libcxx

libcxx mirror with random patches
git clone https://git.neptards.moe/neptards/libcxx.git
Log | Files | Refs

eval_param.pass.cpp (4377B)


      1 //===----------------------------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is dual licensed under the MIT and the University of Illinois Open
      6 // Source Licenses. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // REQUIRES: long_tests
     11 
     12 // <random>
     13 
     14 // template<class RealType = double>
     15 // class student_t_distribution
     16 
     17 // template<class _URNG> result_type operator()(_URNG& g, const param_type& parm);
     18 
     19 #include <random>
     20 #include <cassert>
     21 #include <vector>
     22 #include <numeric>
     23 
     24 template <class T>
     25 inline
     26 T
     27 sqr(T x)
     28 {
     29     return x * x;
     30 }
     31 
     32 int main()
     33 {
     34     {
     35         typedef std::student_t_distribution<> D;
     36         typedef D::param_type P;
     37         typedef std::minstd_rand G;
     38         G g;
     39         D d;
     40         P p(5.5);
     41         const int N = 1000000;
     42         std::vector<D::result_type> u;
     43         for (int i = 0; i < N; ++i)
     44             u.push_back(d(g, p));
     45         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
     46         double var = 0;
     47         double skew = 0;
     48         double kurtosis = 0;
     49         for (unsigned i = 0; i < u.size(); ++i)
     50         {
     51             double dbl = (u[i] - mean);
     52             double d2 = sqr(dbl);
     53             var += d2;
     54             skew += dbl * d2;
     55             kurtosis += d2 * d2;
     56         }
     57         var /= u.size();
     58         double dev = std::sqrt(var);
     59         skew /= u.size() * dev * var;
     60         kurtosis /= u.size() * var * var;
     61         kurtosis -= 3;
     62         double x_mean = 0;
     63         double x_var = p.n() / (p.n() - 2);
     64         double x_skew = 0;
     65         double x_kurtosis = 6 / (p.n() - 4);
     66         assert(std::abs(mean - x_mean) < 0.01);
     67         assert(std::abs((var - x_var) / x_var) < 0.01);
     68         assert(std::abs(skew - x_skew) < 0.01);
     69         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.2);
     70     }
     71     {
     72         typedef std::student_t_distribution<> D;
     73         typedef D::param_type P;
     74         typedef std::minstd_rand G;
     75         G g;
     76         D d;
     77         P p(10);
     78         const int N = 1000000;
     79         std::vector<D::result_type> u;
     80         for (int i = 0; i < N; ++i)
     81             u.push_back(d(g, p));
     82         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
     83         double var = 0;
     84         double skew = 0;
     85         double kurtosis = 0;
     86         for (unsigned i = 0; i < u.size(); ++i)
     87         {
     88             double dbl = (u[i] - mean);
     89             double d2 = sqr(dbl);
     90             var += d2;
     91             skew += dbl * d2;
     92             kurtosis += d2 * d2;
     93         }
     94         var /= u.size();
     95         double dev = std::sqrt(var);
     96         skew /= u.size() * dev * var;
     97         kurtosis /= u.size() * var * var;
     98         kurtosis -= 3;
     99         double x_mean = 0;
    100         double x_var = p.n() / (p.n() - 2);
    101         double x_skew = 0;
    102         double x_kurtosis = 6 / (p.n() - 4);
    103         assert(std::abs(mean - x_mean) < 0.01);
    104         assert(std::abs((var - x_var) / x_var) < 0.01);
    105         assert(std::abs(skew - x_skew) < 0.01);
    106         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.04);
    107     }
    108     {
    109         typedef std::student_t_distribution<> D;
    110         typedef D::param_type P;
    111         typedef std::minstd_rand G;
    112         G g;
    113         D d;
    114         P p(100);
    115         const int N = 1000000;
    116         std::vector<D::result_type> u;
    117         for (int i = 0; i < N; ++i)
    118             u.push_back(d(g, p));
    119         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
    120         double var = 0;
    121         double skew = 0;
    122         double kurtosis = 0;
    123         for (unsigned i = 0; i < u.size(); ++i)
    124         {
    125             double dbl = (u[i] - mean);
    126             double d2 = sqr(dbl);
    127             var += d2;
    128             skew += dbl * d2;
    129             kurtosis += d2 * d2;
    130         }
    131         var /= u.size();
    132         double dev = std::sqrt(var);
    133         skew /= u.size() * dev * var;
    134         kurtosis /= u.size() * var * var;
    135         kurtosis -= 3;
    136         double x_mean = 0;
    137         double x_var = p.n() / (p.n() - 2);
    138         double x_skew = 0;
    139         double x_kurtosis = 6 / (p.n() - 4);
    140         assert(std::abs(mean - x_mean) < 0.01);
    141         assert(std::abs((var - x_var) / x_var) < 0.01);
    142         assert(std::abs(skew - x_skew) < 0.01);
    143         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02);
    144     }
    145 }