forked from mirror/libcxx
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
367 lines
9.9 KiB
C++
367 lines
9.9 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is dual licensed under the MIT and the University of Illinois Open
|
|
// Source Licenses. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// REQUIRES: long_tests
|
|
|
|
// <random>
|
|
|
|
// template<class RealType = double>
|
|
// class piecewise_linear_distribution
|
|
|
|
// template<class _URNG> result_type operator()(_URNG& g);
|
|
|
|
#include <iostream>
|
|
|
|
#include <random>
|
|
#include <algorithm>
|
|
#include <vector>
|
|
#include <iterator>
|
|
#include <numeric>
|
|
#include <cassert>
|
|
#include <limits>
|
|
|
|
template <class T>
|
|
inline
|
|
T
|
|
sqr(T x)
|
|
{
|
|
return x*x;
|
|
}
|
|
|
|
double
|
|
f(double x, double a, double m, double b, double c)
|
|
{
|
|
return a + m*(sqr(x) - sqr(b))/2 + c*(x-b);
|
|
}
|
|
|
|
void
|
|
test1()
|
|
{
|
|
typedef std::piecewise_linear_distribution<> D;
|
|
typedef std::mt19937_64 G;
|
|
G g;
|
|
double b[] = {10, 14, 16, 17};
|
|
double p[] = {0, 1, 1, 0};
|
|
const size_t Np = sizeof(p) / sizeof(p[0]) - 1;
|
|
D d(b, b+Np+1, p);
|
|
const int N = 1000000;
|
|
std::vector<D::result_type> u;
|
|
for (size_t i = 0; i < N; ++i)
|
|
{
|
|
D::result_type v = d(g);
|
|
assert(d.min() <= v && v < d.max());
|
|
u.push_back(v);
|
|
}
|
|
std::sort(u.begin(), u.end());
|
|
int kp = -1;
|
|
double a = std::numeric_limits<double>::quiet_NaN();
|
|
double m = std::numeric_limits<double>::quiet_NaN();
|
|
double bk = std::numeric_limits<double>::quiet_NaN();
|
|
double c = std::numeric_limits<double>::quiet_NaN();
|
|
std::vector<double> areas(Np);
|
|
double S = 0;
|
|
for (size_t i = 0; i < areas.size(); ++i)
|
|
{
|
|
areas[i] = (p[i]+p[i+1])*(b[i+1]-b[i])/2;
|
|
S += areas[i];
|
|
}
|
|
for (size_t i = 0; i < areas.size(); ++i)
|
|
areas[i] /= S;
|
|
for (size_t i = 0; i < Np+1; ++i)
|
|
p[i] /= S;
|
|
for (size_t i = 0; i < N; ++i)
|
|
{
|
|
int k = std::lower_bound(b, b+Np+1, u[i]) - b - 1;
|
|
if (k != kp)
|
|
{
|
|
a = 0;
|
|
for (int j = 0; j < k; ++j)
|
|
a += areas[j];
|
|
m = (p[k+1] - p[k]) / (b[k+1] - b[k]);
|
|
bk = b[k];
|
|
c = (b[k+1]*p[k] - b[k]*p[k+1]) / (b[k+1] - b[k]);
|
|
kp = k;
|
|
}
|
|
assert(std::abs(f(u[i], a, m, bk, c) - double(i)/N) < .001);
|
|
}
|
|
}
|
|
|
|
void
|
|
test2()
|
|
{
|
|
typedef std::piecewise_linear_distribution<> D;
|
|
typedef std::mt19937_64 G;
|
|
G g;
|
|
double b[] = {10, 14, 16, 17};
|
|
double p[] = {0, 0, 1, 0};
|
|
const size_t Np = sizeof(p) / sizeof(p[0]) - 1;
|
|
D d(b, b+Np+1, p);
|
|
const int N = 1000000;
|
|
std::vector<D::result_type> u;
|
|
for (size_t i = 0; i < N; ++i)
|
|
{
|
|
D::result_type v = d(g);
|
|
assert(d.min() <= v && v < d.max());
|
|
u.push_back(v);
|
|
}
|
|
std::sort(u.begin(), u.end());
|
|
int kp = -1;
|
|
double a = std::numeric_limits<double>::quiet_NaN();
|
|
double m = std::numeric_limits<double>::quiet_NaN();
|
|
double bk = std::numeric_limits<double>::quiet_NaN();
|
|
double c = std::numeric_limits<double>::quiet_NaN();
|
|
std::vector<double> areas(Np);
|
|
double S = 0;
|
|
for (size_t i = 0; i < areas.size(); ++i)
|
|
{
|
|
areas[i] = (p[i]+p[i+1])*(b[i+1]-b[i])/2;
|
|
S += areas[i];
|
|
}
|
|
for (size_t i = 0; i < areas.size(); ++i)
|
|
areas[i] /= S;
|
|
for (size_t i = 0; i < Np+1; ++i)
|
|
p[i] /= S;
|
|
for (size_t i = 0; i < N; ++i)
|
|
{
|
|
int k = std::lower_bound(b, b+Np+1, u[i]) - b - 1;
|
|
if (k != kp)
|
|
{
|
|
a = 0;
|
|
for (int j = 0; j < k; ++j)
|
|
a += areas[j];
|
|
m = (p[k+1] - p[k]) / (b[k+1] - b[k]);
|
|
bk = b[k];
|
|
c = (b[k+1]*p[k] - b[k]*p[k+1]) / (b[k+1] - b[k]);
|
|
kp = k;
|
|
}
|
|
assert(std::abs(f(u[i], a, m, bk, c) - double(i)/N) < .001);
|
|
}
|
|
}
|
|
|
|
void
|
|
test3()
|
|
{
|
|
typedef std::piecewise_linear_distribution<> D;
|
|
typedef std::mt19937_64 G;
|
|
G g;
|
|
double b[] = {10, 14, 16, 17};
|
|
double p[] = {1, 0, 0, 0};
|
|
const size_t Np = sizeof(p) / sizeof(p[0]) - 1;
|
|
D d(b, b+Np+1, p);
|
|
const size_t N = 1000000;
|
|
std::vector<D::result_type> u;
|
|
for (size_t i = 0; i < N; ++i)
|
|
{
|
|
D::result_type v = d(g);
|
|
assert(d.min() <= v && v < d.max());
|
|
u.push_back(v);
|
|
}
|
|
std::sort(u.begin(), u.end());
|
|
int kp = -1;
|
|
double a = std::numeric_limits<double>::quiet_NaN();
|
|
double m = std::numeric_limits<double>::quiet_NaN();
|
|
double bk = std::numeric_limits<double>::quiet_NaN();
|
|
double c = std::numeric_limits<double>::quiet_NaN();
|
|
std::vector<double> areas(Np);
|
|
double S = 0;
|
|
for (size_t i = 0; i < areas.size(); ++i)
|
|
{
|
|
areas[i] = (p[i]+p[i+1])*(b[i+1]-b[i])/2;
|
|
S += areas[i];
|
|
}
|
|
for (size_t i = 0; i < areas.size(); ++i)
|
|
areas[i] /= S;
|
|
for (size_t i = 0; i < Np+1; ++i)
|
|
p[i] /= S;
|
|
for (size_t i = 0; i < N; ++i)
|
|
{
|
|
int k = std::lower_bound(b, b+Np+1, u[i]) - b - 1;
|
|
if (k != kp)
|
|
{
|
|
a = 0;
|
|
for (int j = 0; j < k; ++j)
|
|
a += areas[j];
|
|
m = (p[k+1] - p[k]) / (b[k+1] - b[k]);
|
|
bk = b[k];
|
|
c = (b[k+1]*p[k] - b[k]*p[k+1]) / (b[k+1] - b[k]);
|
|
kp = k;
|
|
}
|
|
assert(std::abs(f(u[i], a, m, bk, c) - double(i)/N) < .001);
|
|
}
|
|
}
|
|
|
|
void
|
|
test4()
|
|
{
|
|
typedef std::piecewise_linear_distribution<> D;
|
|
typedef std::mt19937_64 G;
|
|
G g;
|
|
double b[] = {10, 14, 16};
|
|
double p[] = {0, 1, 0};
|
|
const size_t Np = sizeof(p) / sizeof(p[0]) - 1;
|
|
D d(b, b+Np+1, p);
|
|
const int N = 1000000;
|
|
std::vector<D::result_type> u;
|
|
for (size_t i = 0; i < N; ++i)
|
|
{
|
|
D::result_type v = d(g);
|
|
assert(d.min() <= v && v < d.max());
|
|
u.push_back(v);
|
|
}
|
|
std::sort(u.begin(), u.end());
|
|
int kp = -1;
|
|
double a = std::numeric_limits<double>::quiet_NaN();
|
|
double m = std::numeric_limits<double>::quiet_NaN();
|
|
double bk = std::numeric_limits<double>::quiet_NaN();
|
|
double c = std::numeric_limits<double>::quiet_NaN();
|
|
std::vector<double> areas(Np);
|
|
double S = 0;
|
|
for (size_t i = 0; i < areas.size(); ++i)
|
|
{
|
|
areas[i] = (p[i]+p[i+1])*(b[i+1]-b[i])/2;
|
|
S += areas[i];
|
|
}
|
|
for (size_t i = 0; i < areas.size(); ++i)
|
|
areas[i] /= S;
|
|
for (size_t i = 0; i < Np+1; ++i)
|
|
p[i] /= S;
|
|
for (size_t i = 0; i < N; ++i)
|
|
{
|
|
int k = std::lower_bound(b, b+Np+1, u[i]) - b - 1;
|
|
if (k != kp)
|
|
{
|
|
a = 0;
|
|
for (int j = 0; j < k; ++j)
|
|
a += areas[j];
|
|
assert(k < static_cast<int>(Np));
|
|
m = (p[k+1] - p[k]) / (b[k+1] - b[k]);
|
|
bk = b[k];
|
|
c = (b[k+1]*p[k] - b[k]*p[k+1]) / (b[k+1] - b[k]);
|
|
kp = k;
|
|
}
|
|
assert(std::abs(f(u[i], a, m, bk, c) - double(i)/N) < .001);
|
|
}
|
|
}
|
|
|
|
void
|
|
test5()
|
|
{
|
|
typedef std::piecewise_linear_distribution<> D;
|
|
typedef std::mt19937_64 G;
|
|
G g;
|
|
double b[] = {10, 14};
|
|
double p[] = {1, 1};
|
|
const size_t Np = sizeof(p) / sizeof(p[0]) - 1;
|
|
D d(b, b+Np+1, p);
|
|
const int N = 1000000;
|
|
std::vector<D::result_type> u;
|
|
for (size_t i = 0; i < N; ++i)
|
|
{
|
|
D::result_type v = d(g);
|
|
assert(d.min() <= v && v < d.max());
|
|
u.push_back(v);
|
|
}
|
|
std::sort(u.begin(), u.end());
|
|
int kp = -1;
|
|
double a = std::numeric_limits<double>::quiet_NaN();
|
|
double m = std::numeric_limits<double>::quiet_NaN();
|
|
double bk = std::numeric_limits<double>::quiet_NaN();
|
|
double c = std::numeric_limits<double>::quiet_NaN();
|
|
std::vector<double> areas(Np);
|
|
double S = 0;
|
|
for (size_t i = 0; i < areas.size(); ++i)
|
|
{
|
|
assert(i < Np);
|
|
areas[i] = (p[i]+p[i+1])*(b[i+1]-b[i])/2;
|
|
S += areas[i];
|
|
}
|
|
for (size_t i = 0; i < areas.size(); ++i)
|
|
areas[i] /= S;
|
|
for (size_t i = 0; i < Np+1; ++i)
|
|
p[i] /= S;
|
|
for (size_t i = 0; i < N; ++i)
|
|
{
|
|
int k = std::lower_bound(b, b+Np+1, u[i]) - b - 1;
|
|
if (k != kp)
|
|
{
|
|
a = 0;
|
|
for (int j = 0; j < k; ++j)
|
|
a += areas[j];
|
|
assert(k < static_cast<int>(Np));
|
|
m = (p[k+1] - p[k]) / (b[k+1] - b[k]);
|
|
bk = b[k];
|
|
c = (b[k+1]*p[k] - b[k]*p[k+1]) / (b[k+1] - b[k]);
|
|
kp = k;
|
|
}
|
|
assert(std::abs(f(u[i], a, m, bk, c) - double(i)/N) < .001);
|
|
}
|
|
}
|
|
|
|
void
|
|
test6()
|
|
{
|
|
typedef std::piecewise_linear_distribution<> D;
|
|
typedef std::mt19937_64 G;
|
|
G g;
|
|
double b[] = {10, 14, 16, 17};
|
|
double p[] = {25, 62.5, 12.5, 0};
|
|
const size_t Np = sizeof(p) / sizeof(p[0]) - 1;
|
|
D d(b, b+Np+1, p);
|
|
const int N = 1000000;
|
|
std::vector<D::result_type> u;
|
|
for (size_t i = 0; i < N; ++i)
|
|
{
|
|
D::result_type v = d(g);
|
|
assert(d.min() <= v && v < d.max());
|
|
u.push_back(v);
|
|
}
|
|
std::sort(u.begin(), u.end());
|
|
int kp = -1;
|
|
double a = std::numeric_limits<double>::quiet_NaN();
|
|
double m = std::numeric_limits<double>::quiet_NaN();
|
|
double bk = std::numeric_limits<double>::quiet_NaN();
|
|
double c = std::numeric_limits<double>::quiet_NaN();
|
|
std::vector<double> areas(Np);
|
|
double S = 0;
|
|
for (size_t i = 0; i < areas.size(); ++i)
|
|
{
|
|
areas[i] = (p[i]+p[i+1])*(b[i+1]-b[i])/2;
|
|
S += areas[i];
|
|
}
|
|
for (size_t i = 0; i < areas.size(); ++i)
|
|
areas[i] /= S;
|
|
for (size_t i = 0; i < Np+1; ++i)
|
|
p[i] /= S;
|
|
for (size_t i = 0; i < N; ++i)
|
|
{
|
|
int k = std::lower_bound(b, b+Np+1, u[i]) - b - 1;
|
|
if (k != kp)
|
|
{
|
|
a = 0;
|
|
for (int j = 0; j < k; ++j)
|
|
a += areas[j];
|
|
m = (p[k+1] - p[k]) / (b[k+1] - b[k]);
|
|
bk = b[k];
|
|
c = (b[k+1]*p[k] - b[k]*p[k+1]) / (b[k+1] - b[k]);
|
|
kp = k;
|
|
}
|
|
assert(std::abs(f(u[i], a, m, bk, c) - double(i)/N) < .001);
|
|
}
|
|
}
|
|
|
|
int main()
|
|
{
|
|
test1();
|
|
test2();
|
|
test3();
|
|
test4();
|
|
test5();
|
|
test6();
|
|
}
|