libcxx

libcxx mirror with random patches
git clone https://git.neptards.moe/neptards/libcxx.git
Log | Files | Refs

eval_param.pass.cpp (4768B)


      1 //===----------------------------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is dual licensed under the MIT and the University of Illinois Open
      6 // Source Licenses. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // REQUIRES: long_tests
     11 
     12 // <random>
     13 
     14 // template<class RealType = double>
     15 // class chi_squared_distribution
     16 
     17 // template<class _URNG> result_type operator()(_URNG& g, const param_type& parm);
     18 
     19 #include <random>
     20 #include <cassert>
     21 #include <vector>
     22 #include <numeric>
     23 #include <cstddef>
     24 
     25 template <class T>
     26 inline
     27 T
     28 sqr(T x)
     29 {
     30     return x * x;
     31 }
     32 
     33 int main()
     34 {
     35     {
     36         typedef std::chi_squared_distribution<> D;
     37         typedef D::param_type P;
     38         typedef std::minstd_rand G;
     39         G g;
     40         D d(0.5);
     41         P p(1);
     42         const int N = 1000000;
     43         std::vector<D::result_type> u;
     44         for (int i = 0; i < N; ++i)
     45         {
     46             D::result_type v = d(g, p);
     47             assert(d.min() < v);
     48             u.push_back(v);
     49         }
     50         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
     51         double var = 0;
     52         double skew = 0;
     53         double kurtosis = 0;
     54         for (std::size_t i = 0; i < u.size(); ++i)
     55         {
     56             double dbl = (u[i] - mean);
     57             double d2 = sqr(dbl);
     58             var += d2;
     59             skew += dbl * d2;
     60             kurtosis += d2 * d2;
     61         }
     62         var /= u.size();
     63         double dev = std::sqrt(var);
     64         skew /= u.size() * dev * var;
     65         kurtosis /= u.size() * var * var;
     66         kurtosis -= 3;
     67         double x_mean = p.n();
     68         double x_var = 2 * p.n();
     69         double x_skew = std::sqrt(8 / p.n());
     70         double x_kurtosis = 12 / p.n();
     71         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
     72         assert(std::abs((var - x_var) / x_var) < 0.01);
     73         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
     74         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
     75     }
     76     {
     77         typedef std::chi_squared_distribution<> D;
     78         typedef D::param_type P;
     79         typedef std::mt19937 G;
     80         G g;
     81         D d(1);
     82         P p(2);
     83         const int N = 1000000;
     84         std::vector<D::result_type> u;
     85         for (int i = 0; i < N; ++i)
     86         {
     87             D::result_type v = d(g, p);
     88             assert(d.min() < v);
     89             u.push_back(v);
     90         }
     91         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
     92         double var = 0;
     93         double skew = 0;
     94         double kurtosis = 0;
     95         for (std::size_t i = 0; i < u.size(); ++i)
     96         {
     97             double dbl = (u[i] - mean);
     98             double d2 = sqr(dbl);
     99             var += d2;
    100             skew += dbl * d2;
    101             kurtosis += d2 * d2;
    102         }
    103         var /= u.size();
    104         double dev = std::sqrt(var);
    105         skew /= u.size() * dev * var;
    106         kurtosis /= u.size() * var * var;
    107         kurtosis -= 3;
    108         double x_mean = p.n();
    109         double x_var = 2 * p.n();
    110         double x_skew = std::sqrt(8 / p.n());
    111         double x_kurtosis = 12 / p.n();
    112         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
    113         assert(std::abs((var - x_var) / x_var) < 0.01);
    114         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
    115         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
    116     }
    117     {
    118         typedef std::chi_squared_distribution<> D;
    119         typedef D::param_type P;
    120         typedef std::minstd_rand G;
    121         G g;
    122         D d(2);
    123         P p(.5);
    124         const int N = 1000000;
    125         std::vector<D::result_type> u;
    126         for (int i = 0; i < N; ++i)
    127         {
    128             D::result_type v = d(g, p);
    129             assert(d.min() < v);
    130             u.push_back(v);
    131         }
    132         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
    133         double var = 0;
    134         double skew = 0;
    135         double kurtosis = 0;
    136         for (std::size_t i = 0; i < u.size(); ++i)
    137         {
    138             double dbl = (u[i] - mean);
    139             double d2 = sqr(dbl);
    140             var += d2;
    141             skew += dbl * d2;
    142             kurtosis += d2 * d2;
    143         }
    144         var /= u.size();
    145         double dev = std::sqrt(var);
    146         skew /= u.size() * dev * var;
    147         kurtosis /= u.size() * var * var;
    148         kurtosis -= 3;
    149         double x_mean = p.n();
    150         double x_var = 2 * p.n();
    151         double x_skew = std::sqrt(8 / p.n());
    152         double x_kurtosis = 12 / p.n();
    153         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
    154         assert(std::abs((var - x_var) / x_var) < 0.01);
    155         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
    156         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
    157     }
    158 }