libcxx

libcxx mirror with random patches
git clone https://git.neptards.moe/neptards/libcxx.git
Log | Files | Refs

statistics.cc (6644B)


      1 // Copyright 2016 Ismael Jimenez Martinez. All rights reserved.
      2 // Copyright 2017 Roman Lebedev. All rights reserved.
      3 //
      4 // Licensed under the Apache License, Version 2.0 (the "License");
      5 // you may not use this file except in compliance with the License.
      6 // You may obtain a copy of the License at
      7 //
      8 //     http://www.apache.org/licenses/LICENSE-2.0
      9 //
     10 // Unless required by applicable law or agreed to in writing, software
     11 // distributed under the License is distributed on an "AS IS" BASIS,
     12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13 // See the License for the specific language governing permissions and
     14 // limitations under the License.
     15 
     16 #include "benchmark/benchmark.h"
     17 
     18 #include <algorithm>
     19 #include <cmath>
     20 #include <numeric>
     21 #include <string>
     22 #include <vector>
     23 #include "check.h"
     24 #include "statistics.h"
     25 
     26 namespace benchmark {
     27 
     28 auto StatisticsSum = [](const std::vector<double>& v) {
     29   return std::accumulate(v.begin(), v.end(), 0.0);
     30 };
     31 
     32 double StatisticsMean(const std::vector<double>& v) {
     33   if (v.empty()) return 0.0;
     34   return StatisticsSum(v) * (1.0 / v.size());
     35 }
     36 
     37 double StatisticsMedian(const std::vector<double>& v) {
     38   if (v.size() < 3) return StatisticsMean(v);
     39   std::vector<double> copy(v);
     40 
     41   auto center = copy.begin() + v.size() / 2;
     42   std::nth_element(copy.begin(), center, copy.end());
     43 
     44   // did we have an odd number of samples?
     45   // if yes, then center is the median
     46   // it no, then we are looking for the average between center and the value
     47   // before
     48   if (v.size() % 2 == 1) return *center;
     49   auto center2 = copy.begin() + v.size() / 2 - 1;
     50   std::nth_element(copy.begin(), center2, copy.end());
     51   return (*center + *center2) / 2.0;
     52 }
     53 
     54 // Return the sum of the squares of this sample set
     55 auto SumSquares = [](const std::vector<double>& v) {
     56   return std::inner_product(v.begin(), v.end(), v.begin(), 0.0);
     57 };
     58 
     59 auto Sqr = [](const double dat) { return dat * dat; };
     60 auto Sqrt = [](const double dat) {
     61   // Avoid NaN due to imprecision in the calculations
     62   if (dat < 0.0) return 0.0;
     63   return std::sqrt(dat);
     64 };
     65 
     66 double StatisticsStdDev(const std::vector<double>& v) {
     67   const auto mean = StatisticsMean(v);
     68   if (v.empty()) return mean;
     69 
     70   // Sample standard deviation is undefined for n = 1
     71   if (v.size() == 1) return 0.0;
     72 
     73   const double avg_squares = SumSquares(v) * (1.0 / v.size());
     74   return Sqrt(v.size() / (v.size() - 1.0) * (avg_squares - Sqr(mean)));
     75 }
     76 
     77 std::vector<BenchmarkReporter::Run> ComputeStats(
     78     const std::vector<BenchmarkReporter::Run>& reports) {
     79   typedef BenchmarkReporter::Run Run;
     80   std::vector<Run> results;
     81 
     82   auto error_count =
     83       std::count_if(reports.begin(), reports.end(),
     84                     [](Run const& run) { return run.error_occurred; });
     85 
     86   if (reports.size() - error_count < 2) {
     87     // We don't report aggregated data if there was a single run.
     88     return results;
     89   }
     90 
     91   // Accumulators.
     92   std::vector<double> real_accumulated_time_stat;
     93   std::vector<double> cpu_accumulated_time_stat;
     94 
     95   real_accumulated_time_stat.reserve(reports.size());
     96   cpu_accumulated_time_stat.reserve(reports.size());
     97 
     98   // All repetitions should be run with the same number of iterations so we
     99   // can take this information from the first benchmark.
    100   int64_t const run_iterations = reports.front().iterations;
    101   // create stats for user counters
    102   struct CounterStat {
    103     Counter c;
    104     std::vector<double> s;
    105   };
    106   std::map<std::string, CounterStat> counter_stats;
    107   for (Run const& r : reports) {
    108     for (auto const& cnt : r.counters) {
    109       auto it = counter_stats.find(cnt.first);
    110       if (it == counter_stats.end()) {
    111         counter_stats.insert({cnt.first, {cnt.second, std::vector<double>{}}});
    112         it = counter_stats.find(cnt.first);
    113         it->second.s.reserve(reports.size());
    114       } else {
    115         CHECK_EQ(counter_stats[cnt.first].c.flags, cnt.second.flags);
    116       }
    117     }
    118   }
    119 
    120   // Populate the accumulators.
    121   for (Run const& run : reports) {
    122     CHECK_EQ(reports[0].benchmark_name(), run.benchmark_name());
    123     CHECK_EQ(run_iterations, run.iterations);
    124     if (run.error_occurred) continue;
    125     real_accumulated_time_stat.emplace_back(run.real_accumulated_time);
    126     cpu_accumulated_time_stat.emplace_back(run.cpu_accumulated_time);
    127     // user counters
    128     for (auto const& cnt : run.counters) {
    129       auto it = counter_stats.find(cnt.first);
    130       CHECK_NE(it, counter_stats.end());
    131       it->second.s.emplace_back(cnt.second);
    132     }
    133   }
    134 
    135   // Only add label if it is same for all runs
    136   std::string report_label = reports[0].report_label;
    137   for (std::size_t i = 1; i < reports.size(); i++) {
    138     if (reports[i].report_label != report_label) {
    139       report_label = "";
    140       break;
    141     }
    142   }
    143 
    144   const double iteration_rescale_factor =
    145       double(reports.size()) / double(run_iterations);
    146 
    147   for (const auto& Stat : *reports[0].statistics) {
    148     // Get the data from the accumulator to BenchmarkReporter::Run's.
    149     Run data;
    150     data.run_name = reports[0].benchmark_name();
    151     data.run_type = BenchmarkReporter::Run::RT_Aggregate;
    152     data.aggregate_name = Stat.name_;
    153     data.report_label = report_label;
    154 
    155     // It is incorrect to say that an aggregate is computed over
    156     // run's iterations, because those iterations already got averaged.
    157     // Similarly, if there are N repetitions with 1 iterations each,
    158     // an aggregate will be computed over N measurements, not 1.
    159     // Thus it is best to simply use the count of separate reports.
    160     data.iterations = reports.size();
    161 
    162     data.real_accumulated_time = Stat.compute_(real_accumulated_time_stat);
    163     data.cpu_accumulated_time = Stat.compute_(cpu_accumulated_time_stat);
    164 
    165     // We will divide these times by data.iterations when reporting, but the
    166     // data.iterations is not nessesairly the scale of these measurements,
    167     // because in each repetition, these timers are sum over all the iterations.
    168     // And if we want to say that the stats are over N repetitions and not
    169     // M iterations, we need to multiply these by (N/M).
    170     data.real_accumulated_time *= iteration_rescale_factor;
    171     data.cpu_accumulated_time *= iteration_rescale_factor;
    172 
    173     data.time_unit = reports[0].time_unit;
    174 
    175     // user counters
    176     for (auto const& kv : counter_stats) {
    177       // Do *NOT* rescale the custom counters. They are already properly scaled.
    178       const auto uc_stat = Stat.compute_(kv.second.s);
    179       auto c = Counter(uc_stat, counter_stats[kv.first].c.flags,
    180                        counter_stats[kv.first].c.oneK);
    181       data.counters[kv.first] = c;
    182     }
    183 
    184     results.push_back(data);
    185   }
    186 
    187   return results;
    188 }
    189 
    190 }  // end namespace benchmark