You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
qemu/tests/qtest/pflash-cfi02-test.c

681 lines
23 KiB
C

/*
* QTest testcase for parallel flash with AMD command set
*
* Copyright (c) 2019 Stephen Checkoway
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "libqtest.h"
/*
* To test the pflash_cfi02 device, we run QEMU with the musicpal machine with
* a pflash drive. This enables us to test some flash configurations, but not
* all. In particular, we're limited to a 16-bit wide flash device.
*/
#define MP_FLASH_SIZE_MAX (32 * 1024 * 1024)
#define BASE_ADDR (0x100000000ULL - MP_FLASH_SIZE_MAX)
#define UNIFORM_FLASH_SIZE (8 * 1024 * 1024)
#define UNIFORM_FLASH_SECTOR_SIZE (64 * 1024)
/* Use a newtype to keep flash addresses separate from byte addresses. */
typedef struct {
uint64_t addr;
} faddr;
#define FLASH_ADDR(x) ((faddr) { .addr = (x) })
#define CFI_ADDR FLASH_ADDR(0x55)
#define UNLOCK0_ADDR FLASH_ADDR(0x555)
#define UNLOCK1_ADDR FLASH_ADDR(0x2AA)
#define CFI_CMD 0x98
#define UNLOCK0_CMD 0xAA
#define UNLOCK1_CMD 0x55
#define SECOND_UNLOCK_CMD 0x80
#define AUTOSELECT_CMD 0x90
#define RESET_CMD 0xF0
#define PROGRAM_CMD 0xA0
#define SECTOR_ERASE_CMD 0x30
#define CHIP_ERASE_CMD 0x10
#define UNLOCK_BYPASS_CMD 0x20
#define UNLOCK_BYPASS_RESET_CMD 0x00
#define ERASE_SUSPEND_CMD 0xB0
#define ERASE_RESUME_CMD SECTOR_ERASE_CMD
typedef struct {
int bank_width;
/* Nonuniform block size. */
int nb_blocs[4];
int sector_len[4];
QTestState *qtest;
} FlashConfig;
static char *image_path;
/*
* The pflash implementation allows some parameters to be unspecified. We want
* to test those configurations but we also need to know the real values in
* our testing code. So after we launch qemu, we'll need a new FlashConfig
* with the correct values filled in.
*/
static FlashConfig expand_config_defaults(const FlashConfig *c)
{
FlashConfig ret = *c;
if (ret.bank_width == 0) {
ret.bank_width = 2;
}
if (ret.nb_blocs[0] == 0 && ret.sector_len[0] == 0) {
ret.sector_len[0] = UNIFORM_FLASH_SECTOR_SIZE;
ret.nb_blocs[0] = UNIFORM_FLASH_SIZE / UNIFORM_FLASH_SECTOR_SIZE;
}
/* XXX: Limitations of test harness. */
assert(ret.bank_width == 2);
return ret;
}
/*
* Return a bit mask suitable for extracting the least significant
* status/query response from an interleaved response.
*/
static inline uint64_t device_mask(const FlashConfig *c)
{
return (uint64_t)-1;
}
/*
* Return a bit mask exactly as long as the bank_width.
*/
static inline uint64_t bank_mask(const FlashConfig *c)
{
if (c->bank_width == 8) {
return (uint64_t)-1;
}
return (1ULL << (c->bank_width * 8)) - 1ULL;
}
static inline void flash_write(const FlashConfig *c, uint64_t byte_addr,
uint64_t data)
{
/* Sanity check our tests. */
assert((data & ~bank_mask(c)) == 0);
uint64_t addr = BASE_ADDR + byte_addr;
switch (c->bank_width) {
case 1:
qtest_writeb(c->qtest, addr, data);
break;
case 2:
qtest_writew(c->qtest, addr, data);
break;
case 4:
qtest_writel(c->qtest, addr, data);
break;
case 8:
qtest_writeq(c->qtest, addr, data);
break;
default:
abort();
}
}
static inline uint64_t flash_read(const FlashConfig *c, uint64_t byte_addr)
{
uint64_t addr = BASE_ADDR + byte_addr;
switch (c->bank_width) {
case 1:
return qtest_readb(c->qtest, addr);
case 2:
return qtest_readw(c->qtest, addr);
case 4:
return qtest_readl(c->qtest, addr);
case 8:
return qtest_readq(c->qtest, addr);
default:
abort();
}
}
/*
* Convert a flash address expressed in the maximum width of the device as a
* byte address.
*/
static inline uint64_t as_byte_addr(const FlashConfig *c, faddr flash_addr)
{
/*
* Command addresses are always given as addresses in the maximum
* supported bus size for the flash chip. So an x8/x16 chip in x8 mode
* uses addresses 0xAAA and 0x555 to unlock because the least significant
* bit is ignored. (0x555 rather than 0x554 is traditional.)
*
* In general we need to multiply by the maximum device width.
*/
return flash_addr.addr * c->bank_width;
}
/*
* Return the command value or expected status replicated across all devices.
*/
static inline uint64_t replicate(const FlashConfig *c, uint64_t data)
{
/* Sanity check our tests. */
assert((data & ~device_mask(c)) == 0);
return data;
}
static inline void flash_cmd(const FlashConfig *c, faddr cmd_addr,
uint8_t cmd)
{
flash_write(c, as_byte_addr(c, cmd_addr), replicate(c, cmd));
}
static inline uint64_t flash_query(const FlashConfig *c, faddr query_addr)
{
return flash_read(c, as_byte_addr(c, query_addr));
}
static inline uint64_t flash_query_1(const FlashConfig *c, faddr query_addr)
{
return flash_query(c, query_addr) & device_mask(c);
}
static void unlock(const FlashConfig *c)
{
flash_cmd(c, UNLOCK0_ADDR, UNLOCK0_CMD);
flash_cmd(c, UNLOCK1_ADDR, UNLOCK1_CMD);
}
static void reset(const FlashConfig *c)
{
flash_cmd(c, FLASH_ADDR(0), RESET_CMD);
}
static void sector_erase(const FlashConfig *c, uint64_t byte_addr)
{
unlock(c);
flash_cmd(c, UNLOCK0_ADDR, SECOND_UNLOCK_CMD);
unlock(c);
flash_write(c, byte_addr, replicate(c, SECTOR_ERASE_CMD));
}
static void wait_for_completion(const FlashConfig *c, uint64_t byte_addr)
{
/* If DQ6 is toggling, step the clock and ensure the toggle stops. */
const uint64_t dq6 = replicate(c, 0x40);
if ((flash_read(c, byte_addr) & dq6) ^ (flash_read(c, byte_addr) & dq6)) {
/* Wait for erase or program to finish. */
qtest_clock_step_next(c->qtest);
/* Ensure that DQ6 has stopped toggling. */
g_assert_cmphex(flash_read(c, byte_addr), ==, flash_read(c, byte_addr));
}
}
static void bypass_program(const FlashConfig *c, uint64_t byte_addr,
uint16_t data)
{
flash_cmd(c, UNLOCK0_ADDR, PROGRAM_CMD);
flash_write(c, byte_addr, data);
/*
* Data isn't valid until DQ6 stops toggling. We don't model this as
* writes are immediate, but if this changes in the future, we can wait
* until the program is complete.
*/
wait_for_completion(c, byte_addr);
}
static void program(const FlashConfig *c, uint64_t byte_addr, uint16_t data)
{
unlock(c);
bypass_program(c, byte_addr, data);
}
static void chip_erase(const FlashConfig *c)
{
unlock(c);
flash_cmd(c, UNLOCK0_ADDR, SECOND_UNLOCK_CMD);
unlock(c);
flash_cmd(c, UNLOCK0_ADDR, CHIP_ERASE_CMD);
}
static void erase_suspend(const FlashConfig *c)
{
flash_cmd(c, FLASH_ADDR(0), ERASE_SUSPEND_CMD);
}
static void erase_resume(const FlashConfig *c)
{
flash_cmd(c, FLASH_ADDR(0), ERASE_RESUME_CMD);
}
/*
* Test flash commands with a variety of device geometry.
*/
static void test_geometry(const void *opaque)
{
const FlashConfig *config = opaque;
QTestState *qtest;
qtest = qtest_initf("-M musicpal"
" -drive if=pflash,file=%s,format=raw,copy-on-read=on"
/* Device geometry properties. */
" -global driver=cfi.pflash02,"
"property=num-blocks0,value=%d"
" -global driver=cfi.pflash02,"
"property=sector-length0,value=%d"
" -global driver=cfi.pflash02,"
"property=num-blocks1,value=%d"
" -global driver=cfi.pflash02,"
"property=sector-length1,value=%d"
" -global driver=cfi.pflash02,"
"property=num-blocks2,value=%d"
" -global driver=cfi.pflash02,"
"property=sector-length2,value=%d"
" -global driver=cfi.pflash02,"
"property=num-blocks3,value=%d"
" -global driver=cfi.pflash02,"
"property=sector-length3,value=%d",
image_path,
config->nb_blocs[0],
config->sector_len[0],
config->nb_blocs[1],
config->sector_len[1],
config->nb_blocs[2],
config->sector_len[2],
config->nb_blocs[3],
config->sector_len[3]);
FlashConfig explicit_config = expand_config_defaults(config);
explicit_config.qtest = qtest;
const FlashConfig *c = &explicit_config;
/* Check the IDs. */
unlock(c);
flash_cmd(c, UNLOCK0_ADDR, AUTOSELECT_CMD);
g_assert_cmphex(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF));
if (c->bank_width >= 2) {
/*
* XXX: The ID returned by the musicpal flash chip is 16 bits which
* wouldn't happen with an 8-bit device. It would probably be best to
* prohibit addresses larger than the device width in pflash_cfi02.c,
* but then we couldn't test smaller device widths at all.
*/
g_assert_cmphex(flash_query(c, FLASH_ADDR(1)), ==,
replicate(c, 0x236D));
}
reset(c);
/* Check the erase blocks. */
flash_cmd(c, CFI_ADDR, CFI_CMD);
g_assert_cmphex(flash_query(c, FLASH_ADDR(0x10)), ==, replicate(c, 'Q'));
g_assert_cmphex(flash_query(c, FLASH_ADDR(0x11)), ==, replicate(c, 'R'));
g_assert_cmphex(flash_query(c, FLASH_ADDR(0x12)), ==, replicate(c, 'Y'));
/* Num erase regions. */
int nb_erase_regions = flash_query_1(c, FLASH_ADDR(0x2C));
g_assert_cmphex(nb_erase_regions, ==,
!!c->nb_blocs[0] + !!c->nb_blocs[1] + !!c->nb_blocs[2] +
!!c->nb_blocs[3]);
/* Check device length. */
uint32_t device_len = 1 << flash_query_1(c, FLASH_ADDR(0x27));
g_assert_cmphex(device_len, ==, UNIFORM_FLASH_SIZE);
/* Check that erase suspend to read/write is supported. */
uint16_t pri = flash_query_1(c, FLASH_ADDR(0x15)) +
(flash_query_1(c, FLASH_ADDR(0x16)) << 8);
g_assert_cmpint(pri, >=, 0x2D + 4 * nb_erase_regions);
g_assert_cmpint(flash_query(c, FLASH_ADDR(pri + 0)), ==, replicate(c, 'P'));
g_assert_cmpint(flash_query(c, FLASH_ADDR(pri + 1)), ==, replicate(c, 'R'));
g_assert_cmpint(flash_query(c, FLASH_ADDR(pri + 2)), ==, replicate(c, 'I'));
g_assert_cmpint(flash_query_1(c, FLASH_ADDR(pri + 6)), ==, 2); /* R/W */
reset(c);
const uint64_t dq7 = replicate(c, 0x80);
const uint64_t dq6 = replicate(c, 0x40);
const uint64_t dq3 = replicate(c, 0x08);
const uint64_t dq2 = replicate(c, 0x04);
uint64_t byte_addr = 0;
for (int region = 0; region < nb_erase_regions; ++region) {
uint64_t base = 0x2D + 4 * region;
flash_cmd(c, CFI_ADDR, CFI_CMD);
uint32_t nb_sectors = flash_query_1(c, FLASH_ADDR(base + 0)) +
(flash_query_1(c, FLASH_ADDR(base + 1)) << 8) + 1;
uint32_t sector_len = (flash_query_1(c, FLASH_ADDR(base + 2)) << 8) +
(flash_query_1(c, FLASH_ADDR(base + 3)) << 16);
g_assert_cmphex(nb_sectors, ==, c->nb_blocs[region]);
g_assert_cmphex(sector_len, ==, c->sector_len[region]);
reset(c);
/* Erase and program sector. */
for (uint32_t i = 0; i < nb_sectors; ++i) {
sector_erase(c, byte_addr);
/* Check that DQ3 is 0. */
g_assert_cmphex(flash_read(c, byte_addr) & dq3, ==, 0);
qtest_clock_step_next(c->qtest); /* Step over the 50 us timeout. */
/* Check that DQ3 is 1. */
uint64_t status0 = flash_read(c, byte_addr);
g_assert_cmphex(status0 & dq3, ==, dq3);
/* DQ7 is 0 during an erase. */
g_assert_cmphex(status0 & dq7, ==, 0);
uint64_t status1 = flash_read(c, byte_addr);
/* DQ6 toggles during an erase. */
g_assert_cmphex(status0 & dq6, ==, ~status1 & dq6);
/* Wait for erase to complete. */
wait_for_completion(c, byte_addr);
/* Ensure DQ6 has stopped toggling. */
g_assert_cmphex(flash_read(c, byte_addr), ==,
flash_read(c, byte_addr));
/* Now the data should be valid. */
g_assert_cmphex(flash_read(c, byte_addr), ==, bank_mask(c));
/* Program a bit pattern. */
program(c, byte_addr, 0x55);
g_assert_cmphex(flash_read(c, byte_addr) & 0xFF, ==, 0x55);
program(c, byte_addr, 0xA5);
g_assert_cmphex(flash_read(c, byte_addr) & 0xFF, ==, 0x05);
byte_addr += sector_len;
}
}
/* Erase the chip. */
chip_erase(c);
/* Read toggle. */
uint64_t status0 = flash_read(c, 0);
/* DQ7 is 0 during an erase. */
g_assert_cmphex(status0 & dq7, ==, 0);
uint64_t status1 = flash_read(c, 0);
/* DQ6 toggles during an erase. */
g_assert_cmphex(status0 & dq6, ==, ~status1 & dq6);
/* Wait for erase to complete. */
qtest_clock_step_next(c->qtest);
/* Ensure DQ6 has stopped toggling. */
g_assert_cmphex(flash_read(c, 0), ==, flash_read(c, 0));
/* Now the data should be valid. */
for (int region = 0; region < nb_erase_regions; ++region) {
for (uint32_t i = 0; i < c->nb_blocs[region]; ++i) {
byte_addr = (uint64_t)i * c->sector_len[region];
g_assert_cmphex(flash_read(c, byte_addr), ==, bank_mask(c));
}
}
/* Unlock bypass */
unlock(c);
flash_cmd(c, UNLOCK0_ADDR, UNLOCK_BYPASS_CMD);
bypass_program(c, 0 * c->bank_width, 0x01);
bypass_program(c, 1 * c->bank_width, 0x23);
bypass_program(c, 2 * c->bank_width, 0x45);
/*
* Test that bypass programming, unlike normal programming can use any
* address for the PROGRAM_CMD.
*/
flash_cmd(c, FLASH_ADDR(3 * c->bank_width), PROGRAM_CMD);
flash_write(c, 3 * c->bank_width, 0x67);
wait_for_completion(c, 3 * c->bank_width);
flash_cmd(c, FLASH_ADDR(0), UNLOCK_BYPASS_RESET_CMD);
bypass_program(c, 4 * c->bank_width, 0x89); /* Should fail. */
g_assert_cmphex(flash_read(c, 0 * c->bank_width), ==, 0x01);
g_assert_cmphex(flash_read(c, 1 * c->bank_width), ==, 0x23);
g_assert_cmphex(flash_read(c, 2 * c->bank_width), ==, 0x45);
g_assert_cmphex(flash_read(c, 3 * c->bank_width), ==, 0x67);
g_assert_cmphex(flash_read(c, 4 * c->bank_width), ==, bank_mask(c));
/* Test ignored high order bits of address. */
flash_cmd(c, FLASH_ADDR(0x5555), UNLOCK0_CMD);
flash_cmd(c, FLASH_ADDR(0x2AAA), UNLOCK1_CMD);
flash_cmd(c, FLASH_ADDR(0x5555), AUTOSELECT_CMD);
g_assert_cmphex(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF));
reset(c);
/*
* Program a word on each sector, erase one or two sectors per region, and
* verify that all of those, and only those, are erased.
*/
byte_addr = 0;
for (int region = 0; region < nb_erase_regions; ++region) {
for (int i = 0; i < config->nb_blocs[region]; ++i) {
program(c, byte_addr, 0);
byte_addr += config->sector_len[region];
}
}
unlock(c);
flash_cmd(c, UNLOCK0_ADDR, SECOND_UNLOCK_CMD);
unlock(c);
byte_addr = 0;
const uint64_t erase_cmd = replicate(c, SECTOR_ERASE_CMD);
for (int region = 0; region < nb_erase_regions; ++region) {
flash_write(c, byte_addr, erase_cmd);
if (c->nb_blocs[region] > 1) {
flash_write(c, byte_addr + c->sector_len[region], erase_cmd);
}
byte_addr += c->sector_len[region] * c->nb_blocs[region];
}
qtest_clock_step_next(c->qtest); /* Step over the 50 us timeout. */
wait_for_completion(c, 0);
byte_addr = 0;
for (int region = 0; region < nb_erase_regions; ++region) {
for (int i = 0; i < config->nb_blocs[region]; ++i) {
if (i < 2) {
g_assert_cmphex(flash_read(c, byte_addr), ==, bank_mask(c));
} else {
g_assert_cmphex(flash_read(c, byte_addr), ==, 0);
}
byte_addr += config->sector_len[region];
}
}
/* Test erase suspend/resume during erase timeout. */
sector_erase(c, 0);
/*
* Check that DQ 3 is 0 and DQ6 and DQ2 are toggling in the sector being
* erased as well as in a sector not being erased.
*/
byte_addr = c->sector_len[0];
status0 = flash_read(c, 0);
status1 = flash_read(c, 0);
g_assert_cmpint(status0 & dq3, ==, 0);
g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
status0 = flash_read(c, byte_addr);
status1 = flash_read(c, byte_addr);
g_assert_cmpint(status0 & dq3, ==, 0);
g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
/*
* Check that after suspending, DQ6 does not toggle but DQ2 does toggle in
* an erase suspended sector but that neither toggle (we should be
* getting data) in a sector not being erased.
*/
erase_suspend(c);
status0 = flash_read(c, 0);
status1 = flash_read(c, 0);
g_assert_cmpint(status0 & dq6, ==, status1 & dq6);
g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
g_assert_cmpint(flash_read(c, byte_addr), ==, flash_read(c, byte_addr));
/* Check that after resuming, DQ3 is 1 and DQ6 and DQ2 toggle. */
erase_resume(c);
status0 = flash_read(c, 0);
status1 = flash_read(c, 0);
g_assert_cmpint(status0 & dq3, ==, dq3);
g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
status0 = flash_read(c, byte_addr);
status1 = flash_read(c, byte_addr);
g_assert_cmpint(status0 & dq3, ==, dq3);
g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
wait_for_completion(c, 0);
/* Repeat this process but this time suspend after the timeout. */
sector_erase(c, 0);
qtest_clock_step_next(c->qtest);
/*
* Check that DQ 3 is 1 and DQ6 and DQ2 are toggling in the sector being
* erased as well as in a sector not being erased.
*/
byte_addr = c->sector_len[0];
status0 = flash_read(c, 0);
status1 = flash_read(c, 0);
g_assert_cmpint(status0 & dq3, ==, dq3);
g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
status0 = flash_read(c, byte_addr);
status1 = flash_read(c, byte_addr);
g_assert_cmpint(status0 & dq3, ==, dq3);
g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
/*
* Check that after suspending, DQ6 does not toggle but DQ2 does toggle in
* an erase suspended sector but that neither toggle (we should be
* getting data) in a sector not being erased.
*/
erase_suspend(c);
status0 = flash_read(c, 0);
status1 = flash_read(c, 0);
g_assert_cmpint(status0 & dq6, ==, status1 & dq6);
g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
g_assert_cmpint(flash_read(c, byte_addr), ==, flash_read(c, byte_addr));
/* Check that after resuming, DQ3 is 1 and DQ6 and DQ2 toggle. */
erase_resume(c);
status0 = flash_read(c, 0);
status1 = flash_read(c, 0);
g_assert_cmpint(status0 & dq3, ==, dq3);
g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
status0 = flash_read(c, byte_addr);
status1 = flash_read(c, byte_addr);
g_assert_cmpint(status0 & dq3, ==, dq3);
g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
wait_for_completion(c, 0);
qtest_quit(qtest);
}
/*
* Test that
* 1. enter autoselect mode;
* 2. enter CFI mode; and then
* 3. exit CFI mode
* leaves the flash device in autoselect mode.
*/
static void test_cfi_in_autoselect(const void *opaque)
{
const FlashConfig *config = opaque;
QTestState *qtest;
qtest = qtest_initf("-M musicpal"
" -drive if=pflash,file=%s,format=raw,copy-on-read=on",
image_path);
FlashConfig explicit_config = expand_config_defaults(config);
explicit_config.qtest = qtest;
const FlashConfig *c = &explicit_config;
/* 1. Enter autoselect. */
unlock(c);
flash_cmd(c, UNLOCK0_ADDR, AUTOSELECT_CMD);
g_assert_cmphex(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF));
/* 2. Enter CFI. */
flash_cmd(c, CFI_ADDR, CFI_CMD);
g_assert_cmphex(flash_query(c, FLASH_ADDR(0x10)), ==, replicate(c, 'Q'));
g_assert_cmphex(flash_query(c, FLASH_ADDR(0x11)), ==, replicate(c, 'R'));
g_assert_cmphex(flash_query(c, FLASH_ADDR(0x12)), ==, replicate(c, 'Y'));
/* 3. Exit CFI. */
reset(c);
g_assert_cmphex(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF));
qtest_quit(qtest);
}
static void cleanup(void *opaque)
{
unlink(image_path);
g_free(image_path);
}
/*
* XXX: Tests are limited to bank_width = 2 for now because that's what
* hw/arm/musicpal.c has.
*/
static const FlashConfig configuration[] = {
/* One x16 device. */
{
.bank_width = 2,
},
/* Nonuniform sectors (top boot). */
{
.bank_width = 2,
.nb_blocs = { 127, 1, 2, 1 },
.sector_len = { 0x10000, 0x08000, 0x02000, 0x04000 },
},
/* Nonuniform sectors (bottom boot). */
{
.bank_width = 2,
.nb_blocs = { 1, 2, 1, 127 },
.sector_len = { 0x04000, 0x02000, 0x08000, 0x10000 },
},
};
int main(int argc, char **argv)
{
GError *err = NULL;
int fd = g_file_open_tmp("qtest.XXXXXX", &image_path, &err);
g_assert_no_error(err);
if (ftruncate(fd, UNIFORM_FLASH_SIZE) < 0) {
int error_code = errno;
close(fd);
cleanup(NULL);
g_printerr("Failed to truncate file %s to %u MB: %s\n", image_path,
UNIFORM_FLASH_SIZE, strerror(error_code));
exit(EXIT_FAILURE);
}
close(fd);
qtest_add_abrt_handler(cleanup, NULL);
g_test_init(&argc, &argv, NULL);
size_t nb_configurations = sizeof configuration / sizeof configuration[0];
for (size_t i = 0; i < nb_configurations; ++i) {
const FlashConfig *config = &configuration[i];
char *path = g_strdup_printf("pflash-cfi02"
"/geometry/%dx%x-%dx%x-%dx%x-%dx%x"
"/%d",
config->nb_blocs[0],
config->sector_len[0],
config->nb_blocs[1],
config->sector_len[1],
config->nb_blocs[2],
config->sector_len[2],
config->nb_blocs[3],
config->sector_len[3],
config->bank_width);
qtest_add_data_func(path, config, test_geometry);
g_free(path);
}
qtest_add_data_func("pflash-cfi02/cfi-in-autoselect", &configuration[0],
test_cfi_in_autoselect);
int result = g_test_run();
cleanup(NULL);
return result;
}