ljx

FORK: LuaJIT with native 5.2 and 5.3 support
git clone https://git.neptards.moe/neptards/ljx.git
Log | Files | Refs | README

lj_opt_narrow.c (25734B)


      1 /*
      2 ** NARROW: Narrowing of numbers to integers (double to int32_t).
      3 ** STRIPOV: Stripping of overflow checks.
      4 ** Copyright (C) 2005-2016 Mike Pall. See Copyright Notice in luajit.h
      5 */
      6 
      7 #define lj_opt_narrow_c
      8 #define LUA_CORE
      9 
     10 #include "lj_obj.h"
     11 
     12 #if LJ_HASJIT
     13 
     14 #include "lj_bc.h"
     15 #include "lj_ir.h"
     16 #include "lj_jit.h"
     17 #include "lj_iropt.h"
     18 #include "lj_trace.h"
     19 #include "lj_vm.h"
     20 #include "lj_strscan.h"
     21 
     22 /* Rationale for narrowing optimizations:
     23 **
     24 ** Lua has only a single number type and this is a FP double by default.
     25 ** Narrowing doubles to integers does not pay off for the interpreter on a
     26 ** current-generation x86/x64 machine. Most FP operations need the same
     27 ** amount of execution resources as their integer counterparts, except
     28 ** with slightly longer latencies. Longer latencies are a non-issue for
     29 ** the interpreter, since they are usually hidden by other overhead.
     30 **
     31 ** The total CPU execution bandwidth is the sum of the bandwidth of the FP
     32 ** and the integer units, because they execute in parallel. The FP units
     33 ** have an equal or higher bandwidth than the integer units. Not using
     34 ** them means losing execution bandwidth. Moving work away from them to
     35 ** the already quite busy integer units is a losing proposition.
     36 **
     37 ** The situation for JIT-compiled code is a bit different: the higher code
     38 ** density makes the extra latencies much more visible. Tight loops expose
     39 ** the latencies for updating the induction variables. Array indexing
     40 ** requires narrowing conversions with high latencies and additional
     41 ** guards (to check that the index is really an integer). And many common
     42 ** optimizations only work on integers.
     43 **
     44 ** One solution would be speculative, eager narrowing of all number loads.
     45 ** This causes many problems, like losing -0 or the need to resolve type
     46 ** mismatches between traces. It also effectively forces the integer type
     47 ** to have overflow-checking semantics. This impedes many basic
     48 ** optimizations and requires adding overflow checks to all integer
     49 ** arithmetic operations (whereas FP arithmetics can do without).
     50 **
     51 ** Always replacing an FP op with an integer op plus an overflow check is
     52 ** counter-productive on a current-generation super-scalar CPU. Although
     53 ** the overflow check branches are highly predictable, they will clog the
     54 ** execution port for the branch unit and tie up reorder buffers. This is
     55 ** turning a pure data-flow dependency into a different data-flow
     56 ** dependency (with slightly lower latency) *plus* a control dependency.
     57 ** In general, you don't want to do this since latencies due to data-flow
     58 ** dependencies can be well hidden by out-of-order execution.
     59 **
     60 ** A better solution is to keep all numbers as FP values and only narrow
     61 ** when it's beneficial to do so. LuaJIT uses predictive narrowing for
     62 ** induction variables and demand-driven narrowing for index expressions,
     63 ** integer arguments and bit operations. Additionally it can eliminate or
     64 ** hoist most of the resulting overflow checks. Regular arithmetic
     65 ** computations are never narrowed to integers.
     66 **
     67 ** The integer type in the IR has convenient wrap-around semantics and
     68 ** ignores overflow. Extra operations have been added for
     69 ** overflow-checking arithmetic (ADDOV/SUBOV) instead of an extra type.
     70 ** Apart from reducing overall complexity of the compiler, this also
     71 ** nicely solves the problem where you want to apply algebraic
     72 ** simplifications to ADD, but not to ADDOV. And the x86/x64 assembler can
     73 ** use lea instead of an add for integer ADD, but not for ADDOV (lea does
     74 ** not affect the flags, but it helps to avoid register moves).
     75 **
     76 **
     77 ** All of the above has to be reconsidered for architectures with slow FP
     78 ** operations or without a hardware FPU. The dual-number mode of LuaJIT
     79 ** addresses this issue. Arithmetic operations are performed on integers
     80 ** as far as possible and overflow checks are added as needed.
     81 **
     82 ** This implies that narrowing for integer arguments and bit operations
     83 ** should also strip overflow checks, e.g. replace ADDOV with ADD. The
     84 ** original overflow guards are weak and can be eliminated by DCE, if
     85 ** there's no other use.
     86 **
     87 ** A slight twist is that it's usually beneficial to use overflow-checked
     88 ** integer arithmetics if all inputs are already integers. This is the only
     89 ** change that affects the single-number mode, too.
     90 */
     91 
     92 /* Some local macros to save typing. Undef'd at the end. */
     93 #define IR(ref)			(&J->cur.ir[(ref)])
     94 #define fins			(&J->fold.ins)
     95 
     96 /* Pass IR on to next optimization in chain (FOLD). */
     97 #define emitir(ot, a, b)	(lj_ir_set(J, (ot), (a), (b)), lj_opt_fold(J))
     98 
     99 #define emitir_raw(ot, a, b)	(lj_ir_set(J, (ot), (a), (b)), lj_ir_emit(J))
    100 
    101 /* -- Elimination of narrowing type conversions --------------------------- */
    102 
    103 /* Narrowing of index expressions and bit operations is demand-driven. The
    104 ** trace recorder emits a narrowing type conversion (CONV.int.num or TOBIT)
    105 ** in all of these cases (e.g. array indexing or string indexing). FOLD
    106 ** already takes care of eliminating simple redundant conversions like
    107 ** CONV.int.num(CONV.num.int(x)) ==> x.
    108 **
    109 ** But the surrounding code is FP-heavy and arithmetic operations are
    110 ** performed on FP numbers (for the single-number mode). Consider a common
    111 ** example such as 'x=t[i+1]', with 'i' already an integer (due to induction
    112 ** variable narrowing). The index expression would be recorded as
    113 **   CONV.int.num(ADD(CONV.num.int(i), 1))
    114 ** which is clearly suboptimal.
    115 **
    116 ** One can do better by recursively backpropagating the narrowing type
    117 ** conversion across FP arithmetic operations. This turns FP ops into
    118 ** their corresponding integer counterparts. Depending on the semantics of
    119 ** the conversion they also need to check for overflow. Currently only ADD
    120 ** and SUB are supported.
    121 **
    122 ** The above example can be rewritten as
    123 **   ADDOV(CONV.int.num(CONV.num.int(i)), 1)
    124 ** and then into ADDOV(i, 1) after folding of the conversions. The original
    125 ** FP ops remain in the IR and are eliminated by DCE since all references to
    126 ** them are gone.
    127 **
    128 ** [In dual-number mode the trace recorder already emits ADDOV etc., but
    129 ** this can be further reduced. See below.]
    130 **
    131 ** Special care has to be taken to avoid narrowing across an operation
    132 ** which is potentially operating on non-integral operands. One obvious
    133 ** case is when an expression contains a non-integral constant, but ends
    134 ** up as an integer index at runtime (like t[x+1.5] with x=0.5).
    135 **
    136 ** Operations with two non-constant operands illustrate a similar problem
    137 ** (like t[a+b] with a=1.5 and b=2.5). Backpropagation has to stop there,
    138 ** unless it can be proven that either operand is integral (e.g. by CSEing
    139 ** a previous conversion). As a not-so-obvious corollary this logic also
    140 ** applies for a whole expression tree (e.g. t[(a+1)+(b+1)]).
    141 **
    142 ** Correctness of the transformation is guaranteed by avoiding to expand
    143 ** the tree by adding more conversions than the one we would need to emit
    144 ** if not backpropagating. TOBIT employs a more optimistic rule, because
    145 ** the conversion has special semantics, designed to make the life of the
    146 ** compiler writer easier. ;-)
    147 **
    148 ** Using on-the-fly backpropagation of an expression tree doesn't work
    149 ** because it's unknown whether the transform is correct until the end.
    150 ** This either requires IR rollback and cache invalidation for every
    151 ** subtree or a two-pass algorithm. The former didn't work out too well,
    152 ** so the code now combines a recursive collector with a stack-based
    153 ** emitter.
    154 **
    155 ** [A recursive backpropagation algorithm with backtracking, employing
    156 ** skip-list lookup and round-robin caching, emitting stack operations
    157 ** on-the-fly for a stack-based interpreter -- and all of that in a meager
    158 ** kilobyte? Yep, compilers are a great treasure chest. Throw away your
    159 ** textbooks and read the codebase of a compiler today!]
    160 **
    161 ** There's another optimization opportunity for array indexing: it's
    162 ** always accompanied by an array bounds-check. The outermost overflow
    163 ** check may be delegated to the ABC operation. This works because ABC is
    164 ** an unsigned comparison and wrap-around due to overflow creates negative
    165 ** numbers.
    166 **
    167 ** But this optimization is only valid for constants that cannot overflow
    168 ** an int32_t into the range of valid array indexes [0..2^27+1). A check
    169 ** for +-2^30 is safe since -2^31 - 2^30 wraps to 2^30 and 2^31-1 + 2^30
    170 ** wraps to -2^30-1.
    171 **
    172 ** It's also good enough in practice, since e.g. t[i+1] or t[i-10] are
    173 ** quite common. So the above example finally ends up as ADD(i, 1)!
    174 **
    175 ** Later on, the assembler is able to fuse the whole array reference and
    176 ** the ADD into the memory operands of loads and other instructions. This
    177 ** is why LuaJIT is able to generate very pretty (and fast) machine code
    178 ** for array indexing. And that, my dear, concludes another story about
    179 ** one of the hidden secrets of LuaJIT ...
    180 */
    181 
    182 /* Maximum backpropagation depth and maximum stack size. */
    183 #define NARROW_MAX_BACKPROP	100
    184 #define NARROW_MAX_STACK	256
    185 
    186 /* The stack machine has a 32 bit instruction format: [IROpT | IRRef1]
    187 ** The lower 16 bits hold a reference (or 0). The upper 16 bits hold
    188 ** the IR opcode + type or one of the following special opcodes:
    189 */
    190 enum {
    191   NARROW_REF,		/* Push ref. */
    192   NARROW_CONV,		/* Push conversion of ref. */
    193   NARROW_SEXT,		/* Push sign-extension of ref. */
    194   NARROW_INT		/* Push KINT ref. The next code holds an int32_t. */
    195 };
    196 
    197 typedef uint32_t NarrowIns;
    198 
    199 #define NARROWINS(op, ref)	(((op) << 16) + (ref))
    200 #define narrow_op(ins)		((IROpT)((ins) >> 16))
    201 #define narrow_ref(ins)		((IRRef1)(ins))
    202 
    203 /* Context used for narrowing of type conversions. */
    204 typedef struct NarrowConv {
    205   jit_State *J;		/* JIT compiler state. */
    206   NarrowIns *sp;	/* Current stack pointer. */
    207   NarrowIns *maxsp;	/* Maximum stack pointer minus redzone. */
    208   IRRef mode;		/* Conversion mode (IRCONV_*). */
    209   IRType t;		/* Destination type: IRT_INT or IRT_I64. */
    210   NarrowIns stack[NARROW_MAX_STACK];  /* Stack holding stack-machine code. */
    211 } NarrowConv;
    212 
    213 /* Lookup a reference in the backpropagation cache. */
    214 static BPropEntry *narrow_bpc_get(jit_State *J, IRRef1 key, IRRef mode)
    215 {
    216   ptrdiff_t i;
    217   for (i = 0; i < BPROP_SLOTS; i++) {
    218     BPropEntry *bp = &J->bpropcache[i];
    219     /* Stronger checks are ok, too. */
    220     if (bp->key == key && bp->mode >= mode &&
    221 	((bp->mode ^ mode) & IRCONV_MODEMASK) == 0)
    222       return bp;
    223   }
    224   return NULL;
    225 }
    226 
    227 /* Add an entry to the backpropagation cache. */
    228 static void narrow_bpc_set(jit_State *J, IRRef1 key, IRRef1 val, IRRef mode)
    229 {
    230   uint32_t slot = J->bpropslot;
    231   BPropEntry *bp = &J->bpropcache[slot];
    232   J->bpropslot = (slot + 1) & (BPROP_SLOTS-1);
    233   bp->key = key;
    234   bp->val = val;
    235   bp->mode = mode;
    236 }
    237 
    238 /* Backpropagate overflow stripping. */
    239 static void narrow_stripov_backprop(NarrowConv *nc, IRRef ref, int depth)
    240 {
    241   jit_State *J = nc->J;
    242   IRIns *ir = IR(ref);
    243   if (ir->o == IR_ADDOV || ir->o == IR_SUBOV ||
    244       (ir->o == IR_MULOV && (nc->mode & IRCONV_CONVMASK) == IRCONV_ANY)) {
    245     BPropEntry *bp = narrow_bpc_get(nc->J, ref, IRCONV_TOBIT);
    246     if (bp) {
    247       ref = bp->val;
    248     } else if (++depth < NARROW_MAX_BACKPROP && nc->sp < nc->maxsp) {
    249       NarrowIns *savesp = nc->sp;
    250       narrow_stripov_backprop(nc, ir->op1, depth);
    251       if (nc->sp < nc->maxsp) {
    252 	narrow_stripov_backprop(nc, ir->op2, depth);
    253 	if (nc->sp < nc->maxsp) {
    254 	  *nc->sp++ = NARROWINS(IRT(ir->o - IR_ADDOV + IR_ADD, IRT_INT), ref);
    255 	  return;
    256 	}
    257       }
    258       nc->sp = savesp;  /* Path too deep, need to backtrack. */
    259     }
    260   }
    261   *nc->sp++ = NARROWINS(NARROW_REF, ref);
    262 }
    263 
    264 /* Backpropagate narrowing conversion. Return number of needed conversions. */
    265 static int narrow_conv_backprop(NarrowConv *nc, IRRef ref, int depth)
    266 {
    267   jit_State *J = nc->J;
    268   IRIns *ir = IR(ref);
    269   IRRef cref;
    270 
    271   if (nc->sp >= nc->maxsp) return 10;  /* Path too deep. */
    272 
    273   /* Check the easy cases first. */
    274   if (ir->o == IR_CONV && (ir->op2 & IRCONV_SRCMASK) == IRT_INT) {
    275     if ((nc->mode & IRCONV_CONVMASK) <= IRCONV_ANY)
    276       narrow_stripov_backprop(nc, ir->op1, depth+1);
    277     else
    278       *nc->sp++ = NARROWINS(NARROW_REF, ir->op1);  /* Undo conversion. */
    279     if (nc->t == IRT_I64)
    280       *nc->sp++ = NARROWINS(NARROW_SEXT, 0);  /* Sign-extend integer. */
    281     return 0;
    282   } else if (ir->o == IR_KNUM) {  /* Narrow FP constant. */
    283     lua_Number n = ir_knum(ir)->n;
    284     if ((nc->mode & IRCONV_CONVMASK) == IRCONV_TOBIT) {
    285       /* Allows a wider range of constants. */
    286       int64_t k64 = (int64_t)n;
    287       if (n == (lua_Number)k64) {  /* Only if const doesn't lose precision. */
    288 	*nc->sp++ = NARROWINS(NARROW_INT, 0);
    289 	*nc->sp++ = (NarrowIns)k64;  /* But always truncate to 32 bits. */
    290 	return 0;
    291       }
    292     } else {
    293       int32_t k = lj_num2int(n);
    294       /* Only if constant is a small integer. */
    295       if (checki16(k) && n == (lua_Number)k) {
    296 	*nc->sp++ = NARROWINS(NARROW_INT, 0);
    297 	*nc->sp++ = (NarrowIns)k;
    298 	return 0;
    299       }
    300     }
    301     return 10;  /* Never narrow other FP constants (this is rare). */
    302   }
    303 
    304   /* Try to CSE the conversion. Stronger checks are ok, too. */
    305   cref = J->chain[fins->o];
    306   while (cref > ref) {
    307     IRIns *cr = IR(cref);
    308     if (cr->op1 == ref &&
    309 	(fins->o == IR_TOBIT ||
    310 	 ((cr->op2 & IRCONV_MODEMASK) == (nc->mode & IRCONV_MODEMASK) &&
    311 	  irt_isguard(cr->t) >= irt_isguard(fins->t)))) {
    312       *nc->sp++ = NARROWINS(NARROW_REF, cref);
    313       return 0;  /* Already there, no additional conversion needed. */
    314     }
    315     cref = cr->prev;
    316   }
    317 
    318   /* Backpropagate across ADD/SUB. */
    319   if (ir->o == IR_ADD || ir->o == IR_SUB) {
    320     /* Try cache lookup first. */
    321     IRRef mode = nc->mode;
    322     BPropEntry *bp;
    323     /* Inner conversions need a stronger check. */
    324     if ((mode & IRCONV_CONVMASK) == IRCONV_INDEX && depth > 0)
    325       mode += IRCONV_CHECK-IRCONV_INDEX;
    326     bp = narrow_bpc_get(nc->J, (IRRef1)ref, mode);
    327     if (bp) {
    328       *nc->sp++ = NARROWINS(NARROW_REF, bp->val);
    329       return 0;
    330     } else if (nc->t == IRT_I64) {
    331       /* Try sign-extending from an existing (checked) conversion to int. */
    332       mode = (IRT_INT<<5)|IRT_NUM|IRCONV_INDEX;
    333       bp = narrow_bpc_get(nc->J, (IRRef1)ref, mode);
    334       if (bp) {
    335 	*nc->sp++ = NARROWINS(NARROW_REF, bp->val);
    336 	*nc->sp++ = NARROWINS(NARROW_SEXT, 0);
    337 	return 0;
    338       }
    339     }
    340     if (++depth < NARROW_MAX_BACKPROP && nc->sp < nc->maxsp) {
    341       NarrowIns *savesp = nc->sp;
    342       int count = narrow_conv_backprop(nc, ir->op1, depth);
    343       count += narrow_conv_backprop(nc, ir->op2, depth);
    344       if (count <= 1) {  /* Limit total number of conversions. */
    345 	*nc->sp++ = NARROWINS(IRT(ir->o, nc->t), ref);
    346 	return count;
    347       }
    348       nc->sp = savesp;  /* Too many conversions, need to backtrack. */
    349     }
    350   }
    351 
    352   /* Otherwise add a conversion. */
    353   *nc->sp++ = NARROWINS(NARROW_CONV, ref);
    354   return 1;
    355 }
    356 
    357 /* Emit the conversions collected during backpropagation. */
    358 static IRRef narrow_conv_emit(jit_State *J, NarrowConv *nc)
    359 {
    360   /* The fins fields must be saved now -- emitir() overwrites them. */
    361   IROpT guardot = irt_isguard(fins->t) ? IRTG(IR_ADDOV-IR_ADD, 0) : 0;
    362   IROpT convot = fins->ot;
    363   IRRef1 convop2 = fins->op2;
    364   NarrowIns *next = nc->stack;  /* List of instructions from backpropagation. */
    365   NarrowIns *last = nc->sp;
    366   NarrowIns *sp = nc->stack;  /* Recycle the stack to store operands. */
    367   while (next < last) {  /* Simple stack machine to process the ins. list. */
    368     NarrowIns ref = *next++;
    369     IROpT op = narrow_op(ref);
    370     if (op == NARROW_REF) {
    371       *sp++ = ref;
    372     } else if (op == NARROW_CONV) {
    373       *sp++ = emitir_raw(convot, ref, convop2);  /* Raw emit avoids a loop. */
    374     } else if (op == NARROW_SEXT) {
    375       lua_assert(sp >= nc->stack+1);
    376       sp[-1] = emitir(IRT(IR_CONV, IRT_I64), sp[-1],
    377 		      (IRT_I64<<5)|IRT_INT|IRCONV_SEXT);
    378     } else if (op == NARROW_INT) {
    379       lua_assert(next < last);
    380       *sp++ = nc->t == IRT_I64 ?
    381 	      lj_ir_kint64(J, (int64_t)(int32_t)*next++) :
    382 	      lj_ir_kint(J, *next++);
    383     } else {  /* Regular IROpT. Pops two operands and pushes one result. */
    384       IRRef mode = nc->mode;
    385       lua_assert(sp >= nc->stack+2);
    386       sp--;
    387       /* Omit some overflow checks for array indexing. See comments above. */
    388       if ((mode & IRCONV_CONVMASK) == IRCONV_INDEX) {
    389 	if (next == last && irref_isk(narrow_ref(sp[0])) &&
    390 	  (uint32_t)IR(narrow_ref(sp[0]))->i + 0x40000000u < 0x80000000u)
    391 	  guardot = 0;
    392 	else  /* Otherwise cache a stronger check. */
    393 	  mode += IRCONV_CHECK-IRCONV_INDEX;
    394       }
    395       sp[-1] = emitir(op+guardot, sp[-1], sp[0]);
    396       /* Add to cache. */
    397       if (narrow_ref(ref))
    398 	narrow_bpc_set(J, narrow_ref(ref), narrow_ref(sp[-1]), mode);
    399     }
    400   }
    401   lua_assert(sp == nc->stack+1);
    402   return nc->stack[0];
    403 }
    404 
    405 /* Narrow a type conversion of an arithmetic operation. */
    406 TRef LJ_FASTCALL lj_opt_narrow_convert(jit_State *J)
    407 {
    408   if ((J->flags & JIT_F_OPT_NARROW)) {
    409     NarrowConv nc;
    410     nc.J = J;
    411     nc.sp = nc.stack;
    412     nc.maxsp = &nc.stack[NARROW_MAX_STACK-4];
    413     nc.t = irt_type(fins->t);
    414     if (fins->o == IR_TOBIT) {
    415       nc.mode = IRCONV_TOBIT;  /* Used only in the backpropagation cache. */
    416     } else {
    417       nc.mode = fins->op2;
    418     }
    419     if (narrow_conv_backprop(&nc, fins->op1, 0) <= 1)
    420       return narrow_conv_emit(J, &nc);
    421   }
    422   return NEXTFOLD;
    423 }
    424 
    425 /* -- Narrowing of implicit conversions ----------------------------------- */
    426 
    427 /* Recursively strip overflow checks. */
    428 TRef LJ_FASTCALL lj_opt_narrow_stripov(jit_State *J, TRef tr, int lastop, IRRef mode)
    429 {
    430   IRRef ref = tref_ref(tr);
    431   IRIns *ir = IR(ref);
    432   int op = ir->o;
    433   if (op >= IR_ADDOV && op <= lastop) {
    434     BPropEntry *bp = narrow_bpc_get(J, ref, mode);
    435     if (bp) {
    436       return TREF(bp->val, irt_t(IR(bp->val)->t));
    437     } else {
    438       IRRef op1 = ir->op1, op2 = ir->op2;  /* The IR may be reallocated. */
    439       op1 = lj_opt_narrow_stripov(J, op1, lastop, mode);
    440       op2 = lj_opt_narrow_stripov(J, op2, lastop, mode);
    441       tr = emitir(IRT(op - IR_ADDOV + IR_ADD,
    442 		      ((mode & IRCONV_DSTMASK) >> IRCONV_DSH)), op1, op2);
    443       narrow_bpc_set(J, ref, tref_ref(tr), mode);
    444     }
    445   } else if (LJ_64 && (mode & IRCONV_SEXT) && !irt_is64(ir->t)) {
    446     tr = emitir(IRT(IR_CONV, IRT_INTP), tr, mode);
    447   }
    448   return tr;
    449 }
    450 
    451 /* Narrow array index. */
    452 TRef LJ_FASTCALL lj_opt_narrow_index(jit_State *J, TRef tr)
    453 {
    454   IRIns *ir;
    455   lua_assert(tref_isnumber(tr));
    456   if (tref_isnum(tr))  /* Conversion may be narrowed, too. See above. */
    457     return emitir(IRTGI(IR_CONV), tr, IRCONV_INT_NUM|IRCONV_INDEX);
    458   /* Omit some overflow checks for array indexing. See comments above. */
    459   ir = IR(tref_ref(tr));
    460   if ((ir->o == IR_ADDOV || ir->o == IR_SUBOV) && irref_isk(ir->op2) &&
    461       (uint32_t)IR(ir->op2)->i + 0x40000000u < 0x80000000u)
    462     return emitir(IRTI(ir->o - IR_ADDOV + IR_ADD), ir->op1, ir->op2);
    463   return tr;
    464 }
    465 
    466 /* Narrow conversion to integer operand (overflow undefined). */
    467 TRef LJ_FASTCALL lj_opt_narrow_toint(jit_State *J, TRef tr)
    468 {
    469   if (tref_isstr(tr))
    470     tr = emitir(IRTG(IR_STRTO, IRT_NUM), tr, 0);
    471   if (tref_isnum(tr))  /* Conversion may be narrowed, too. See above. */
    472     return emitir(IRTI(IR_CONV), tr, IRCONV_INT_NUM|IRCONV_ANY);
    473   if (!tref_isinteger(tr))
    474     lj_trace_err(J, LJ_TRERR_BADTYPE);
    475   /*
    476   ** Undefined overflow semantics allow stripping of ADDOV, SUBOV and MULOV.
    477   ** Use IRCONV_TOBIT for the cache entries, since the semantics are the same.
    478   */
    479   return lj_opt_narrow_stripov(J, tr, IR_MULOV, (IRT_INT<<5)|IRT_INT|IRCONV_TOBIT);
    480 }
    481 
    482 /* Narrow conversion to bitop operand (overflow wrapped). */
    483 TRef LJ_FASTCALL lj_opt_narrow_tobit(jit_State *J, TRef tr)
    484 {
    485   if (tref_isstr(tr))
    486     tr = emitir(IRTG(IR_STRTO, IRT_NUM), tr, 0);
    487   if (tref_isnum(tr))  /* Conversion may be narrowed, too. See above. */
    488     return emitir(IRTI(IR_TOBIT), tr, lj_ir_knum_tobit(J));
    489   if (!tref_isinteger(tr))
    490     lj_trace_err(J, LJ_TRERR_BADTYPE);
    491   /*
    492   ** Wrapped overflow semantics allow stripping of ADDOV and SUBOV.
    493   ** MULOV cannot be stripped due to precision widening.
    494   */
    495   return lj_opt_narrow_stripov(J, tr, IR_SUBOV, (IRT_INT<<5)|IRT_INT|IRCONV_TOBIT);
    496 }
    497 
    498 #if LJ_HASFFI
    499 /* Narrow C array index (overflow undefined). */
    500 TRef LJ_FASTCALL lj_opt_narrow_cindex(jit_State *J, TRef tr)
    501 {
    502   lua_assert(tref_isnumber(tr));
    503   if (tref_isnum(tr))
    504     return emitir(IRT(IR_CONV, IRT_INTP), tr, (IRT_INTP<<5)|IRT_NUM|IRCONV_ANY);
    505   /* Undefined overflow semantics allow stripping of ADDOV, SUBOV and MULOV. */
    506   return lj_opt_narrow_stripov(J, tr, IR_MULOV,
    507 			LJ_64 ? ((IRT_INTP<<5)|IRT_INT|IRCONV_SEXT) :
    508 				((IRT_INTP<<5)|IRT_INT|IRCONV_TOBIT));
    509 }
    510 #endif
    511 
    512 /* -- Narrowing of arithmetic operators ----------------------------------- */
    513 
    514 /* Check whether a number fits into an int32_t (-0 is ok, too). */
    515 static int numisint(lua_Number n)
    516 {
    517   return (n == (lua_Number)lj_num2int(n));
    518 }
    519 
    520 /* Convert string to number. Error out for non-numeric string values. */
    521 static TRef conv_str_tonum(jit_State *J, TRef tr, TValue *o)
    522 {
    523   if (tref_isstr(tr)) {
    524     tr = emitir(IRTG(IR_STRTO, IRT_NUM), tr, 0);
    525     /* Would need an inverted STRTO for this rare and useless case. */
    526     if (!lj_strscan_num(strV(o), o))  /* Convert in-place. Value used below. */
    527       lj_trace_err(J, LJ_TRERR_BADTYPE);  /* Punt if non-numeric. */
    528   }
    529   return tr;
    530 }
    531 
    532 /* Narrowing of arithmetic operations. */
    533 TRef lj_opt_narrow_arith(jit_State *J, TRef rb, TRef rc,
    534 			 TValue *vb, TValue *vc, IROp op)
    535 {
    536   rb = conv_str_tonum(J, rb, vb);
    537   rc = conv_str_tonum(J, rc, vc);
    538   /* Must not narrow MUL in non-DUALNUM variant, because it loses -0. */
    539   if ((op >= IR_ADD && op <= (LJ_DUALNUM ? IR_MUL : IR_SUB)) &&
    540       tref_isinteger(rb) && tref_isinteger(rc) &&
    541       numisint(lj_vm_foldarith(numberVnum(vb), numberVnum(vc),
    542 			       (int)op - (int)IR_ADD)))
    543     return emitir(IRTGI((int)op - (int)IR_ADD + (int)IR_ADDOV), rb, rc);
    544   if (!tref_isnum(rb)) rb = emitir(IRTN(IR_CONV), rb, IRCONV_NUM_INT);
    545   if (!tref_isnum(rc)) rc = emitir(IRTN(IR_CONV), rc, IRCONV_NUM_INT);
    546   return emitir(IRTN(op), rb, rc);
    547 }
    548 
    549 /* Narrowing of unary minus operator. */
    550 TRef lj_opt_narrow_unm(jit_State *J, TRef rc, TValue *vc)
    551 {
    552   rc = conv_str_tonum(J, rc, vc);
    553   if (tref_isinteger(rc)) {
    554     if ((uint32_t)numberVint(vc) != 0x80000000u)
    555       return emitir(IRTGI(IR_SUBOV), lj_ir_kint(J, 0), rc);
    556     rc = emitir(IRTN(IR_CONV), rc, IRCONV_NUM_INT);
    557   }
    558   return emitir(IRTN(IR_NEG), rc, lj_ir_ksimd(J, LJ_KSIMD_NEG));
    559 }
    560 
    561 /* Narrowing of modulo operator. */
    562 TRef lj_opt_narrow_mod(jit_State *J, TRef rb, TRef rc, TValue *vb, TValue *vc)
    563 {
    564   TRef tmp;
    565   rb = conv_str_tonum(J, rb, vb);
    566   rc = conv_str_tonum(J, rc, vc);
    567   if ((LJ_DUALNUM || (J->flags & JIT_F_OPT_NARROW)) &&
    568       tref_isinteger(rb) && tref_isinteger(rc) &&
    569       (tvisint(vc) ? intV(vc) != 0 : !tviszero(vc))) {
    570     emitir(IRTGI(IR_NE), rc, lj_ir_kint(J, 0));
    571     return emitir(IRTI(IR_MOD), rb, rc);
    572   }
    573   /* b % c ==> b - floor(b/c)*c */
    574   rb = lj_ir_tonum(J, rb);
    575   rc = lj_ir_tonum(J, rc);
    576   tmp = emitir(IRTN(IR_DIV), rb, rc);
    577   tmp = emitir(IRTN(IR_FPMATH), tmp, IRFPM_FLOOR);
    578   tmp = emitir(IRTN(IR_MUL), tmp, rc);
    579   return emitir(IRTN(IR_SUB), rb, tmp);
    580 }
    581 
    582 /* Narrowing of power operator or math.pow. */
    583 TRef lj_opt_narrow_pow(jit_State *J, TRef rb, TRef rc, TValue *vb, TValue *vc)
    584 {
    585   rb = conv_str_tonum(J, rb, vb);
    586   rb = lj_ir_tonum(J, rb);  /* Left arg is always treated as an FP number. */
    587   rc = conv_str_tonum(J, rc, vc);
    588   /* Narrowing must be unconditional to preserve (-x)^i semantics. */
    589   if (tvisint(vc) || numisint(numV(vc))) {
    590     int checkrange = 0;
    591     /* Split pow is faster for bigger exponents. But do this only for (+k)^i. */
    592     if (tref_isk(rb) && (int32_t)ir_knum(IR(tref_ref(rb)))->u32.hi >= 0) {
    593       int32_t k = numberVint(vc);
    594       if (!(k >= -65536 && k <= 65536)) goto split_pow;
    595       checkrange = 1;
    596     }
    597     if (!tref_isinteger(rc)) {
    598       /* Guarded conversion to integer! */
    599       rc = emitir(IRTGI(IR_CONV), rc, IRCONV_INT_NUM|IRCONV_CHECK);
    600     }
    601     if (checkrange && !tref_isk(rc)) {  /* Range guard: -65536 <= i <= 65536 */
    602       TRef tmp = emitir(IRTI(IR_ADD), rc, lj_ir_kint(J, 65536));
    603       emitir(IRTGI(IR_ULE), tmp, lj_ir_kint(J, 2*65536));
    604     }
    605     return emitir(IRTN(IR_POW), rb, rc);
    606   }
    607 split_pow:
    608   /* FOLD covers most cases, but some are easier to do here. */
    609   if (tref_isk(rb) && tvispone(ir_knum(IR(tref_ref(rb)))))
    610     return rb;  /* 1 ^ x ==> 1 */
    611   rc = lj_ir_tonum(J, rc);
    612   if (tref_isk(rc) && ir_knum(IR(tref_ref(rc)))->n == 0.5)
    613     return emitir(IRTN(IR_FPMATH), rb, IRFPM_SQRT);  /* x ^ 0.5 ==> sqrt(x) */
    614   /* Split up b^c into exp2(c*log2(b)). Assembler may rejoin later. */
    615   rb = emitir(IRTN(IR_FPMATH), rb, IRFPM_LOG2);
    616   rc = emitir(IRTN(IR_MUL), rb, rc);
    617   return emitir(IRTN(IR_FPMATH), rc, IRFPM_EXP2);
    618 }
    619 
    620 /* -- Predictive narrowing of induction variables ------------------------- */
    621 
    622 /* Narrow a single runtime value. */
    623 static int narrow_forl(jit_State *J, cTValue *o)
    624 {
    625   if (tvisint(o)) return 1;
    626   if (LJ_DUALNUM || (J->flags & JIT_F_OPT_NARROW)) return numisint(numV(o));
    627   return 0;
    628 }
    629 
    630 /* Narrow the FORL index type by looking at the runtime values. */
    631 IRType lj_opt_narrow_forl(jit_State *J, cTValue *tv)
    632 {
    633   lua_assert(tvisnumber(&tv[FORL_IDX]) &&
    634 	     tvisnumber(&tv[FORL_STOP]) &&
    635 	     tvisnumber(&tv[FORL_STEP]));
    636   /* Narrow only if the runtime values of start/stop/step are all integers. */
    637   if (narrow_forl(J, &tv[FORL_IDX]) &&
    638       narrow_forl(J, &tv[FORL_STOP]) &&
    639       narrow_forl(J, &tv[FORL_STEP])) {
    640     /* And if the loop index can't possibly overflow. */
    641     lua_Number step = numberVnum(&tv[FORL_STEP]);
    642     lua_Number sum = numberVnum(&tv[FORL_STOP]) + step;
    643     if (0 <= step ? (sum <= 2147483647.0) : (sum >= -2147483648.0))
    644       return IRT_INT;
    645   }
    646   return IRT_NUM;
    647 }
    648 
    649 #undef IR
    650 #undef fins
    651 #undef emitir
    652 #undef emitir_raw
    653 
    654 #endif