lj_opt_narrow.c (25734B)
1 /* 2 ** NARROW: Narrowing of numbers to integers (double to int32_t). 3 ** STRIPOV: Stripping of overflow checks. 4 ** Copyright (C) 2005-2016 Mike Pall. See Copyright Notice in luajit.h 5 */ 6 7 #define lj_opt_narrow_c 8 #define LUA_CORE 9 10 #include "lj_obj.h" 11 12 #if LJ_HASJIT 13 14 #include "lj_bc.h" 15 #include "lj_ir.h" 16 #include "lj_jit.h" 17 #include "lj_iropt.h" 18 #include "lj_trace.h" 19 #include "lj_vm.h" 20 #include "lj_strscan.h" 21 22 /* Rationale for narrowing optimizations: 23 ** 24 ** Lua has only a single number type and this is a FP double by default. 25 ** Narrowing doubles to integers does not pay off for the interpreter on a 26 ** current-generation x86/x64 machine. Most FP operations need the same 27 ** amount of execution resources as their integer counterparts, except 28 ** with slightly longer latencies. Longer latencies are a non-issue for 29 ** the interpreter, since they are usually hidden by other overhead. 30 ** 31 ** The total CPU execution bandwidth is the sum of the bandwidth of the FP 32 ** and the integer units, because they execute in parallel. The FP units 33 ** have an equal or higher bandwidth than the integer units. Not using 34 ** them means losing execution bandwidth. Moving work away from them to 35 ** the already quite busy integer units is a losing proposition. 36 ** 37 ** The situation for JIT-compiled code is a bit different: the higher code 38 ** density makes the extra latencies much more visible. Tight loops expose 39 ** the latencies for updating the induction variables. Array indexing 40 ** requires narrowing conversions with high latencies and additional 41 ** guards (to check that the index is really an integer). And many common 42 ** optimizations only work on integers. 43 ** 44 ** One solution would be speculative, eager narrowing of all number loads. 45 ** This causes many problems, like losing -0 or the need to resolve type 46 ** mismatches between traces. It also effectively forces the integer type 47 ** to have overflow-checking semantics. This impedes many basic 48 ** optimizations and requires adding overflow checks to all integer 49 ** arithmetic operations (whereas FP arithmetics can do without). 50 ** 51 ** Always replacing an FP op with an integer op plus an overflow check is 52 ** counter-productive on a current-generation super-scalar CPU. Although 53 ** the overflow check branches are highly predictable, they will clog the 54 ** execution port for the branch unit and tie up reorder buffers. This is 55 ** turning a pure data-flow dependency into a different data-flow 56 ** dependency (with slightly lower latency) *plus* a control dependency. 57 ** In general, you don't want to do this since latencies due to data-flow 58 ** dependencies can be well hidden by out-of-order execution. 59 ** 60 ** A better solution is to keep all numbers as FP values and only narrow 61 ** when it's beneficial to do so. LuaJIT uses predictive narrowing for 62 ** induction variables and demand-driven narrowing for index expressions, 63 ** integer arguments and bit operations. Additionally it can eliminate or 64 ** hoist most of the resulting overflow checks. Regular arithmetic 65 ** computations are never narrowed to integers. 66 ** 67 ** The integer type in the IR has convenient wrap-around semantics and 68 ** ignores overflow. Extra operations have been added for 69 ** overflow-checking arithmetic (ADDOV/SUBOV) instead of an extra type. 70 ** Apart from reducing overall complexity of the compiler, this also 71 ** nicely solves the problem where you want to apply algebraic 72 ** simplifications to ADD, but not to ADDOV. And the x86/x64 assembler can 73 ** use lea instead of an add for integer ADD, but not for ADDOV (lea does 74 ** not affect the flags, but it helps to avoid register moves). 75 ** 76 ** 77 ** All of the above has to be reconsidered for architectures with slow FP 78 ** operations or without a hardware FPU. The dual-number mode of LuaJIT 79 ** addresses this issue. Arithmetic operations are performed on integers 80 ** as far as possible and overflow checks are added as needed. 81 ** 82 ** This implies that narrowing for integer arguments and bit operations 83 ** should also strip overflow checks, e.g. replace ADDOV with ADD. The 84 ** original overflow guards are weak and can be eliminated by DCE, if 85 ** there's no other use. 86 ** 87 ** A slight twist is that it's usually beneficial to use overflow-checked 88 ** integer arithmetics if all inputs are already integers. This is the only 89 ** change that affects the single-number mode, too. 90 */ 91 92 /* Some local macros to save typing. Undef'd at the end. */ 93 #define IR(ref) (&J->cur.ir[(ref)]) 94 #define fins (&J->fold.ins) 95 96 /* Pass IR on to next optimization in chain (FOLD). */ 97 #define emitir(ot, a, b) (lj_ir_set(J, (ot), (a), (b)), lj_opt_fold(J)) 98 99 #define emitir_raw(ot, a, b) (lj_ir_set(J, (ot), (a), (b)), lj_ir_emit(J)) 100 101 /* -- Elimination of narrowing type conversions --------------------------- */ 102 103 /* Narrowing of index expressions and bit operations is demand-driven. The 104 ** trace recorder emits a narrowing type conversion (CONV.int.num or TOBIT) 105 ** in all of these cases (e.g. array indexing or string indexing). FOLD 106 ** already takes care of eliminating simple redundant conversions like 107 ** CONV.int.num(CONV.num.int(x)) ==> x. 108 ** 109 ** But the surrounding code is FP-heavy and arithmetic operations are 110 ** performed on FP numbers (for the single-number mode). Consider a common 111 ** example such as 'x=t[i+1]', with 'i' already an integer (due to induction 112 ** variable narrowing). The index expression would be recorded as 113 ** CONV.int.num(ADD(CONV.num.int(i), 1)) 114 ** which is clearly suboptimal. 115 ** 116 ** One can do better by recursively backpropagating the narrowing type 117 ** conversion across FP arithmetic operations. This turns FP ops into 118 ** their corresponding integer counterparts. Depending on the semantics of 119 ** the conversion they also need to check for overflow. Currently only ADD 120 ** and SUB are supported. 121 ** 122 ** The above example can be rewritten as 123 ** ADDOV(CONV.int.num(CONV.num.int(i)), 1) 124 ** and then into ADDOV(i, 1) after folding of the conversions. The original 125 ** FP ops remain in the IR and are eliminated by DCE since all references to 126 ** them are gone. 127 ** 128 ** [In dual-number mode the trace recorder already emits ADDOV etc., but 129 ** this can be further reduced. See below.] 130 ** 131 ** Special care has to be taken to avoid narrowing across an operation 132 ** which is potentially operating on non-integral operands. One obvious 133 ** case is when an expression contains a non-integral constant, but ends 134 ** up as an integer index at runtime (like t[x+1.5] with x=0.5). 135 ** 136 ** Operations with two non-constant operands illustrate a similar problem 137 ** (like t[a+b] with a=1.5 and b=2.5). Backpropagation has to stop there, 138 ** unless it can be proven that either operand is integral (e.g. by CSEing 139 ** a previous conversion). As a not-so-obvious corollary this logic also 140 ** applies for a whole expression tree (e.g. t[(a+1)+(b+1)]). 141 ** 142 ** Correctness of the transformation is guaranteed by avoiding to expand 143 ** the tree by adding more conversions than the one we would need to emit 144 ** if not backpropagating. TOBIT employs a more optimistic rule, because 145 ** the conversion has special semantics, designed to make the life of the 146 ** compiler writer easier. ;-) 147 ** 148 ** Using on-the-fly backpropagation of an expression tree doesn't work 149 ** because it's unknown whether the transform is correct until the end. 150 ** This either requires IR rollback and cache invalidation for every 151 ** subtree or a two-pass algorithm. The former didn't work out too well, 152 ** so the code now combines a recursive collector with a stack-based 153 ** emitter. 154 ** 155 ** [A recursive backpropagation algorithm with backtracking, employing 156 ** skip-list lookup and round-robin caching, emitting stack operations 157 ** on-the-fly for a stack-based interpreter -- and all of that in a meager 158 ** kilobyte? Yep, compilers are a great treasure chest. Throw away your 159 ** textbooks and read the codebase of a compiler today!] 160 ** 161 ** There's another optimization opportunity for array indexing: it's 162 ** always accompanied by an array bounds-check. The outermost overflow 163 ** check may be delegated to the ABC operation. This works because ABC is 164 ** an unsigned comparison and wrap-around due to overflow creates negative 165 ** numbers. 166 ** 167 ** But this optimization is only valid for constants that cannot overflow 168 ** an int32_t into the range of valid array indexes [0..2^27+1). A check 169 ** for +-2^30 is safe since -2^31 - 2^30 wraps to 2^30 and 2^31-1 + 2^30 170 ** wraps to -2^30-1. 171 ** 172 ** It's also good enough in practice, since e.g. t[i+1] or t[i-10] are 173 ** quite common. So the above example finally ends up as ADD(i, 1)! 174 ** 175 ** Later on, the assembler is able to fuse the whole array reference and 176 ** the ADD into the memory operands of loads and other instructions. This 177 ** is why LuaJIT is able to generate very pretty (and fast) machine code 178 ** for array indexing. And that, my dear, concludes another story about 179 ** one of the hidden secrets of LuaJIT ... 180 */ 181 182 /* Maximum backpropagation depth and maximum stack size. */ 183 #define NARROW_MAX_BACKPROP 100 184 #define NARROW_MAX_STACK 256 185 186 /* The stack machine has a 32 bit instruction format: [IROpT | IRRef1] 187 ** The lower 16 bits hold a reference (or 0). The upper 16 bits hold 188 ** the IR opcode + type or one of the following special opcodes: 189 */ 190 enum { 191 NARROW_REF, /* Push ref. */ 192 NARROW_CONV, /* Push conversion of ref. */ 193 NARROW_SEXT, /* Push sign-extension of ref. */ 194 NARROW_INT /* Push KINT ref. The next code holds an int32_t. */ 195 }; 196 197 typedef uint32_t NarrowIns; 198 199 #define NARROWINS(op, ref) (((op) << 16) + (ref)) 200 #define narrow_op(ins) ((IROpT)((ins) >> 16)) 201 #define narrow_ref(ins) ((IRRef1)(ins)) 202 203 /* Context used for narrowing of type conversions. */ 204 typedef struct NarrowConv { 205 jit_State *J; /* JIT compiler state. */ 206 NarrowIns *sp; /* Current stack pointer. */ 207 NarrowIns *maxsp; /* Maximum stack pointer minus redzone. */ 208 IRRef mode; /* Conversion mode (IRCONV_*). */ 209 IRType t; /* Destination type: IRT_INT or IRT_I64. */ 210 NarrowIns stack[NARROW_MAX_STACK]; /* Stack holding stack-machine code. */ 211 } NarrowConv; 212 213 /* Lookup a reference in the backpropagation cache. */ 214 static BPropEntry *narrow_bpc_get(jit_State *J, IRRef1 key, IRRef mode) 215 { 216 ptrdiff_t i; 217 for (i = 0; i < BPROP_SLOTS; i++) { 218 BPropEntry *bp = &J->bpropcache[i]; 219 /* Stronger checks are ok, too. */ 220 if (bp->key == key && bp->mode >= mode && 221 ((bp->mode ^ mode) & IRCONV_MODEMASK) == 0) 222 return bp; 223 } 224 return NULL; 225 } 226 227 /* Add an entry to the backpropagation cache. */ 228 static void narrow_bpc_set(jit_State *J, IRRef1 key, IRRef1 val, IRRef mode) 229 { 230 uint32_t slot = J->bpropslot; 231 BPropEntry *bp = &J->bpropcache[slot]; 232 J->bpropslot = (slot + 1) & (BPROP_SLOTS-1); 233 bp->key = key; 234 bp->val = val; 235 bp->mode = mode; 236 } 237 238 /* Backpropagate overflow stripping. */ 239 static void narrow_stripov_backprop(NarrowConv *nc, IRRef ref, int depth) 240 { 241 jit_State *J = nc->J; 242 IRIns *ir = IR(ref); 243 if (ir->o == IR_ADDOV || ir->o == IR_SUBOV || 244 (ir->o == IR_MULOV && (nc->mode & IRCONV_CONVMASK) == IRCONV_ANY)) { 245 BPropEntry *bp = narrow_bpc_get(nc->J, ref, IRCONV_TOBIT); 246 if (bp) { 247 ref = bp->val; 248 } else if (++depth < NARROW_MAX_BACKPROP && nc->sp < nc->maxsp) { 249 NarrowIns *savesp = nc->sp; 250 narrow_stripov_backprop(nc, ir->op1, depth); 251 if (nc->sp < nc->maxsp) { 252 narrow_stripov_backprop(nc, ir->op2, depth); 253 if (nc->sp < nc->maxsp) { 254 *nc->sp++ = NARROWINS(IRT(ir->o - IR_ADDOV + IR_ADD, IRT_INT), ref); 255 return; 256 } 257 } 258 nc->sp = savesp; /* Path too deep, need to backtrack. */ 259 } 260 } 261 *nc->sp++ = NARROWINS(NARROW_REF, ref); 262 } 263 264 /* Backpropagate narrowing conversion. Return number of needed conversions. */ 265 static int narrow_conv_backprop(NarrowConv *nc, IRRef ref, int depth) 266 { 267 jit_State *J = nc->J; 268 IRIns *ir = IR(ref); 269 IRRef cref; 270 271 if (nc->sp >= nc->maxsp) return 10; /* Path too deep. */ 272 273 /* Check the easy cases first. */ 274 if (ir->o == IR_CONV && (ir->op2 & IRCONV_SRCMASK) == IRT_INT) { 275 if ((nc->mode & IRCONV_CONVMASK) <= IRCONV_ANY) 276 narrow_stripov_backprop(nc, ir->op1, depth+1); 277 else 278 *nc->sp++ = NARROWINS(NARROW_REF, ir->op1); /* Undo conversion. */ 279 if (nc->t == IRT_I64) 280 *nc->sp++ = NARROWINS(NARROW_SEXT, 0); /* Sign-extend integer. */ 281 return 0; 282 } else if (ir->o == IR_KNUM) { /* Narrow FP constant. */ 283 lua_Number n = ir_knum(ir)->n; 284 if ((nc->mode & IRCONV_CONVMASK) == IRCONV_TOBIT) { 285 /* Allows a wider range of constants. */ 286 int64_t k64 = (int64_t)n; 287 if (n == (lua_Number)k64) { /* Only if const doesn't lose precision. */ 288 *nc->sp++ = NARROWINS(NARROW_INT, 0); 289 *nc->sp++ = (NarrowIns)k64; /* But always truncate to 32 bits. */ 290 return 0; 291 } 292 } else { 293 int32_t k = lj_num2int(n); 294 /* Only if constant is a small integer. */ 295 if (checki16(k) && n == (lua_Number)k) { 296 *nc->sp++ = NARROWINS(NARROW_INT, 0); 297 *nc->sp++ = (NarrowIns)k; 298 return 0; 299 } 300 } 301 return 10; /* Never narrow other FP constants (this is rare). */ 302 } 303 304 /* Try to CSE the conversion. Stronger checks are ok, too. */ 305 cref = J->chain[fins->o]; 306 while (cref > ref) { 307 IRIns *cr = IR(cref); 308 if (cr->op1 == ref && 309 (fins->o == IR_TOBIT || 310 ((cr->op2 & IRCONV_MODEMASK) == (nc->mode & IRCONV_MODEMASK) && 311 irt_isguard(cr->t) >= irt_isguard(fins->t)))) { 312 *nc->sp++ = NARROWINS(NARROW_REF, cref); 313 return 0; /* Already there, no additional conversion needed. */ 314 } 315 cref = cr->prev; 316 } 317 318 /* Backpropagate across ADD/SUB. */ 319 if (ir->o == IR_ADD || ir->o == IR_SUB) { 320 /* Try cache lookup first. */ 321 IRRef mode = nc->mode; 322 BPropEntry *bp; 323 /* Inner conversions need a stronger check. */ 324 if ((mode & IRCONV_CONVMASK) == IRCONV_INDEX && depth > 0) 325 mode += IRCONV_CHECK-IRCONV_INDEX; 326 bp = narrow_bpc_get(nc->J, (IRRef1)ref, mode); 327 if (bp) { 328 *nc->sp++ = NARROWINS(NARROW_REF, bp->val); 329 return 0; 330 } else if (nc->t == IRT_I64) { 331 /* Try sign-extending from an existing (checked) conversion to int. */ 332 mode = (IRT_INT<<5)|IRT_NUM|IRCONV_INDEX; 333 bp = narrow_bpc_get(nc->J, (IRRef1)ref, mode); 334 if (bp) { 335 *nc->sp++ = NARROWINS(NARROW_REF, bp->val); 336 *nc->sp++ = NARROWINS(NARROW_SEXT, 0); 337 return 0; 338 } 339 } 340 if (++depth < NARROW_MAX_BACKPROP && nc->sp < nc->maxsp) { 341 NarrowIns *savesp = nc->sp; 342 int count = narrow_conv_backprop(nc, ir->op1, depth); 343 count += narrow_conv_backprop(nc, ir->op2, depth); 344 if (count <= 1) { /* Limit total number of conversions. */ 345 *nc->sp++ = NARROWINS(IRT(ir->o, nc->t), ref); 346 return count; 347 } 348 nc->sp = savesp; /* Too many conversions, need to backtrack. */ 349 } 350 } 351 352 /* Otherwise add a conversion. */ 353 *nc->sp++ = NARROWINS(NARROW_CONV, ref); 354 return 1; 355 } 356 357 /* Emit the conversions collected during backpropagation. */ 358 static IRRef narrow_conv_emit(jit_State *J, NarrowConv *nc) 359 { 360 /* The fins fields must be saved now -- emitir() overwrites them. */ 361 IROpT guardot = irt_isguard(fins->t) ? IRTG(IR_ADDOV-IR_ADD, 0) : 0; 362 IROpT convot = fins->ot; 363 IRRef1 convop2 = fins->op2; 364 NarrowIns *next = nc->stack; /* List of instructions from backpropagation. */ 365 NarrowIns *last = nc->sp; 366 NarrowIns *sp = nc->stack; /* Recycle the stack to store operands. */ 367 while (next < last) { /* Simple stack machine to process the ins. list. */ 368 NarrowIns ref = *next++; 369 IROpT op = narrow_op(ref); 370 if (op == NARROW_REF) { 371 *sp++ = ref; 372 } else if (op == NARROW_CONV) { 373 *sp++ = emitir_raw(convot, ref, convop2); /* Raw emit avoids a loop. */ 374 } else if (op == NARROW_SEXT) { 375 lua_assert(sp >= nc->stack+1); 376 sp[-1] = emitir(IRT(IR_CONV, IRT_I64), sp[-1], 377 (IRT_I64<<5)|IRT_INT|IRCONV_SEXT); 378 } else if (op == NARROW_INT) { 379 lua_assert(next < last); 380 *sp++ = nc->t == IRT_I64 ? 381 lj_ir_kint64(J, (int64_t)(int32_t)*next++) : 382 lj_ir_kint(J, *next++); 383 } else { /* Regular IROpT. Pops two operands and pushes one result. */ 384 IRRef mode = nc->mode; 385 lua_assert(sp >= nc->stack+2); 386 sp--; 387 /* Omit some overflow checks for array indexing. See comments above. */ 388 if ((mode & IRCONV_CONVMASK) == IRCONV_INDEX) { 389 if (next == last && irref_isk(narrow_ref(sp[0])) && 390 (uint32_t)IR(narrow_ref(sp[0]))->i + 0x40000000u < 0x80000000u) 391 guardot = 0; 392 else /* Otherwise cache a stronger check. */ 393 mode += IRCONV_CHECK-IRCONV_INDEX; 394 } 395 sp[-1] = emitir(op+guardot, sp[-1], sp[0]); 396 /* Add to cache. */ 397 if (narrow_ref(ref)) 398 narrow_bpc_set(J, narrow_ref(ref), narrow_ref(sp[-1]), mode); 399 } 400 } 401 lua_assert(sp == nc->stack+1); 402 return nc->stack[0]; 403 } 404 405 /* Narrow a type conversion of an arithmetic operation. */ 406 TRef LJ_FASTCALL lj_opt_narrow_convert(jit_State *J) 407 { 408 if ((J->flags & JIT_F_OPT_NARROW)) { 409 NarrowConv nc; 410 nc.J = J; 411 nc.sp = nc.stack; 412 nc.maxsp = &nc.stack[NARROW_MAX_STACK-4]; 413 nc.t = irt_type(fins->t); 414 if (fins->o == IR_TOBIT) { 415 nc.mode = IRCONV_TOBIT; /* Used only in the backpropagation cache. */ 416 } else { 417 nc.mode = fins->op2; 418 } 419 if (narrow_conv_backprop(&nc, fins->op1, 0) <= 1) 420 return narrow_conv_emit(J, &nc); 421 } 422 return NEXTFOLD; 423 } 424 425 /* -- Narrowing of implicit conversions ----------------------------------- */ 426 427 /* Recursively strip overflow checks. */ 428 TRef LJ_FASTCALL lj_opt_narrow_stripov(jit_State *J, TRef tr, int lastop, IRRef mode) 429 { 430 IRRef ref = tref_ref(tr); 431 IRIns *ir = IR(ref); 432 int op = ir->o; 433 if (op >= IR_ADDOV && op <= lastop) { 434 BPropEntry *bp = narrow_bpc_get(J, ref, mode); 435 if (bp) { 436 return TREF(bp->val, irt_t(IR(bp->val)->t)); 437 } else { 438 IRRef op1 = ir->op1, op2 = ir->op2; /* The IR may be reallocated. */ 439 op1 = lj_opt_narrow_stripov(J, op1, lastop, mode); 440 op2 = lj_opt_narrow_stripov(J, op2, lastop, mode); 441 tr = emitir(IRT(op - IR_ADDOV + IR_ADD, 442 ((mode & IRCONV_DSTMASK) >> IRCONV_DSH)), op1, op2); 443 narrow_bpc_set(J, ref, tref_ref(tr), mode); 444 } 445 } else if (LJ_64 && (mode & IRCONV_SEXT) && !irt_is64(ir->t)) { 446 tr = emitir(IRT(IR_CONV, IRT_INTP), tr, mode); 447 } 448 return tr; 449 } 450 451 /* Narrow array index. */ 452 TRef LJ_FASTCALL lj_opt_narrow_index(jit_State *J, TRef tr) 453 { 454 IRIns *ir; 455 lua_assert(tref_isnumber(tr)); 456 if (tref_isnum(tr)) /* Conversion may be narrowed, too. See above. */ 457 return emitir(IRTGI(IR_CONV), tr, IRCONV_INT_NUM|IRCONV_INDEX); 458 /* Omit some overflow checks for array indexing. See comments above. */ 459 ir = IR(tref_ref(tr)); 460 if ((ir->o == IR_ADDOV || ir->o == IR_SUBOV) && irref_isk(ir->op2) && 461 (uint32_t)IR(ir->op2)->i + 0x40000000u < 0x80000000u) 462 return emitir(IRTI(ir->o - IR_ADDOV + IR_ADD), ir->op1, ir->op2); 463 return tr; 464 } 465 466 /* Narrow conversion to integer operand (overflow undefined). */ 467 TRef LJ_FASTCALL lj_opt_narrow_toint(jit_State *J, TRef tr) 468 { 469 if (tref_isstr(tr)) 470 tr = emitir(IRTG(IR_STRTO, IRT_NUM), tr, 0); 471 if (tref_isnum(tr)) /* Conversion may be narrowed, too. See above. */ 472 return emitir(IRTI(IR_CONV), tr, IRCONV_INT_NUM|IRCONV_ANY); 473 if (!tref_isinteger(tr)) 474 lj_trace_err(J, LJ_TRERR_BADTYPE); 475 /* 476 ** Undefined overflow semantics allow stripping of ADDOV, SUBOV and MULOV. 477 ** Use IRCONV_TOBIT for the cache entries, since the semantics are the same. 478 */ 479 return lj_opt_narrow_stripov(J, tr, IR_MULOV, (IRT_INT<<5)|IRT_INT|IRCONV_TOBIT); 480 } 481 482 /* Narrow conversion to bitop operand (overflow wrapped). */ 483 TRef LJ_FASTCALL lj_opt_narrow_tobit(jit_State *J, TRef tr) 484 { 485 if (tref_isstr(tr)) 486 tr = emitir(IRTG(IR_STRTO, IRT_NUM), tr, 0); 487 if (tref_isnum(tr)) /* Conversion may be narrowed, too. See above. */ 488 return emitir(IRTI(IR_TOBIT), tr, lj_ir_knum_tobit(J)); 489 if (!tref_isinteger(tr)) 490 lj_trace_err(J, LJ_TRERR_BADTYPE); 491 /* 492 ** Wrapped overflow semantics allow stripping of ADDOV and SUBOV. 493 ** MULOV cannot be stripped due to precision widening. 494 */ 495 return lj_opt_narrow_stripov(J, tr, IR_SUBOV, (IRT_INT<<5)|IRT_INT|IRCONV_TOBIT); 496 } 497 498 #if LJ_HASFFI 499 /* Narrow C array index (overflow undefined). */ 500 TRef LJ_FASTCALL lj_opt_narrow_cindex(jit_State *J, TRef tr) 501 { 502 lua_assert(tref_isnumber(tr)); 503 if (tref_isnum(tr)) 504 return emitir(IRT(IR_CONV, IRT_INTP), tr, (IRT_INTP<<5)|IRT_NUM|IRCONV_ANY); 505 /* Undefined overflow semantics allow stripping of ADDOV, SUBOV and MULOV. */ 506 return lj_opt_narrow_stripov(J, tr, IR_MULOV, 507 LJ_64 ? ((IRT_INTP<<5)|IRT_INT|IRCONV_SEXT) : 508 ((IRT_INTP<<5)|IRT_INT|IRCONV_TOBIT)); 509 } 510 #endif 511 512 /* -- Narrowing of arithmetic operators ----------------------------------- */ 513 514 /* Check whether a number fits into an int32_t (-0 is ok, too). */ 515 static int numisint(lua_Number n) 516 { 517 return (n == (lua_Number)lj_num2int(n)); 518 } 519 520 /* Convert string to number. Error out for non-numeric string values. */ 521 static TRef conv_str_tonum(jit_State *J, TRef tr, TValue *o) 522 { 523 if (tref_isstr(tr)) { 524 tr = emitir(IRTG(IR_STRTO, IRT_NUM), tr, 0); 525 /* Would need an inverted STRTO for this rare and useless case. */ 526 if (!lj_strscan_num(strV(o), o)) /* Convert in-place. Value used below. */ 527 lj_trace_err(J, LJ_TRERR_BADTYPE); /* Punt if non-numeric. */ 528 } 529 return tr; 530 } 531 532 /* Narrowing of arithmetic operations. */ 533 TRef lj_opt_narrow_arith(jit_State *J, TRef rb, TRef rc, 534 TValue *vb, TValue *vc, IROp op) 535 { 536 rb = conv_str_tonum(J, rb, vb); 537 rc = conv_str_tonum(J, rc, vc); 538 /* Must not narrow MUL in non-DUALNUM variant, because it loses -0. */ 539 if ((op >= IR_ADD && op <= (LJ_DUALNUM ? IR_MUL : IR_SUB)) && 540 tref_isinteger(rb) && tref_isinteger(rc) && 541 numisint(lj_vm_foldarith(numberVnum(vb), numberVnum(vc), 542 (int)op - (int)IR_ADD))) 543 return emitir(IRTGI((int)op - (int)IR_ADD + (int)IR_ADDOV), rb, rc); 544 if (!tref_isnum(rb)) rb = emitir(IRTN(IR_CONV), rb, IRCONV_NUM_INT); 545 if (!tref_isnum(rc)) rc = emitir(IRTN(IR_CONV), rc, IRCONV_NUM_INT); 546 return emitir(IRTN(op), rb, rc); 547 } 548 549 /* Narrowing of unary minus operator. */ 550 TRef lj_opt_narrow_unm(jit_State *J, TRef rc, TValue *vc) 551 { 552 rc = conv_str_tonum(J, rc, vc); 553 if (tref_isinteger(rc)) { 554 if ((uint32_t)numberVint(vc) != 0x80000000u) 555 return emitir(IRTGI(IR_SUBOV), lj_ir_kint(J, 0), rc); 556 rc = emitir(IRTN(IR_CONV), rc, IRCONV_NUM_INT); 557 } 558 return emitir(IRTN(IR_NEG), rc, lj_ir_ksimd(J, LJ_KSIMD_NEG)); 559 } 560 561 /* Narrowing of modulo operator. */ 562 TRef lj_opt_narrow_mod(jit_State *J, TRef rb, TRef rc, TValue *vb, TValue *vc) 563 { 564 TRef tmp; 565 rb = conv_str_tonum(J, rb, vb); 566 rc = conv_str_tonum(J, rc, vc); 567 if ((LJ_DUALNUM || (J->flags & JIT_F_OPT_NARROW)) && 568 tref_isinteger(rb) && tref_isinteger(rc) && 569 (tvisint(vc) ? intV(vc) != 0 : !tviszero(vc))) { 570 emitir(IRTGI(IR_NE), rc, lj_ir_kint(J, 0)); 571 return emitir(IRTI(IR_MOD), rb, rc); 572 } 573 /* b % c ==> b - floor(b/c)*c */ 574 rb = lj_ir_tonum(J, rb); 575 rc = lj_ir_tonum(J, rc); 576 tmp = emitir(IRTN(IR_DIV), rb, rc); 577 tmp = emitir(IRTN(IR_FPMATH), tmp, IRFPM_FLOOR); 578 tmp = emitir(IRTN(IR_MUL), tmp, rc); 579 return emitir(IRTN(IR_SUB), rb, tmp); 580 } 581 582 /* Narrowing of power operator or math.pow. */ 583 TRef lj_opt_narrow_pow(jit_State *J, TRef rb, TRef rc, TValue *vb, TValue *vc) 584 { 585 rb = conv_str_tonum(J, rb, vb); 586 rb = lj_ir_tonum(J, rb); /* Left arg is always treated as an FP number. */ 587 rc = conv_str_tonum(J, rc, vc); 588 /* Narrowing must be unconditional to preserve (-x)^i semantics. */ 589 if (tvisint(vc) || numisint(numV(vc))) { 590 int checkrange = 0; 591 /* Split pow is faster for bigger exponents. But do this only for (+k)^i. */ 592 if (tref_isk(rb) && (int32_t)ir_knum(IR(tref_ref(rb)))->u32.hi >= 0) { 593 int32_t k = numberVint(vc); 594 if (!(k >= -65536 && k <= 65536)) goto split_pow; 595 checkrange = 1; 596 } 597 if (!tref_isinteger(rc)) { 598 /* Guarded conversion to integer! */ 599 rc = emitir(IRTGI(IR_CONV), rc, IRCONV_INT_NUM|IRCONV_CHECK); 600 } 601 if (checkrange && !tref_isk(rc)) { /* Range guard: -65536 <= i <= 65536 */ 602 TRef tmp = emitir(IRTI(IR_ADD), rc, lj_ir_kint(J, 65536)); 603 emitir(IRTGI(IR_ULE), tmp, lj_ir_kint(J, 2*65536)); 604 } 605 return emitir(IRTN(IR_POW), rb, rc); 606 } 607 split_pow: 608 /* FOLD covers most cases, but some are easier to do here. */ 609 if (tref_isk(rb) && tvispone(ir_knum(IR(tref_ref(rb))))) 610 return rb; /* 1 ^ x ==> 1 */ 611 rc = lj_ir_tonum(J, rc); 612 if (tref_isk(rc) && ir_knum(IR(tref_ref(rc)))->n == 0.5) 613 return emitir(IRTN(IR_FPMATH), rb, IRFPM_SQRT); /* x ^ 0.5 ==> sqrt(x) */ 614 /* Split up b^c into exp2(c*log2(b)). Assembler may rejoin later. */ 615 rb = emitir(IRTN(IR_FPMATH), rb, IRFPM_LOG2); 616 rc = emitir(IRTN(IR_MUL), rb, rc); 617 return emitir(IRTN(IR_FPMATH), rc, IRFPM_EXP2); 618 } 619 620 /* -- Predictive narrowing of induction variables ------------------------- */ 621 622 /* Narrow a single runtime value. */ 623 static int narrow_forl(jit_State *J, cTValue *o) 624 { 625 if (tvisint(o)) return 1; 626 if (LJ_DUALNUM || (J->flags & JIT_F_OPT_NARROW)) return numisint(numV(o)); 627 return 0; 628 } 629 630 /* Narrow the FORL index type by looking at the runtime values. */ 631 IRType lj_opt_narrow_forl(jit_State *J, cTValue *tv) 632 { 633 lua_assert(tvisnumber(&tv[FORL_IDX]) && 634 tvisnumber(&tv[FORL_STOP]) && 635 tvisnumber(&tv[FORL_STEP])); 636 /* Narrow only if the runtime values of start/stop/step are all integers. */ 637 if (narrow_forl(J, &tv[FORL_IDX]) && 638 narrow_forl(J, &tv[FORL_STOP]) && 639 narrow_forl(J, &tv[FORL_STEP])) { 640 /* And if the loop index can't possibly overflow. */ 641 lua_Number step = numberVnum(&tv[FORL_STEP]); 642 lua_Number sum = numberVnum(&tv[FORL_STOP]) + step; 643 if (0 <= step ? (sum <= 2147483647.0) : (sum >= -2147483648.0)) 644 return IRT_INT; 645 } 646 return IRT_NUM; 647 } 648 649 #undef IR 650 #undef fins 651 #undef emitir 652 #undef emitir_raw 653 654 #endif