main.h (19672B)
1 // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors 2 // Licensed under the MIT License: 3 // 4 // Permission is hereby granted, free of charge, to any person obtaining a copy 5 // of this software and associated documentation files (the "Software"), to deal 6 // in the Software without restriction, including without limitation the rights 7 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 8 // copies of the Software, and to permit persons to whom the Software is 9 // furnished to do so, subject to the following conditions: 10 // 11 // The above copyright notice and this permission notice shall be included in 12 // all copies or substantial portions of the Software. 13 // 14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 17 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 18 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 19 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 20 // THE SOFTWARE. 21 22 #pragma once 23 24 #include "array.h" 25 #include "string.h" 26 #include "vector.h" 27 #include "function.h" 28 29 KJ_BEGIN_HEADER 30 31 namespace kj { 32 33 class ProcessContext { 34 // Context for command-line programs. 35 36 public: 37 virtual StringPtr getProgramName() = 0; 38 // Get argv[0] as passed to main(). 39 40 KJ_NORETURN(virtual void exit()) = 0; 41 // Indicates program completion. The program is considered successful unless `error()` was 42 // called. Typically this exits with _Exit(), meaning that the stack is not unwound, buffers 43 // are not flushed, etc. -- it is the responsibility of the caller to flush any buffers that 44 // matter. However, an alternate context implementation e.g. for unit testing purposes could 45 // choose to throw an exception instead. 46 // 47 // At first this approach may sound crazy. Isn't it much better to shut down cleanly? What if 48 // you lose data? However, it turns out that if you look at each common class of program, _Exit() 49 // is almost always preferable. Let's break it down: 50 // 51 // * Commands: A typical program you might run from the command line is single-threaded and 52 // exits quickly and deterministically. Commands often use buffered I/O and need to flush 53 // those buffers before exit. However, most of the work performed by destructors is not 54 // flushing buffers, but rather freeing up memory, placing objects into freelists, and closing 55 // file descriptors. All of this is irrelevant if the process is about to exit anyway, and 56 // for a command that runs quickly, time wasted freeing heap space may make a real difference 57 // in the overall runtime of a script. Meanwhile, it is usually easy to determine exactly what 58 // resources need to be flushed before exit, and easy to tell if they are not being flushed 59 // (because the command fails to produce the expected output). Therefore, it is reasonably 60 // easy for commands to explicitly ensure all output is flushed before exiting, and it is 61 // probably a good idea for them to do so anyway, because write failures should be detected 62 // and handled. For commands, a good strategy is to allocate any objects that require clean 63 // destruction on the stack, and allow them to go out of scope before the command exits. 64 // Meanwhile, any resources which do not need to be cleaned up should be allocated as members 65 // of the command's main class, whose destructor normally will not be called. 66 // 67 // * Interactive apps: Programs that interact with the user (whether they be graphical apps 68 // with windows or console-based apps like emacs) generally exit only when the user asks them 69 // to. Such applications may store large data structures in memory which need to be synced 70 // to disk, such as documents or user preferences. However, relying on stack unwind or global 71 // destructors as the mechanism for ensuring such syncing occurs is probably wrong. First of 72 // all, it's 2013, and applications ought to be actively syncing changes to non-volatile 73 // storage the moment those changes are made. Applications can crash at any time and a crash 74 // should never lose data that is more than half a second old. Meanwhile, if a user actually 75 // does try to close an application while unsaved changes exist, the application UI should 76 // prompt the user to decide what to do. Such a UI mechanism is obviously too high level to 77 // be implemented via destructors, so KJ's use of _Exit() shouldn't make a difference here. 78 // 79 // * Servers: A good server is fault-tolerant, prepared for the possibility that at any time 80 // it could crash, the OS could decide to kill it off, or the machine it is running on could 81 // just die. So, using _Exit() should be no problem. In fact, servers generally never even 82 // call exit anyway; they are killed externally. 83 // 84 // * Batch jobs: A long-running batch job is something between a command and a server. It 85 // probably knows exactly what needs to be flushed before exiting, and it probably should be 86 // fault-tolerant. 87 // 88 // Meanwhile, regardless of program type, if you are adhering to KJ style, then the use of 89 // _Exit() shouldn't be a problem anyway: 90 // 91 // * KJ style forbids global mutable state (singletons) in general and global constructors and 92 // destructors in particular. Therefore, everything that could possibly need cleanup either 93 // lives on the stack or is transitively owned by something living on the stack. 94 // 95 // * Calling exit() simply means "Don't clean up anything older than this stack frame.". If you 96 // have resources that require cleanup before exit, make sure they are owned by stack frames 97 // beyond the one that eventually calls exit(). To be as safe as possible, don't place any 98 // state in your program's main class, and don't call exit() yourself. Then, runMainAndExit() 99 // will do it, and the only thing on the stack at that time will be your main class, which 100 // has no state anyway. 101 // 102 // TODO(someday): Perhaps we should use the new std::quick_exit(), so that at_quick_exit() is 103 // available for those who really think they need it. Unfortunately, it is not yet available 104 // on many platforms. 105 106 virtual void warning(StringPtr message) = 0; 107 // Print the given message to standard error. A newline is printed after the message if it 108 // doesn't already have one. 109 110 virtual void error(StringPtr message) = 0; 111 // Like `warning()`, but also sets a flag indicating that the process has failed, and that when 112 // it eventually exits it should indicate an error status. 113 114 KJ_NORETURN(virtual void exitError(StringPtr message)) = 0; 115 // Equivalent to `error(message)` followed by `exit()`. 116 117 KJ_NORETURN(virtual void exitInfo(StringPtr message)) = 0; 118 // Displays the given non-error message to the user and then calls `exit()`. This is used to 119 // implement things like --help. 120 121 virtual void increaseLoggingVerbosity() = 0; 122 // Increase the level of detail produced by the debug logging system. `MainBuilder` invokes 123 // this if the caller uses the -v flag. 124 125 // TODO(someday): Add interfaces representing standard OS resources like the filesystem, so that 126 // these things can be mocked out. 127 }; 128 129 class TopLevelProcessContext final: public ProcessContext { 130 // A ProcessContext implementation appropriate for use at the actual entry point of a process 131 // (as opposed to when you are trying to call a program's main function from within some other 132 // program). This implementation writes errors to stderr, and its `exit()` method actually 133 // calls the C `quick_exit()` function. 134 135 public: 136 explicit TopLevelProcessContext(StringPtr programName); 137 138 struct CleanShutdownException { int exitCode; }; 139 // If the environment variable KJ_CLEAN_SHUTDOWN is set, then exit() will actually throw this 140 // exception rather than exiting. `kj::runMain()` catches this exception and returns normally. 141 // This is useful primarily for testing purposes, to assist tools like memory leak checkers that 142 // are easily confused by quick_exit(). 143 144 StringPtr getProgramName() override; 145 KJ_NORETURN(void exit() override); 146 void warning(StringPtr message) override; 147 void error(StringPtr message) override; 148 KJ_NORETURN(void exitError(StringPtr message) override); 149 KJ_NORETURN(void exitInfo(StringPtr message) override); 150 void increaseLoggingVerbosity() override; 151 152 private: 153 StringPtr programName; 154 bool cleanShutdown; 155 bool hadErrors = false; 156 }; 157 158 typedef Function<void(StringPtr programName, ArrayPtr<const StringPtr> params)> MainFunc; 159 160 int runMainAndExit(ProcessContext& context, MainFunc&& func, int argc, char* argv[]); 161 // Runs the given main function and then exits using the given context. If an exception is thrown, 162 // this will catch it, report it via the context and exit with an error code. 163 // 164 // Normally this function does not return, because returning would probably lead to wasting time 165 // on cleanup when the process is just going to exit anyway. However, to facilitate memory leak 166 // checkers and other tools that require a clean shutdown to do their job, if the environment 167 // variable KJ_CLEAN_SHUTDOWN is set, the function will in fact return an exit code, which should 168 // then be returned from main(). 169 // 170 // Most users will use the KJ_MAIN() macro rather than call this function directly. 171 172 #define KJ_MAIN(MainClass) \ 173 int main(int argc, char* argv[]) { \ 174 ::kj::TopLevelProcessContext context(argv[0]); \ 175 MainClass mainObject(context); \ 176 return ::kj::runMainAndExit(context, mainObject.getMain(), argc, argv); \ 177 } 178 // Convenience macro for declaring a main function based on the given class. The class must have 179 // a constructor that accepts a ProcessContext& and a method getMain() which returns 180 // kj::MainFunc (probably building it using a MainBuilder). 181 182 class MainBuilder { 183 // Builds a main() function with nice argument parsing. As options and arguments are parsed, 184 // corresponding callbacks are called, so that you never have to write a massive switch() 185 // statement to interpret arguments. Additionally, this approach encourages you to write 186 // main classes that have a reasonable API that can be used as an alternative to their 187 // command-line interface. 188 // 189 // All StringPtrs passed to MainBuilder must remain valid until option parsing completes. The 190 // assumption is that these strings will all be literals, making this an easy requirement. If 191 // not, consider allocating them in an Arena. 192 // 193 // Some flags are automatically recognized by the main functions built by this class: 194 // --help: Prints help text and exits. The help text is constructed based on the 195 // information you provide to the builder as you define each flag. 196 // --verbose: Increase logging verbosity. 197 // --version: Print version information and exit. 198 // 199 // Example usage: 200 // 201 // class FooMain { 202 // public: 203 // FooMain(kj::ProcessContext& context): context(context) {} 204 // 205 // bool setAll() { all = true; return true; } 206 // // Enable the --all flag. 207 // 208 // kj::MainBuilder::Validity setOutput(kj::StringPtr name) { 209 // // Set the output file. 210 // 211 // if (name.endsWith(".foo")) { 212 // outputFile = name; 213 // return true; 214 // } else { 215 // return "Output file must have extension .foo."; 216 // } 217 // } 218 // 219 // kj::MainBuilder::Validity processInput(kj::StringPtr name) { 220 // // Process an input file. 221 // 222 // if (!exists(name)) { 223 // return kj::str(name, ": file not found"); 224 // } 225 // // ... process the input file ... 226 // return true; 227 // } 228 // 229 // kj::MainFunc getMain() { 230 // return MainBuilder(context, "Foo Builder v1.5", "Reads <source>s and builds a Foo.") 231 // .addOption({'a', "all"}, KJ_BIND_METHOD(*this, setAll), 232 // "Frob all the widgets. Otherwise, only some widgets are frobbed.") 233 // .addOptionWithArg({'o', "output"}, KJ_BIND_METHOD(*this, setOutput), 234 // "<filename>", "Output to <filename>. Must be a .foo file.") 235 // .expectOneOrMoreArgs("<source>", KJ_BIND_METHOD(*this, processInput)) 236 // .build(); 237 // } 238 // 239 // private: 240 // bool all = false; 241 // kj::StringPtr outputFile; 242 // kj::ProcessContext& context; 243 // }; 244 245 public: 246 MainBuilder(ProcessContext& context, StringPtr version, 247 StringPtr briefDescription, StringPtr extendedDescription = nullptr); 248 ~MainBuilder() noexcept(false); 249 250 class OptionName { 251 public: 252 OptionName() = default; 253 inline OptionName(char shortName): isLong(false), shortName(shortName) {} 254 inline OptionName(const char* longName): isLong(true), longName(longName) {} 255 256 private: 257 bool isLong; 258 union { 259 char shortName; 260 const char* longName; 261 }; 262 friend class MainBuilder; 263 }; 264 265 class Validity { 266 public: 267 inline Validity(bool valid) { 268 if (!valid) errorMessage = heapString("invalid argument"); 269 } 270 inline Validity(const char* errorMessage) 271 : errorMessage(heapString(errorMessage)) {} 272 inline Validity(String&& errorMessage) 273 : errorMessage(kj::mv(errorMessage)) {} 274 275 inline const Maybe<String>& getError() const { return errorMessage; } 276 inline Maybe<String> releaseError() { return kj::mv(errorMessage); } 277 278 private: 279 Maybe<String> errorMessage; 280 friend class MainBuilder; 281 }; 282 283 MainBuilder& addOption(std::initializer_list<OptionName> names, Function<Validity()> callback, 284 StringPtr helpText); 285 // Defines a new option (flag). `names` is a list of characters and strings that can be used to 286 // specify the option on the command line. Single-character names are used with "-" while string 287 // names are used with "--". `helpText` is a natural-language description of the flag. 288 // 289 // `callback` is called when the option is seen. Its return value indicates whether the option 290 // was accepted. If not, further option processing stops, and error is written, and the process 291 // exits. 292 // 293 // Example: 294 // 295 // builder.addOption({'a', "all"}, KJ_BIND_METHOD(*this, showAll), "Show all files."); 296 // 297 // This option could be specified in the following ways: 298 // 299 // -a 300 // --all 301 // 302 // Note that single-character option names can be combined into a single argument. For example, 303 // `-abcd` is equivalent to `-a -b -c -d`. 304 // 305 // The help text for this option would look like: 306 // 307 // -a, --all 308 // Show all files. 309 // 310 // Note that help text is automatically word-wrapped. 311 312 MainBuilder& addOptionWithArg(std::initializer_list<OptionName> names, 313 Function<Validity(StringPtr)> callback, 314 StringPtr argumentTitle, StringPtr helpText); 315 // Like `addOption()`, but adds an option which accepts an argument. `argumentTitle` is used in 316 // the help text. The argument text is passed to the callback. 317 // 318 // Example: 319 // 320 // builder.addOptionWithArg({'o', "output"}, KJ_BIND_METHOD(*this, setOutput), 321 // "<filename>", "Output to <filename>."); 322 // 323 // This option could be specified with an argument of "foo" in the following ways: 324 // 325 // -ofoo 326 // -o foo 327 // --output=foo 328 // --output foo 329 // 330 // Note that single-character option names can be combined, but only the last option can have an 331 // argument, since the characters after the option letter are interpreted as the argument. E.g. 332 // `-abofoo` would be equivalent to `-a -b -o foo`. 333 // 334 // The help text for this option would look like: 335 // 336 // -o FILENAME, --output=FILENAME 337 // Output to FILENAME. 338 339 MainBuilder& addSubCommand(StringPtr name, Function<MainFunc()> getSubParser, 340 StringPtr briefHelpText); 341 // If exactly the given name is seen as an argument, invoke getSubParser() and then pass all 342 // remaining arguments to the parser it returns. This is useful for implementing commands which 343 // have lots of sub-commands, like "git" (which has sub-commands "checkout", "branch", "pull", 344 // etc.). 345 // 346 // `getSubParser` is only called if the command is seen. This avoids building main functions 347 // for commands that aren't used. 348 // 349 // `briefHelpText` should be brief enough to show immediately after the command name on a single 350 // line. It will not be wrapped. Users can use the built-in "help" command to get extended 351 // help on a particular command. 352 353 MainBuilder& expectArg(StringPtr title, Function<Validity(StringPtr)> callback); 354 MainBuilder& expectOptionalArg(StringPtr title, Function<Validity(StringPtr)> callback); 355 MainBuilder& expectZeroOrMoreArgs(StringPtr title, Function<Validity(StringPtr)> callback); 356 MainBuilder& expectOneOrMoreArgs(StringPtr title, Function<Validity(StringPtr)> callback); 357 // Set callbacks to handle arguments. `expectArg()` and `expectOptionalArg()` specify positional 358 // arguments with special handling, while `expect{Zero,One}OrMoreArgs()` specifies a handler for 359 // an argument list (the handler is called once for each argument in the list). `title` 360 // specifies how the argument should be represented in the usage text. 361 // 362 // All options callbacks are called before argument callbacks, regardless of their ordering on 363 // the command line. This matches GNU getopt's behavior of permuting non-flag arguments to the 364 // end of the argument list. Also matching getopt, the special option "--" indicates that the 365 // rest of the command line is all arguments, not options, even if they start with '-'. 366 // 367 // The interpretation of positional arguments is fairly flexible. The non-optional arguments can 368 // be expected at the beginning, end, or in the middle. If more arguments are specified than 369 // the number of non-optional args, they are assigned to the optional argument handlers in the 370 // order of registration. 371 // 372 // For example, say you called: 373 // builder.expectArg("<foo>", ...); 374 // builder.expectOptionalArg("<bar>", ...); 375 // builder.expectArg("<baz>", ...); 376 // builder.expectZeroOrMoreArgs("<qux>", ...); 377 // builder.expectArg("<corge>", ...); 378 // 379 // This command requires at least three arguments: foo, baz, and corge. If four arguments are 380 // given, the second is assigned to bar. If five or more arguments are specified, then the 381 // arguments between the third and last are assigned to qux. Note that it never makes sense 382 // to call `expect*OrMoreArgs()` more than once since only the first call would ever be used. 383 // 384 // In practice, you probably shouldn't create such complicated commands as in the above example. 385 // But, this flexibility seems necessary to support commands where the first argument is special 386 // as well as commands (like `cp`) where the last argument is special. 387 388 MainBuilder& callAfterParsing(Function<Validity()> callback); 389 // Call the given function after all arguments have been parsed. 390 391 MainFunc build(); 392 // Build the "main" function, which simply parses the arguments. Once this returns, the 393 // `MainBuilder` is no longer valid. 394 395 private: 396 struct Impl; 397 Own<Impl> impl; 398 399 class MainImpl; 400 }; 401 402 } // namespace kj 403 404 KJ_END_HEADER