libcxx

libcxx mirror with random patches
git clone https://git.neptards.moe/neptards/libcxx.git
Log | Files | Refs

benchmark_test.cc (7247B)


      1 #include "benchmark/benchmark.h"
      2 
      3 #include <assert.h>
      4 #include <math.h>
      5 #include <stdint.h>
      6 
      7 #include <chrono>
      8 #include <cstdlib>
      9 #include <iostream>
     10 #include <limits>
     11 #include <list>
     12 #include <map>
     13 #include <mutex>
     14 #include <set>
     15 #include <sstream>
     16 #include <string>
     17 #include <thread>
     18 #include <utility>
     19 #include <vector>
     20 
     21 #if defined(__GNUC__)
     22 #define BENCHMARK_NOINLINE __attribute__((noinline))
     23 #else
     24 #define BENCHMARK_NOINLINE
     25 #endif
     26 
     27 namespace {
     28 
     29 int BENCHMARK_NOINLINE Factorial(uint32_t n) {
     30   return (n == 1) ? 1 : n * Factorial(n - 1);
     31 }
     32 
     33 double CalculatePi(int depth) {
     34   double pi = 0.0;
     35   for (int i = 0; i < depth; ++i) {
     36     double numerator = static_cast<double>(((i % 2) * 2) - 1);
     37     double denominator = static_cast<double>((2 * i) - 1);
     38     pi += numerator / denominator;
     39   }
     40   return (pi - 1.0) * 4;
     41 }
     42 
     43 std::set<int64_t> ConstructRandomSet(int64_t size) {
     44   std::set<int64_t> s;
     45   for (int i = 0; i < size; ++i) s.insert(s.end(), i);
     46   return s;
     47 }
     48 
     49 std::mutex test_vector_mu;
     50 std::vector<int>* test_vector = nullptr;
     51 
     52 }  // end namespace
     53 
     54 static void BM_Factorial(benchmark::State& state) {
     55   int fac_42 = 0;
     56   for (auto _ : state) fac_42 = Factorial(8);
     57   // Prevent compiler optimizations
     58   std::stringstream ss;
     59   ss << fac_42;
     60   state.SetLabel(ss.str());
     61 }
     62 BENCHMARK(BM_Factorial);
     63 BENCHMARK(BM_Factorial)->UseRealTime();
     64 
     65 static void BM_CalculatePiRange(benchmark::State& state) {
     66   double pi = 0.0;
     67   for (auto _ : state) pi = CalculatePi(static_cast<int>(state.range(0)));
     68   std::stringstream ss;
     69   ss << pi;
     70   state.SetLabel(ss.str());
     71 }
     72 BENCHMARK_RANGE(BM_CalculatePiRange, 1, 1024 * 1024);
     73 
     74 static void BM_CalculatePi(benchmark::State& state) {
     75   static const int depth = 1024;
     76   for (auto _ : state) {
     77     benchmark::DoNotOptimize(CalculatePi(static_cast<int>(depth)));
     78   }
     79 }
     80 BENCHMARK(BM_CalculatePi)->Threads(8);
     81 BENCHMARK(BM_CalculatePi)->ThreadRange(1, 32);
     82 BENCHMARK(BM_CalculatePi)->ThreadPerCpu();
     83 
     84 static void BM_SetInsert(benchmark::State& state) {
     85   std::set<int64_t> data;
     86   for (auto _ : state) {
     87     state.PauseTiming();
     88     data = ConstructRandomSet(state.range(0));
     89     state.ResumeTiming();
     90     for (int j = 0; j < state.range(1); ++j) data.insert(rand());
     91   }
     92   state.SetItemsProcessed(state.iterations() * state.range(1));
     93   state.SetBytesProcessed(state.iterations() * state.range(1) * sizeof(int));
     94 }
     95 
     96 // Test many inserts at once to reduce the total iterations needed. Otherwise, the slower,
     97 // non-timed part of each iteration will make the benchmark take forever.
     98 BENCHMARK(BM_SetInsert)->Ranges({{1 << 10, 8 << 10}, {128, 512}});
     99 
    100 template <typename Container,
    101           typename ValueType = typename Container::value_type>
    102 static void BM_Sequential(benchmark::State& state) {
    103   ValueType v = 42;
    104   for (auto _ : state) {
    105     Container c;
    106     for (int64_t i = state.range(0); --i;) c.push_back(v);
    107   }
    108   const int64_t items_processed = state.iterations() * state.range(0);
    109   state.SetItemsProcessed(items_processed);
    110   state.SetBytesProcessed(items_processed * sizeof(v));
    111 }
    112 BENCHMARK_TEMPLATE2(BM_Sequential, std::vector<int>, int)
    113     ->Range(1 << 0, 1 << 10);
    114 BENCHMARK_TEMPLATE(BM_Sequential, std::list<int>)->Range(1 << 0, 1 << 10);
    115 // Test the variadic version of BENCHMARK_TEMPLATE in C++11 and beyond.
    116 #ifdef BENCHMARK_HAS_CXX11
    117 BENCHMARK_TEMPLATE(BM_Sequential, std::vector<int>, int)->Arg(512);
    118 #endif
    119 
    120 static void BM_StringCompare(benchmark::State& state) {
    121   size_t len = static_cast<size_t>(state.range(0));
    122   std::string s1(len, '-');
    123   std::string s2(len, '-');
    124   for (auto _ : state) benchmark::DoNotOptimize(s1.compare(s2));
    125 }
    126 BENCHMARK(BM_StringCompare)->Range(1, 1 << 20);
    127 
    128 static void BM_SetupTeardown(benchmark::State& state) {
    129   if (state.thread_index == 0) {
    130     // No need to lock test_vector_mu here as this is running single-threaded.
    131     test_vector = new std::vector<int>();
    132   }
    133   int i = 0;
    134   for (auto _ : state) {
    135     std::lock_guard<std::mutex> l(test_vector_mu);
    136     if (i % 2 == 0)
    137       test_vector->push_back(i);
    138     else
    139       test_vector->pop_back();
    140     ++i;
    141   }
    142   if (state.thread_index == 0) {
    143     delete test_vector;
    144   }
    145 }
    146 BENCHMARK(BM_SetupTeardown)->ThreadPerCpu();
    147 
    148 static void BM_LongTest(benchmark::State& state) {
    149   double tracker = 0.0;
    150   for (auto _ : state) {
    151     for (int i = 0; i < state.range(0); ++i)
    152       benchmark::DoNotOptimize(tracker += i);
    153   }
    154 }
    155 BENCHMARK(BM_LongTest)->Range(1 << 16, 1 << 28);
    156 
    157 static void BM_ParallelMemset(benchmark::State& state) {
    158   int64_t size = state.range(0) / static_cast<int64_t>(sizeof(int));
    159   int thread_size = static_cast<int>(size) / state.threads;
    160   int from = thread_size * state.thread_index;
    161   int to = from + thread_size;
    162 
    163   if (state.thread_index == 0) {
    164     test_vector = new std::vector<int>(static_cast<size_t>(size));
    165   }
    166 
    167   for (auto _ : state) {
    168     for (int i = from; i < to; i++) {
    169       // No need to lock test_vector_mu as ranges
    170       // do not overlap between threads.
    171       benchmark::DoNotOptimize(test_vector->at(i) = 1);
    172     }
    173   }
    174 
    175   if (state.thread_index == 0) {
    176     delete test_vector;
    177   }
    178 }
    179 BENCHMARK(BM_ParallelMemset)->Arg(10 << 20)->ThreadRange(1, 4);
    180 
    181 static void BM_ManualTiming(benchmark::State& state) {
    182   int64_t slept_for = 0;
    183   int64_t microseconds = state.range(0);
    184   std::chrono::duration<double, std::micro> sleep_duration{
    185       static_cast<double>(microseconds)};
    186 
    187   for (auto _ : state) {
    188     auto start = std::chrono::high_resolution_clock::now();
    189     // Simulate some useful workload with a sleep
    190     std::this_thread::sleep_for(
    191         std::chrono::duration_cast<std::chrono::nanoseconds>(sleep_duration));
    192     auto end = std::chrono::high_resolution_clock::now();
    193 
    194     auto elapsed =
    195         std::chrono::duration_cast<std::chrono::duration<double>>(end - start);
    196 
    197     state.SetIterationTime(elapsed.count());
    198     slept_for += microseconds;
    199   }
    200   state.SetItemsProcessed(slept_for);
    201 }
    202 BENCHMARK(BM_ManualTiming)->Range(1, 1 << 14)->UseRealTime();
    203 BENCHMARK(BM_ManualTiming)->Range(1, 1 << 14)->UseManualTime();
    204 
    205 #ifdef BENCHMARK_HAS_CXX11
    206 
    207 template <class... Args>
    208 void BM_with_args(benchmark::State& state, Args&&...) {
    209   for (auto _ : state) {
    210   }
    211 }
    212 BENCHMARK_CAPTURE(BM_with_args, int_test, 42, 43, 44);
    213 BENCHMARK_CAPTURE(BM_with_args, string_and_pair_test, std::string("abc"),
    214                   std::pair<int, double>(42, 3.8));
    215 
    216 void BM_non_template_args(benchmark::State& state, int, double) {
    217   while(state.KeepRunning()) {}
    218 }
    219 BENCHMARK_CAPTURE(BM_non_template_args, basic_test, 0, 0);
    220 
    221 #endif  // BENCHMARK_HAS_CXX11
    222 
    223 static void BM_DenseThreadRanges(benchmark::State& st) {
    224   switch (st.range(0)) {
    225     case 1:
    226       assert(st.threads == 1 || st.threads == 2 || st.threads == 3);
    227       break;
    228     case 2:
    229       assert(st.threads == 1 || st.threads == 3 || st.threads == 4);
    230       break;
    231     case 3:
    232       assert(st.threads == 5 || st.threads == 8 || st.threads == 11 ||
    233              st.threads == 14);
    234       break;
    235     default:
    236       assert(false && "Invalid test case number");
    237   }
    238   while (st.KeepRunning()) {
    239   }
    240 }
    241 BENCHMARK(BM_DenseThreadRanges)->Arg(1)->DenseThreadRange(1, 3);
    242 BENCHMARK(BM_DenseThreadRanges)->Arg(2)->DenseThreadRange(1, 4, 2);
    243 BENCHMARK(BM_DenseThreadRanges)->Arg(3)->DenseThreadRange(5, 14, 3);
    244 
    245 BENCHMARK_MAIN();