  base = 16, cmask = LJ_CHAR_XDIGIT, p += 2;
    415 	else if (casecmp(p[1], 'b'))
    416 	  base = 2, cmask = LJ_CHAR_DIGIT, p += 2;
    417       }
    418       for ( ; ; p++) {
    419 	if (*p == '0') {
    420 	  hasdig = 1;
    421 	} else if (*p == '.') {
    422 	  if (dp) return STRSCAN_ERROR;
    423 	  dp = p;
    424 	} else {
    425 	  break;
    426 	}
    427       }
    428     }
    429 
    430     /* Preliminary digit and decimal point scan. */
    431     for (sp = p; ; p++) {
    432       if (LJ_LIKELY(lj_char_isa(*p, cmask))) {
    433 	x = x * 10 + (*p & 15);  /* For fast path below. */
    434 	dig++;
    435       } else if (*p == '.') {
    436 	if (dp) return STRSCAN_ERROR;
    437 	dp = p;
    438       } else {
    439 	break;
    440       }
    441     }
    442     if (!(hasdig | dig)) return STRSCAN_ERROR;
    443 
    444     /* Handle decimal point. */
    445     if (dp) {
    446       fmt = STRSCAN_NUM;
    447       if (dig) {
    448 	ex = (int32_t)(dp-(p-1)); dp = p-1;
    449 	while (ex < 0 && *dp-- == '0') ex++, dig--;  /* Skip trailing zeros. */
    450 	if (base == 16) ex *= 4;
    451       }
    452     }
    453 
    454     /* Parse exponent. */
    455     if (base >= 10 && casecmp(*p, (uint32_t)(base == 16 ? 'p' : 'e'))) {
    456       uint32_t xx;
    457       int negx = 0;
    458       fmt = STRSCAN_NUM; p++;
    459       if (*p == '+' || *p == '-') negx = (*p++ == '-');
    460       if (!lj_char_isdigit(*p)) return STRSCAN_ERROR;
    461       xx = (*p++ & 15);
    462       while (lj_char_isdigit(*p)) {
    463 	if (xx < 65536) xx = xx * 10 + (*p & 15);
    464 	p++;
    465       }
    466       ex += negx ? -(int32_t)xx : (int32_t)xx;
    467     }
    468 
    469     /* Parse suffix. */
    470     if (*p) {
    471       /* I (IMAG), U (U32), LL (I64), ULL/LLU (U64), L (long), UL/LU (ulong). */
    472       /* NYI: f (float). Not needed until cp_number() handles non-integers. */
    473       if (casecmp(*p, 'i')) {
    474 	if (!(opt & STRSCAN_OPT_IMAG)) return STRSCAN_ERROR;
    475 	p++; fmt = STRSCAN_IMAG;
    476       } else if (fmt == STRSCAN_INT) {
    477 	if (casecmp(*p, 'u')) p++, fmt = STRSCAN_U32;
    478 	if (casecmp(*p, 'l')) {
    479 	  p++;
    480 	  if (casecmp(*p, 'l')) p++, fmt += STRSCAN_I64 - STRSCAN_INT;
    481 	  else if (!(opt & STRSCAN_OPT_C)) return STRSCAN_ERROR;
    482 	  else if (sizeof(long) == 8) fmt += STRSCAN_I64 - STRSCAN_INT;
    483 	}
    484 	if (casecmp(*p, 'u') && (fmt == STRSCAN_INT || fmt == STRSCAN_I64))
    485 	  p++, fmt += STRSCAN_U32 - STRSCAN_INT;
    486 	if ((fmt == STRSCAN_U32 && !(opt & STRSCAN_OPT_C)) ||
    487 	    (fmt >= STRSCAN_I64 && !(opt & STRSCAN_OPT_LL)))
    488 	  return STRSCAN_ERROR;
    489       }
    490       while (lj_char_isspace(*p)) p++;
    491       if (*p) return STRSCAN_ERROR;
    492     }
    493 
    494     /* Fast path for decimal 32 bit integers. */
    495     if (fmt == STRSCAN_INT && base == 10 &&
    496 	(dig < 10 || (dig == 10 && *sp <= '2' && x < 0x80000000u+neg))) {
    497       int32_t y = neg ? -(int32_t)x : (int32_t)x;
    498       if ((opt & STRSCAN_OPT_TONUM)) {
    499 	o->n = (double)y;
    500 	return STRSCAN_NUM;
    501       } else {
    502 	o->i = y;
    503 	return STRSCAN_INT;
    504       }
    505     }
    506 
    507     /* Dispatch to base-specific parser. */
    508     if (base == 0 && !(fmt == STRSCAN_NUM || fmt == STRSCAN_IMAG))
    509       return strscan_oct(sp, o, fmt, neg, dig);
    510     if (base == 16)
    511       fmt = strscan_hex(sp, o, fmt, opt, ex, neg, dig);
    512     else if (base == 2)
    513       fmt = strscan_bin(sp, o, fmt, opt, ex, neg, dig);
    514     else
    515       fmt = strscan_dec(sp, o, fmt, opt, ex, neg, dig);
    516 
    517     /* Try to convert number to integer, if requested. */
    518     if (fmt == STRSCAN_NUM && (opt & STRSCAN_OPT_TOINT)) {
    519       double n = o->n;
    520       int32_t i = lj_num2int(n);
    521       if (n == (lua_Number)i) { o->i = i; return STRSCAN_INT; }
    522     }
    523     return fmt;
    524   }
    525 }
    526 
    527 int LJ_FASTCALL lj_strscan_num(GCstr *str, TValue *o)
    528 {
    529   StrScanFmt fmt = lj_strscan_scan((const uint8_t *)strdata(str), o,
    530 				   STRSCAN_OPT_TONUM);
    531   lua_assert(fmt == STRSCAN_ERROR || fmt == STRSCAN_NUM);
    532   return (fmt != STRSCAN_ERROR);
    533 }
    534 
    535 #if LJ_DUALNUM
    536 int LJ_FASTCALL lj_strscan_number(GCstr *str, TValue *o)
    537 {
    538   StrScanFmt fmt = lj_strscan_scan((const uint8_t *)strdata(str), o,
    539 				   STRSCAN_OPT_TOINT);
    540   lua_assert(fmt == STRSCAN_ERROR || fmt == STRSCAN_NUM || fmt == STRSCAN_INT);
    541   if (fmt == STRSCAN_INT) setitype(o, LJ_TISNUM);
    542   return (fmt != STRSCAN_ERROR);
    543 }
    544 #endif
    545 
    546 #undef DNEXT
    547 #undef DPREV
    548 #undef DLEN
    549