You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
qemu/util/oslib-posix.c

934 lines
25 KiB
C

/*
* os-posix-lib.c
*
* Copyright (c) 2003-2008 Fabrice Bellard
* Copyright (c) 2010 Red Hat, Inc.
*
* QEMU library functions on POSIX which are shared between QEMU and
* the QEMU tools.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include <termios.h>
#include <glib/gprintf.h>
#include "sysemu/sysemu.h"
#include "trace.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "qemu/madvise.h"
#include "qemu/sockets.h"
#include "qemu/thread.h"
#include <libgen.h>
#include "qemu/cutils.h"
#include "qemu/units.h"
#include "qemu/thread-context.h"
#include "qemu/main-loop.h"
#ifdef CONFIG_LINUX
#include <sys/syscall.h>
#endif
#ifdef __FreeBSD__
#include <sys/thr.h>
#include <sys/user.h>
#include <libutil.h>
#endif
#ifdef __NetBSD__
#include <lwp.h>
#endif
#include "qemu/mmap-alloc.h"
#define MAX_MEM_PREALLOC_THREAD_COUNT 16
struct MemsetThread;
static QLIST_HEAD(, MemsetContext) memset_contexts =
QLIST_HEAD_INITIALIZER(memset_contexts);
typedef struct MemsetContext {
bool all_threads_created;
bool any_thread_failed;
struct MemsetThread *threads;
int num_threads;
QLIST_ENTRY(MemsetContext) next;
} MemsetContext;
struct MemsetThread {
char *addr;
size_t numpages;
size_t hpagesize;
QemuThread pgthread;
sigjmp_buf env;
MemsetContext *context;
};
typedef struct MemsetThread MemsetThread;
/* used by sigbus_handler() */
static MemsetContext *sigbus_memset_context;
struct sigaction sigbus_oldact;
static QemuMutex sigbus_mutex;
static QemuMutex page_mutex;
static QemuCond page_cond;
int qemu_get_thread_id(void)
{
#if defined(__linux__)
return syscall(SYS_gettid);
#elif defined(__FreeBSD__)
/* thread id is up to INT_MAX */
long tid;
thr_self(&tid);
return (int)tid;
#elif defined(__NetBSD__)
return _lwp_self();
#elif defined(__OpenBSD__)
return getthrid();
#else
return getpid();
#endif
}
int qemu_daemon(int nochdir, int noclose)
{
return daemon(nochdir, noclose);
}
bool qemu_write_pidfile(const char *path, Error **errp)
{
int fd;
char pidstr[32];
while (1) {
struct stat a, b;
struct flock lock = {
.l_type = F_WRLCK,
.l_whence = SEEK_SET,
.l_len = 0,
};
fd = qemu_create(path, O_WRONLY, S_IRUSR | S_IWUSR, errp);
if (fd == -1) {
return false;
}
if (fstat(fd, &b) < 0) {
error_setg_errno(errp, errno, "Cannot stat file");
goto fail_close;
}
if (fcntl(fd, F_SETLK, &lock)) {
error_setg_errno(errp, errno, "Cannot lock pid file");
goto fail_close;
}
/*
* Now make sure the path we locked is the same one that now
* exists on the filesystem.
*/
if (stat(path, &a) < 0) {
/*
* PID file disappeared, someone else must be racing with
* us, so try again.
*/
close(fd);
continue;
}
if (a.st_ino == b.st_ino) {
break;
}
/*
* PID file was recreated, someone else must be racing with
* us, so try again.
*/
close(fd);
}
if (ftruncate(fd, 0) < 0) {
error_setg_errno(errp, errno, "Failed to truncate pid file");
goto fail_unlink;
}
snprintf(pidstr, sizeof(pidstr), FMT_pid "\n", getpid());
if (qemu_write_full(fd, pidstr, strlen(pidstr)) != strlen(pidstr)) {
error_setg(errp, "Failed to write pid file");
goto fail_unlink;
}
return true;
fail_unlink:
unlink(path);
fail_close:
close(fd);
return false;
}
/* alloc shared memory pages */
void *qemu_anon_ram_alloc(size_t size, uint64_t *alignment, bool shared,
bool noreserve)
{
const uint32_t qemu_map_flags = (shared ? QEMU_MAP_SHARED : 0) |
(noreserve ? QEMU_MAP_NORESERVE : 0);
size_t align = QEMU_VMALLOC_ALIGN;
void *ptr = qemu_ram_mmap(-1, size, align, qemu_map_flags, 0);
if (ptr == MAP_FAILED) {
return NULL;
}
if (alignment) {
*alignment = align;
}
trace_qemu_anon_ram_alloc(size, ptr);
return ptr;
}
void qemu_anon_ram_free(void *ptr, size_t size)
{
trace_qemu_anon_ram_free(ptr, size);
qemu_ram_munmap(-1, ptr, size);
}
void qemu_socket_set_block(int fd)
{
g_unix_set_fd_nonblocking(fd, false, NULL);
}
int qemu_socket_try_set_nonblock(int fd)
{
return g_unix_set_fd_nonblocking(fd, true, NULL) ? 0 : -errno;
}
void qemu_socket_set_nonblock(int fd)
{
int f;
f = qemu_socket_try_set_nonblock(fd);
assert(f == 0);
}
int socket_set_fast_reuse(int fd)
{
int val = 1, ret;
ret = setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
(const char *)&val, sizeof(val));
assert(ret == 0);
return ret;
}
void qemu_set_cloexec(int fd)
{
int f;
f = fcntl(fd, F_GETFD);
assert(f != -1);
f = fcntl(fd, F_SETFD, f | FD_CLOEXEC);
assert(f != -1);
}
int qemu_socketpair(int domain, int type, int protocol, int sv[2])
{
int ret;
#ifdef SOCK_CLOEXEC
ret = socketpair(domain, type | SOCK_CLOEXEC, protocol, sv);
if (ret != -1 || errno != EINVAL) {
return ret;
}
#endif
ret = socketpair(domain, type, protocol, sv);
if (ret == 0) {
qemu_set_cloexec(sv[0]);
qemu_set_cloexec(sv[1]);
}
return ret;
}
char *
qemu_get_local_state_dir(void)
{
return get_relocated_path(CONFIG_QEMU_LOCALSTATEDIR);
}
void qemu_set_tty_echo(int fd, bool echo)
{
struct termios tty;
tcgetattr(fd, &tty);
if (echo) {
tty.c_lflag |= ECHO | ECHONL | ICANON | IEXTEN;
} else {
tty.c_lflag &= ~(ECHO | ECHONL | ICANON | IEXTEN);
}
tcsetattr(fd, TCSANOW, &tty);
}
#ifdef CONFIG_LINUX
static void sigbus_handler(int signal, siginfo_t *siginfo, void *ctx)
#else /* CONFIG_LINUX */
static void sigbus_handler(int signal)
#endif /* CONFIG_LINUX */
{
int i;
if (sigbus_memset_context) {
for (i = 0; i < sigbus_memset_context->num_threads; i++) {
MemsetThread *thread = &sigbus_memset_context->threads[i];
if (qemu_thread_is_self(&thread->pgthread)) {
siglongjmp(thread->env, 1);
}
}
}
#ifdef CONFIG_LINUX
/*
* We assume that the MCE SIGBUS handler could have been registered. We
* should never receive BUS_MCEERR_AO on any of our threads, but only on
* the main thread registered for PR_MCE_KILL_EARLY. Further, we should not
* receive BUS_MCEERR_AR triggered by action of other threads on one of
* our threads. So, no need to check for unrelated SIGBUS when seeing one
* for our threads.
*
* We will forward to the MCE handler, which will either handle the SIGBUS
* or reinstall the default SIGBUS handler and reraise the SIGBUS. The
* default SIGBUS handler will crash the process, so we don't care.
*/
if (sigbus_oldact.sa_flags & SA_SIGINFO) {
sigbus_oldact.sa_sigaction(signal, siginfo, ctx);
return;
}
#endif /* CONFIG_LINUX */
warn_report("qemu_prealloc_mem: unrelated SIGBUS detected and ignored");
}
static void *do_touch_pages(void *arg)
{
MemsetThread *memset_args = (MemsetThread *)arg;
sigset_t set, oldset;
int ret = 0;
/*
* On Linux, the page faults from the loop below can cause mmap_sem
* contention with allocation of the thread stacks. Do not start
* clearing until all threads have been created.
*/
qemu_mutex_lock(&page_mutex);
while (!memset_args->context->all_threads_created) {
qemu_cond_wait(&page_cond, &page_mutex);
}
qemu_mutex_unlock(&page_mutex);
/* unblock SIGBUS */
sigemptyset(&set);
sigaddset(&set, SIGBUS);
pthread_sigmask(SIG_UNBLOCK, &set, &oldset);
if (sigsetjmp(memset_args->env, 1)) {
ret = -EFAULT;
} else {
char *addr = memset_args->addr;
size_t numpages = memset_args->numpages;
size_t hpagesize = memset_args->hpagesize;
size_t i;
for (i = 0; i < numpages; i++) {
/*
* Read & write back the same value, so we don't
* corrupt existing user/app data that might be
* stored.
*
* 'volatile' to stop compiler optimizing this away
* to a no-op
*/
*(volatile char *)addr = *addr;
addr += hpagesize;
}
}
pthread_sigmask(SIG_SETMASK, &oldset, NULL);
return (void *)(uintptr_t)ret;
}
static void *do_madv_populate_write_pages(void *arg)
{
MemsetThread *memset_args = (MemsetThread *)arg;
const size_t size = memset_args->numpages * memset_args->hpagesize;
char * const addr = memset_args->addr;
int ret = 0;
/* See do_touch_pages(). */
qemu_mutex_lock(&page_mutex);
while (!memset_args->context->all_threads_created) {
qemu_cond_wait(&page_cond, &page_mutex);
}
qemu_mutex_unlock(&page_mutex);
if (size && qemu_madvise(addr, size, QEMU_MADV_POPULATE_WRITE)) {
ret = -errno;
}
return (void *)(uintptr_t)ret;
}
static inline int get_memset_num_threads(size_t hpagesize, size_t numpages,
int max_threads)
{
long host_procs = sysconf(_SC_NPROCESSORS_ONLN);
int ret = 1;
if (host_procs > 0) {
ret = MIN(MIN(host_procs, MAX_MEM_PREALLOC_THREAD_COUNT), max_threads);
}
/* Especially with gigantic pages, don't create more threads than pages. */
ret = MIN(ret, numpages);
/* Don't start threads to prealloc comparatively little memory. */
ret = MIN(ret, MAX(1, hpagesize * numpages / (64 * MiB)));
/* In case sysconf() fails, we fall back to single threaded */
return ret;
}
static int wait_and_free_mem_prealloc_context(MemsetContext *context)
{
int i, ret = 0, tmp;
for (i = 0; i < context->num_threads; i++) {
tmp = (uintptr_t)qemu_thread_join(&context->threads[i].pgthread);
if (tmp) {
ret = tmp;
}
}
g_free(context->threads);
g_free(context);
return ret;
}
static int touch_all_pages(char *area, size_t hpagesize, size_t numpages,
int max_threads, ThreadContext *tc, bool async,
bool use_madv_populate_write)
{
static gsize initialized = 0;
MemsetContext *context = g_malloc0(sizeof(MemsetContext));
size_t numpages_per_thread, leftover;
void *(*touch_fn)(void *);
int ret, i = 0;
char *addr = area;
/*
* Asynchronous preallocation is only allowed when using MADV_POPULATE_WRITE
* and prealloc context for thread placement.
*/
if (!use_madv_populate_write || !tc) {
async = false;
}
context->num_threads =
get_memset_num_threads(hpagesize, numpages, max_threads);
if (g_once_init_enter(&initialized)) {
qemu_mutex_init(&page_mutex);
qemu_cond_init(&page_cond);
g_once_init_leave(&initialized, 1);
}
if (use_madv_populate_write) {
/*
* Avoid creating a single thread for MADV_POPULATE_WRITE when
* preallocating synchronously.
*/
if (context->num_threads == 1 && !async) {
ret = 0;
if (qemu_madvise(area, hpagesize * numpages,
QEMU_MADV_POPULATE_WRITE)) {
ret = -errno;
}
g_free(context);
return ret;
}
touch_fn = do_madv_populate_write_pages;
} else {
touch_fn = do_touch_pages;
}
context->threads = g_new0(MemsetThread, context->num_threads);
numpages_per_thread = numpages / context->num_threads;
leftover = numpages % context->num_threads;
for (i = 0; i < context->num_threads; i++) {
context->threads[i].addr = addr;
context->threads[i].numpages = numpages_per_thread + (i < leftover);
context->threads[i].hpagesize = hpagesize;
context->threads[i].context = context;
if (tc) {
thread_context_create_thread(tc, &context->threads[i].pgthread,
"touch_pages",
touch_fn, &context->threads[i],
QEMU_THREAD_JOINABLE);
} else {
qemu_thread_create(&context->threads[i].pgthread, "touch_pages",
touch_fn, &context->threads[i],
QEMU_THREAD_JOINABLE);
}
addr += context->threads[i].numpages * hpagesize;
}
if (async) {
/*
* async requests currently require the BQL. Add it to the list and kick
* preallocation off during qemu_finish_async_prealloc_mem().
*/
assert(bql_locked());
QLIST_INSERT_HEAD(&memset_contexts, context, next);
return 0;
}
if (!use_madv_populate_write) {
sigbus_memset_context = context;
}
qemu_mutex_lock(&page_mutex);
context->all_threads_created = true;
qemu_cond_broadcast(&page_cond);
qemu_mutex_unlock(&page_mutex);
ret = wait_and_free_mem_prealloc_context(context);
if (!use_madv_populate_write) {
sigbus_memset_context = NULL;
}
return ret;
}
bool qemu_finish_async_prealloc_mem(Error **errp)
{
int ret = 0, tmp;
MemsetContext *context, *next_context;
/* Waiting for preallocation requires the BQL. */
assert(bql_locked());
if (QLIST_EMPTY(&memset_contexts)) {
return true;
}
qemu_mutex_lock(&page_mutex);
QLIST_FOREACH(context, &memset_contexts, next) {
context->all_threads_created = true;
}
qemu_cond_broadcast(&page_cond);
qemu_mutex_unlock(&page_mutex);
QLIST_FOREACH_SAFE(context, &memset_contexts, next, next_context) {
QLIST_REMOVE(context, next);
tmp = wait_and_free_mem_prealloc_context(context);
if (tmp) {
ret = tmp;
}
}
if (ret) {
error_setg_errno(errp, -ret,
"qemu_prealloc_mem: preallocating memory failed");
return false;
}
return true;
}
static bool madv_populate_write_possible(char *area, size_t pagesize)
{
return !qemu_madvise(area, pagesize, QEMU_MADV_POPULATE_WRITE) ||
errno != EINVAL;
}
bool qemu_prealloc_mem(int fd, char *area, size_t sz, int max_threads,
ThreadContext *tc, bool async, Error **errp)
{
static gsize initialized;
int ret;
size_t hpagesize = qemu_fd_getpagesize(fd);
size_t numpages = DIV_ROUND_UP(sz, hpagesize);
bool use_madv_populate_write;
struct sigaction act;
bool rv = true;
/*
* Sense on every invocation, as MADV_POPULATE_WRITE cannot be used for
* some special mappings, such as mapping /dev/mem.
*/
use_madv_populate_write = madv_populate_write_possible(area, hpagesize);
if (!use_madv_populate_write) {
if (g_once_init_enter(&initialized)) {
qemu_mutex_init(&sigbus_mutex);
g_once_init_leave(&initialized, 1);
}
qemu_mutex_lock(&sigbus_mutex);
memset(&act, 0, sizeof(act));
#ifdef CONFIG_LINUX
act.sa_sigaction = &sigbus_handler;
act.sa_flags = SA_SIGINFO;
#else /* CONFIG_LINUX */
act.sa_handler = &sigbus_handler;
act.sa_flags = 0;
#endif /* CONFIG_LINUX */
ret = sigaction(SIGBUS, &act, &sigbus_oldact);
if (ret) {
qemu_mutex_unlock(&sigbus_mutex);
error_setg_errno(errp, errno,
"qemu_prealloc_mem: failed to install signal handler");
return false;
}
}
/* touch pages simultaneously */
ret = touch_all_pages(area, hpagesize, numpages, max_threads, tc, async,
use_madv_populate_write);
if (ret) {
error_setg_errno(errp, -ret,
"qemu_prealloc_mem: preallocating memory failed");
rv = false;
}
if (!use_madv_populate_write) {
ret = sigaction(SIGBUS, &sigbus_oldact, NULL);
if (ret) {
/* Terminate QEMU since it can't recover from error */
perror("qemu_prealloc_mem: failed to reinstall signal handler");
exit(1);
}
qemu_mutex_unlock(&sigbus_mutex);
}
return rv;
}
char *qemu_get_pid_name(pid_t pid)
{
char *name = NULL;
#if defined(__FreeBSD__)
/* BSDs don't have /proc, but they provide a nice substitute */
struct kinfo_proc *proc = kinfo_getproc(pid);
if (proc) {
name = g_strdup(proc->ki_comm);
free(proc);
}
#else
/* Assume a system with reasonable procfs */
char *pid_path;
size_t len;
pid_path = g_strdup_printf("/proc/%d/cmdline", pid);
g_file_get_contents(pid_path, &name, &len, NULL);
g_free(pid_path);
#endif
return name;
}
void *qemu_alloc_stack(size_t *sz)
{
void *ptr;
int flags;
#ifdef CONFIG_DEBUG_STACK_USAGE
void *ptr2;
#endif
size_t pagesz = qemu_real_host_page_size();
#ifdef _SC_THREAD_STACK_MIN
/* avoid stacks smaller than _SC_THREAD_STACK_MIN */
long min_stack_sz = sysconf(_SC_THREAD_STACK_MIN);
*sz = MAX(MAX(min_stack_sz, 0), *sz);
#endif
/* adjust stack size to a multiple of the page size */
*sz = ROUND_UP(*sz, pagesz);
/* allocate one extra page for the guard page */
*sz += pagesz;
flags = MAP_PRIVATE | MAP_ANONYMOUS;
#if defined(MAP_STACK) && defined(__OpenBSD__)
/* Only enable MAP_STACK on OpenBSD. Other OS's such as
* Linux/FreeBSD/NetBSD have a flag with the same name
* but have differing functionality. OpenBSD will SEGV
* if it spots execution with a stack pointer pointing
* at memory that was not allocated with MAP_STACK.
*/
flags |= MAP_STACK;
#endif
ptr = mmap(NULL, *sz, PROT_READ | PROT_WRITE, flags, -1, 0);
if (ptr == MAP_FAILED) {
perror("failed to allocate memory for stack");
abort();
}
/* Stack grows down -- guard page at the bottom. */
if (mprotect(ptr, pagesz, PROT_NONE) != 0) {
perror("failed to set up stack guard page");
abort();
}
#ifdef CONFIG_DEBUG_STACK_USAGE
for (ptr2 = ptr + pagesz; ptr2 < ptr + *sz; ptr2 += sizeof(uint32_t)) {
*(uint32_t *)ptr2 = 0xdeadbeaf;
}
#endif
return ptr;
}
#ifdef CONFIG_DEBUG_STACK_USAGE
static __thread unsigned int max_stack_usage;
#endif
void qemu_free_stack(void *stack, size_t sz)
{
#ifdef CONFIG_DEBUG_STACK_USAGE
unsigned int usage;
void *ptr;
for (ptr = stack + qemu_real_host_page_size(); ptr < stack + sz;
ptr += sizeof(uint32_t)) {
if (*(uint32_t *)ptr != 0xdeadbeaf) {
break;
}
}
usage = sz - (uintptr_t) (ptr - stack);
if (usage > max_stack_usage) {
error_report("thread %d max stack usage increased from %u to %u",
qemu_get_thread_id(), max_stack_usage, usage);
max_stack_usage = usage;
}
#endif
munmap(stack, sz);
}
/*
* Disable CFI checks.
* We are going to call a signal handler directly. Such handler may or may not
* have been defined in our binary, so there's no guarantee that the pointer
* used to set the handler is a cfi-valid pointer. Since the handlers are
* stored in kernel memory, changing the handler to an attacker-defined
* function requires being able to call a sigaction() syscall,
* which is not as easy as overwriting a pointer in memory.
*/
QEMU_DISABLE_CFI
void sigaction_invoke(struct sigaction *action,
struct qemu_signalfd_siginfo *info)
{
siginfo_t si = {};
si.si_signo = info->ssi_signo;
si.si_errno = info->ssi_errno;
si.si_code = info->ssi_code;
/* Convert the minimal set of fields defined by POSIX.
* Positive si_code values are reserved for kernel-generated
* signals, where the valid siginfo fields are determined by
* the signal number. But according to POSIX, it is unspecified
* whether SI_USER and SI_QUEUE have values less than or equal to
* zero.
*/
if (info->ssi_code == SI_USER || info->ssi_code == SI_QUEUE ||
info->ssi_code <= 0) {
/* SIGTERM, etc. */
si.si_pid = info->ssi_pid;
si.si_uid = info->ssi_uid;
} else if (info->ssi_signo == SIGILL || info->ssi_signo == SIGFPE ||
info->ssi_signo == SIGSEGV || info->ssi_signo == SIGBUS) {
si.si_addr = (void *)(uintptr_t)info->ssi_addr;
} else if (info->ssi_signo == SIGCHLD) {
si.si_pid = info->ssi_pid;
si.si_status = info->ssi_status;
si.si_uid = info->ssi_uid;
}
action->sa_sigaction(info->ssi_signo, &si, NULL);
}
size_t qemu_get_host_physmem(void)
{
#ifdef _SC_PHYS_PAGES
long pages = sysconf(_SC_PHYS_PAGES);
if (pages > 0) {
if (pages > SIZE_MAX / qemu_real_host_page_size()) {
return SIZE_MAX;
} else {
return pages * qemu_real_host_page_size();
}
}
#endif
return 0;
}
int qemu_msync(void *addr, size_t length, int fd)
{
size_t align_mask = ~(qemu_real_host_page_size() - 1);
/**
* There are no strict reqs as per the length of mapping
* to be synced. Still the length needs to follow the address
* alignment changes. Additionally - round the size to the multiple
* of PAGE_SIZE
*/
length += ((uintptr_t)addr & (qemu_real_host_page_size() - 1));
length = (length + ~align_mask) & align_mask;
addr = (void *)((uintptr_t)addr & align_mask);
return msync(addr, length, MS_SYNC);
}
static bool qemu_close_all_open_fd_proc(const int *skip, unsigned int nskip)
{
struct dirent *de;
int fd, dfd;
DIR *dir;
unsigned int skip_start = 0, skip_end = nskip;
dir = opendir("/proc/self/fd");
if (!dir) {
/* If /proc is not mounted, there is nothing that can be done. */
return false;
}
/* Avoid closing the directory. */
dfd = dirfd(dir);
for (de = readdir(dir); de; de = readdir(dir)) {
bool close_fd = true;
if (de->d_name[0] == '.') {
continue;
}
fd = atoi(de->d_name);
if (fd == dfd) {
continue;
}
for (unsigned int i = skip_start; i < skip_end; i++) {
if (fd < skip[i]) {
/* We are below the next skipped fd, break */
break;
} else if (fd == skip[i]) {
close_fd = false;
/* Restrict the range as we found fds matching start/end */
if (i == skip_start) {
skip_start++;
} else if (i == skip_end) {
skip_end--;
}
break;
}
}
if (close_fd) {
close(fd);
}
}
closedir(dir);
return true;
}
static bool qemu_close_all_open_fd_close_range(const int *skip,
unsigned int nskip,
int open_max)
{
#ifdef CONFIG_CLOSE_RANGE
int max_fd = open_max - 1;
int first = 0, last;
unsigned int cur_skip = 0;
int ret;
do {
/* Find the start boundary of the range to close */
while (cur_skip < nskip && first == skip[cur_skip]) {
cur_skip++;
first++;
}
/* Find the upper boundary of the range to close */
last = max_fd;
if (cur_skip < nskip) {
last = skip[cur_skip] - 1;
last = MIN(last, max_fd);
}
/* With the adjustments to the range, we might be done. */
if (first > last) {
break;
}
ret = close_range(first, last, 0);
if (ret < 0) {
return false;
}
first = last + 1;
} while (last < max_fd);
return true;
#else
return false;
#endif
}
static void qemu_close_all_open_fd_fallback(const int *skip, unsigned int nskip,
int open_max)
{
unsigned int cur_skip = 0;
/* Fallback */
for (int i = 0; i < open_max; i++) {
if (cur_skip < nskip && i == skip[cur_skip]) {
cur_skip++;
continue;
}
close(i);
}
}
/*
* Close all open file descriptors.
*/
void qemu_close_all_open_fd(const int *skip, unsigned int nskip)
{
int open_max = sysconf(_SC_OPEN_MAX);
assert(skip != NULL || nskip == 0);
if (!qemu_close_all_open_fd_close_range(skip, nskip, open_max) &&
!qemu_close_all_open_fd_proc(skip, nskip)) {
qemu_close_all_open_fd_fallback(skip, nskip, open_max);
}
}