capnproto

FORK: Cap'n Proto serialization/RPC system - core tools and C++ library
git clone https://git.neptards.moe/neptards/capnproto.git
Log | Files | Refs | README | LICENSE

tuple.h (17817B)


      1 // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
      2 // Licensed under the MIT License:
      3 //
      4 // Permission is hereby granted, free of charge, to any person obtaining a copy
      5 // of this software and associated documentation files (the "Software"), to deal
      6 // in the Software without restriction, including without limitation the rights
      7 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
      8 // copies of the Software, and to permit persons to whom the Software is
      9 // furnished to do so, subject to the following conditions:
     10 //
     11 // The above copyright notice and this permission notice shall be included in
     12 // all copies or substantial portions of the Software.
     13 //
     14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     15 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     16 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
     17 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     18 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     19 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     20 // THE SOFTWARE.
     21 
     22 // This file defines a notion of tuples that is simpler than `std::tuple`.  It works as follows:
     23 // - `kj::Tuple<A, B, C> is the type of a tuple of an A, a B, and a C.
     24 // - `kj::tuple(a, b, c)` returns a tuple containing a, b, and c.  If any of these are themselves
     25 //   tuples, they are flattened, so `tuple(a, tuple(b, c), d)` is equivalent to `tuple(a, b, c, d)`.
     26 // - `kj::get<n>(myTuple)` returns the element of `myTuple` at index n.
     27 // - `kj::apply(func, ...)` calls func on the following arguments after first expanding any tuples
     28 //   in the argument list.  So `kj::apply(foo, a, tuple(b, c), d)` would call `foo(a, b, c, d)`.
     29 //
     30 // Note that:
     31 // - The type `Tuple<T>` is a synonym for T.  This is why `get` and `apply` are not members of the
     32 //   type.
     33 // - It is illegal for an element of `Tuple` to itself be a tuple, as tuples are meant to be
     34 //   flattened.
     35 // - It is illegal for an element of `Tuple` to be a reference, due to problems this would cause
     36 //   with type inference and `tuple()`.
     37 
     38 #pragma once
     39 
     40 #include "common.h"
     41 
     42 KJ_BEGIN_HEADER
     43 
     44 namespace kj {
     45 namespace _ {  // private
     46 
     47 template <size_t index, typename... T>
     48 struct TypeByIndex_;
     49 template <typename First, typename... Rest>
     50 struct TypeByIndex_<0, First, Rest...> {
     51   typedef First Type;
     52 };
     53 template <size_t index, typename First, typename... Rest>
     54 struct TypeByIndex_<index, First, Rest...>
     55     : public TypeByIndex_<index - 1, Rest...> {};
     56 template <size_t index>
     57 struct TypeByIndex_<index> {
     58   static_assert(index != index, "Index out-of-range.");
     59 };
     60 template <size_t index, typename... T>
     61 using TypeByIndex = typename TypeByIndex_<index, T...>::Type;
     62 // Chose a particular type out of a list of types, by index.
     63 
     64 template <size_t... s>
     65 struct Indexes {};
     66 // Dummy helper type that just encapsulates a sequential list of indexes, so that we can match
     67 // templates against them and unpack them with '...'.
     68 
     69 template <size_t end, size_t... prefix>
     70 struct MakeIndexes_: public MakeIndexes_<end - 1, end - 1, prefix...> {};
     71 template <size_t... prefix>
     72 struct MakeIndexes_<0, prefix...> {
     73   typedef Indexes<prefix...> Type;
     74 };
     75 template <size_t end>
     76 using MakeIndexes = typename MakeIndexes_<end>::Type;
     77 // Equivalent to Indexes<0, 1, 2, ..., end>.
     78 
     79 template <typename... T>
     80 class Tuple;
     81 template <size_t index, typename... U>
     82 inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple);
     83 template <size_t index, typename... U>
     84 inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple);
     85 template <size_t index, typename... U>
     86 inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple);
     87 
     88 template <uint index, typename T>
     89 struct TupleElement {
     90   // Encapsulates one element of a tuple.  The actual tuple implementation multiply-inherits
     91   // from a TupleElement for each element, which is more efficient than a recursive definition.
     92 
     93   T value;
     94   TupleElement() = default;
     95   constexpr inline TupleElement(const T& value): value(value) {}
     96   constexpr inline TupleElement(T&& value): value(kj::mv(value)) {}
     97 };
     98 
     99 template <uint index, typename T>
    100 struct TupleElement<index, T&> {
    101   // A tuple containing references can be constucted using refTuple().
    102 
    103   T& value;
    104   constexpr inline TupleElement(T& value): value(value) {}
    105 };
    106 
    107 template <uint index, typename... T>
    108 struct TupleElement<index, Tuple<T...>> {
    109   static_assert(sizeof(Tuple<T...>*) == 0,
    110                 "Tuples cannot contain other tuples -- they should be flattened.");
    111 };
    112 
    113 template <typename Indexes, typename... Types>
    114 struct TupleImpl;
    115 
    116 template <size_t... indexes, typename... Types>
    117 struct TupleImpl<Indexes<indexes...>, Types...>
    118     : public TupleElement<indexes, Types>... {
    119   // Implementation of Tuple.  The only reason we need this rather than rolling this into class
    120   // Tuple (below) is so that we can get "indexes" as an unpackable list.
    121 
    122   static_assert(sizeof...(indexes) == sizeof...(Types), "Incorrect use of TupleImpl.");
    123 
    124   TupleImpl() = default;
    125 
    126   template <typename... Params>
    127   inline TupleImpl(Params&&... params)
    128       : TupleElement<indexes, Types>(kj::fwd<Params>(params))... {
    129     // Work around Clang 3.2 bug 16303 where this is not detected.  (Unfortunately, Clang sometimes
    130     // segfaults instead.)
    131     static_assert(sizeof...(params) == sizeof...(indexes),
    132                   "Wrong number of parameters to Tuple constructor.");
    133   }
    134 
    135   template <typename... U>
    136   constexpr inline TupleImpl(Tuple<U...>&& other)
    137       : TupleElement<indexes, Types>(kj::fwd<U>(getImpl<indexes>(other)))... {}
    138   template <typename... U>
    139   constexpr inline TupleImpl(Tuple<U...>& other)
    140       : TupleElement<indexes, Types>(getImpl<indexes>(other))... {}
    141   template <typename... U>
    142   constexpr inline TupleImpl(const Tuple<U...>& other)
    143       : TupleElement<indexes, Types>(getImpl<indexes>(other))... {}
    144 };
    145 
    146 struct MakeTupleFunc;
    147 struct MakeRefTupleFunc;
    148 
    149 template <typename... T>
    150 class Tuple {
    151   // The actual Tuple class (used for tuples of size other than 1).
    152 
    153 public:
    154   Tuple() = default;
    155 
    156   template <typename... U>
    157   constexpr inline Tuple(Tuple<U...>&& other): impl(kj::mv(other)) {}
    158   template <typename... U>
    159   constexpr inline Tuple(Tuple<U...>& other): impl(other) {}
    160   template <typename... U>
    161   constexpr inline Tuple(const Tuple<U...>& other): impl(other) {}
    162 
    163 private:
    164   template <typename... Params>
    165   constexpr Tuple(Params&&... params): impl(kj::fwd<Params>(params)...) {}
    166 
    167   TupleImpl<MakeIndexes<sizeof...(T)>, T...> impl;
    168 
    169   template <size_t index, typename... U>
    170   friend inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple);
    171   template <size_t index, typename... U>
    172   friend inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple);
    173   template <size_t index, typename... U>
    174   friend inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple);
    175   friend struct MakeTupleFunc;
    176   friend struct MakeRefTupleFunc;
    177 };
    178 
    179 template <>
    180 class Tuple<> {
    181   // Simplified zero-member version of Tuple.  In particular this is important to make sure that
    182   // Tuple<>() is constexpr.
    183 };
    184 
    185 template <typename T>
    186 class Tuple<T>;
    187 // Single-element tuple should never be used.  The public API should ensure this.
    188 
    189 template <size_t index, typename... T>
    190 inline TypeByIndex<index, T...>& getImpl(Tuple<T...>& tuple) {
    191   // Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
    192   static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
    193   return implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value;
    194 }
    195 template <size_t index, typename... T>
    196 inline TypeByIndex<index, T...>&& getImpl(Tuple<T...>&& tuple) {
    197   // Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
    198   static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
    199   return kj::mv(implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value);
    200 }
    201 template <size_t index, typename... T>
    202 inline const TypeByIndex<index, T...>& getImpl(const Tuple<T...>& tuple) {
    203   // Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
    204   static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
    205   return implicitCast<const TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value;
    206 }
    207 template <size_t index, typename T>
    208 inline T&& getImpl(T&& value) {
    209   // Get member of a Tuple by index, e.g. `getImpl<2>(myTuple)`.
    210 
    211   // Non-tuples are equivalent to one-element tuples.
    212   static_assert(index == 0, "Tuple element index out-of-bounds.");
    213   return kj::fwd<T>(value);
    214 }
    215 
    216 
    217 template <typename Func, typename SoFar, typename... T>
    218 struct ExpandAndApplyResult_;
    219 // Template which computes the return type of applying Func to T... after flattening tuples.
    220 // SoFar starts as Tuple<> and accumulates the flattened parameter types -- so after this template
    221 // is recursively expanded, T... is empty and SoFar is a Tuple containing all the parameters.
    222 
    223 template <typename Func, typename First, typename... Rest, typename... T>
    224 struct ExpandAndApplyResult_<Func, Tuple<T...>, First, Rest...>
    225     : public ExpandAndApplyResult_<Func, Tuple<T..., First>, Rest...> {};
    226 template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
    227 struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>, Rest...>
    228     : public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&&..., Rest...> {};
    229 template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
    230 struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>&, Rest...>
    231     : public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&..., Rest...> {};
    232 template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
    233 struct ExpandAndApplyResult_<Func, Tuple<T...>, const Tuple<FirstTypes...>&, Rest...>
    234     : public ExpandAndApplyResult_<Func, Tuple<T...>, const FirstTypes&..., Rest...> {};
    235 template <typename Func, typename... T>
    236 struct ExpandAndApplyResult_<Func, Tuple<T...>> {
    237   typedef decltype(instance<Func>()(instance<T&&>()...)) Type;
    238 };
    239 template <typename Func, typename... T>
    240 using ExpandAndApplyResult = typename ExpandAndApplyResult_<Func, Tuple<>, T...>::Type;
    241 // Computes the expected return type of `expandAndApply()`.
    242 
    243 template <typename Func>
    244 inline auto expandAndApply(Func&& func) -> ExpandAndApplyResult<Func> {
    245   return func();
    246 }
    247 
    248 template <typename Func, typename First, typename... Rest>
    249 struct ExpandAndApplyFunc {
    250   Func&& func;
    251   First&& first;
    252   ExpandAndApplyFunc(Func&& func, First&& first)
    253       : func(kj::fwd<Func>(func)), first(kj::fwd<First>(first)) {}
    254   template <typename... T>
    255   auto operator()(T&&... params)
    256       -> decltype(this->func(kj::fwd<First>(first), kj::fwd<T>(params)...)) {
    257     return this->func(kj::fwd<First>(first), kj::fwd<T>(params)...);
    258   }
    259 };
    260 
    261 template <typename Func, typename First, typename... Rest>
    262 inline auto expandAndApply(Func&& func, First&& first, Rest&&... rest)
    263     -> ExpandAndApplyResult<Func, First, Rest...> {
    264 
    265   return expandAndApply(
    266       ExpandAndApplyFunc<Func, First, Rest...>(kj::fwd<Func>(func), kj::fwd<First>(first)),
    267       kj::fwd<Rest>(rest)...);
    268 }
    269 
    270 template <typename Func, typename... FirstTypes, typename... Rest>
    271 inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest)
    272     -> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> {
    273   return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
    274       kj::fwd<Func>(func), kj::mv(first), kj::fwd<Rest>(rest)...);
    275 }
    276 
    277 template <typename Func, typename... FirstTypes, typename... Rest>
    278 inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>& first, Rest&&... rest)
    279     -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
    280   return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
    281       kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...);
    282 }
    283 
    284 template <typename Func, typename... FirstTypes, typename... Rest>
    285 inline auto expandAndApply(Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest)
    286     -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
    287   return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
    288       kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...);
    289 }
    290 
    291 template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes>
    292 inline auto expandAndApplyWithIndexes(
    293     Indexes<indexes...>, Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest)
    294     -> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> {
    295   return expandAndApply(kj::fwd<Func>(func), kj::mv(getImpl<indexes>(first))...,
    296                         kj::fwd<Rest>(rest)...);
    297 }
    298 
    299 template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes>
    300 inline auto expandAndApplyWithIndexes(
    301     Indexes<indexes...>, Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest)
    302     -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
    303   return expandAndApply(kj::fwd<Func>(func), getImpl<indexes>(first)...,
    304                        kj::fwd<Rest>(rest)...);
    305 }
    306 
    307 struct MakeTupleFunc {
    308   template <typename... Params>
    309   Tuple<Decay<Params>...> operator()(Params&&... params) {
    310     return Tuple<Decay<Params>...>(kj::fwd<Params>(params)...);
    311   }
    312   template <typename Param>
    313   Decay<Param> operator()(Param&& param) {
    314     return kj::fwd<Param>(param);
    315   }
    316 };
    317 
    318 struct MakeRefTupleFunc {
    319   template <typename... Params>
    320   Tuple<Params...> operator()(Params&&... params) {
    321     return Tuple<Params...>(kj::fwd<Params>(params)...);
    322   }
    323   template <typename Param>
    324   Param operator()(Param&& param) {
    325     return kj::fwd<Param>(param);
    326   }
    327 };
    328 
    329 }  // namespace _ (private)
    330 
    331 template <typename... T> struct Tuple_ { typedef _::Tuple<T...> Type; };
    332 template <typename T> struct Tuple_<T> { typedef T Type; };
    333 
    334 template <typename... T> using Tuple = typename Tuple_<T...>::Type;
    335 // Tuple type.  `Tuple<T>` (i.e. a single-element tuple) is a synonym for `T`.  Tuples of size
    336 // other than 1 expand to an internal type.  Either way, you can construct a Tuple using
    337 // `kj::tuple(...)`, get an element by index `i` using `kj::get<i>(myTuple)`, and expand the tuple
    338 // as arguments to a function using `kj::apply(func, myTuple)`.
    339 //
    340 // Tuples are always flat -- that is, no element of a Tuple is ever itself a Tuple.  If you
    341 // construct a tuple from other tuples, the elements are flattened and concatenated.
    342 
    343 template <typename... Params>
    344 inline auto tuple(Params&&... params)
    345     -> decltype(_::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...)) {
    346   // Construct a new tuple from the given values.  Any tuples in the argument list will be
    347   // flattened into the result.
    348   return _::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...);
    349 }
    350 
    351 template <typename... Params>
    352 inline auto refTuple(Params&&... params)
    353     -> decltype(_::expandAndApply(_::MakeRefTupleFunc(), kj::fwd<Params>(params)...)) {
    354   // Like tuple(), but if the params include lvalue references, they will be captured as
    355   // references. rvalue references will still be captured as whole values (moved).
    356   return _::expandAndApply(_::MakeRefTupleFunc(), kj::fwd<Params>(params)...);
    357 }
    358 
    359 template <size_t index, typename Tuple>
    360 inline auto get(Tuple&& tuple) -> decltype(_::getImpl<index>(kj::fwd<Tuple>(tuple))) {
    361   // Unpack and return the tuple element at the given index.  The index is specified as a template
    362   // parameter, e.g. `kj::get<3>(myTuple)`.
    363   return _::getImpl<index>(kj::fwd<Tuple>(tuple));
    364 }
    365 
    366 template <typename Func, typename... Params>
    367 inline auto apply(Func&& func, Params&&... params)
    368     -> decltype(_::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...)) {
    369   // Apply a function to some arguments, expanding tuples into separate arguments.
    370   return _::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...);
    371 }
    372 
    373 template <typename T> struct TupleSize_ { static constexpr size_t size = 1; };
    374 template <typename... T> struct TupleSize_<_::Tuple<T...>> {
    375   static constexpr size_t size = sizeof...(T);
    376 };
    377 
    378 template <typename T>
    379 constexpr size_t tupleSize() { return TupleSize_<T>::size; }
    380 // Returns size of the tuple T.
    381 
    382 template <typename T, typename Tuple>
    383 struct IndexOfType_;
    384 template <typename T, typename Tuple>
    385 struct HasType_ {
    386   static constexpr bool value = false;
    387 };
    388 
    389 template <typename T>
    390 struct IndexOfType_<T, T> {
    391   static constexpr size_t value = 0;
    392 };
    393 template <typename T>
    394 struct HasType_<T, T> {
    395   static constexpr bool value = true;
    396 };
    397 
    398 template <typename T, typename... U>
    399 struct IndexOfType_<T, _::Tuple<T, U...>> {
    400   static constexpr size_t value = 0;
    401   static_assert(!HasType_<T, _::Tuple<U...>>::value,
    402       "requested type appears multiple times in tuple");
    403 };
    404 template <typename T, typename... U>
    405 struct HasType_<T, _::Tuple<T, U...>> {
    406   static constexpr bool value = true;
    407 };
    408 
    409 template <typename T, typename U, typename... V>
    410 struct IndexOfType_<T, _::Tuple<U, V...>> {
    411   static constexpr size_t value = IndexOfType_<T, _::Tuple<V...>>::value + 1;
    412 };
    413 template <typename T, typename U, typename... V>
    414 struct HasType_<T, _::Tuple<U, V...>> {
    415   static constexpr bool value = HasType_<T, _::Tuple<V...>>::value;
    416 };
    417 
    418 template <typename T, typename U>
    419 inline constexpr size_t indexOfType() {
    420   static_assert(HasType_<T, U>::value, "type not present");
    421   return IndexOfType_<T, U>::value;
    422 }
    423 
    424 template <size_t i, typename T>
    425 struct TypeOfIndex_;
    426 template <typename T>
    427 struct TypeOfIndex_<0, T> {
    428   typedef T Type;
    429 };
    430 template <size_t i, typename T, typename... U>
    431 struct TypeOfIndex_<i, _::Tuple<T, U...>>
    432     : public TypeOfIndex_<i - 1, _::Tuple<U...>> {};
    433 template <typename T, typename... U>
    434 struct TypeOfIndex_<0, _::Tuple<T, U...>> {
    435   typedef T Type;
    436 };
    437 
    438 template <size_t i, typename Tuple>
    439 using TypeOfIndex = typename TypeOfIndex_<i, Tuple>::Type;
    440 
    441 }  // namespace kj
    442 
    443 KJ_END_HEADER