mirror of https://gitlab.com/qemu-project/qemu
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
283 lines
8.6 KiB
C
283 lines
8.6 KiB
C
/*
|
|
* Generic intermediate code generation.
|
|
*
|
|
* Copyright (C) 2016-2017 Lluís Vilanova <vilanova@ac.upc.edu>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*/
|
|
|
|
#ifndef EXEC__TRANSLATOR_H
|
|
#define EXEC__TRANSLATOR_H
|
|
|
|
/*
|
|
* Include this header from a target-specific file, and add a
|
|
*
|
|
* DisasContextBase base;
|
|
*
|
|
* member in your target-specific DisasContext.
|
|
*/
|
|
|
|
#include "qemu/bswap.h"
|
|
#include "exec/vaddr.h"
|
|
|
|
/**
|
|
* gen_intermediate_code
|
|
* @cpu: cpu context
|
|
* @tb: translation block
|
|
* @max_insns: max number of instructions to translate
|
|
* @pc: guest virtual program counter address
|
|
* @host_pc: host physical program counter address
|
|
*
|
|
* This function must be provided by the target, which should create
|
|
* the target-specific DisasContext, and then invoke translator_loop.
|
|
*/
|
|
void gen_intermediate_code(CPUState *cpu, TranslationBlock *tb, int *max_insns,
|
|
vaddr pc, void *host_pc);
|
|
|
|
/**
|
|
* DisasJumpType:
|
|
* @DISAS_NEXT: Next instruction in program order.
|
|
* @DISAS_TOO_MANY: Too many instructions translated.
|
|
* @DISAS_NORETURN: Following code is dead.
|
|
* @DISAS_TARGET_*: Start of target-specific conditions.
|
|
*
|
|
* What instruction to disassemble next.
|
|
*/
|
|
typedef enum DisasJumpType {
|
|
DISAS_NEXT,
|
|
DISAS_TOO_MANY,
|
|
DISAS_NORETURN,
|
|
DISAS_TARGET_0,
|
|
DISAS_TARGET_1,
|
|
DISAS_TARGET_2,
|
|
DISAS_TARGET_3,
|
|
DISAS_TARGET_4,
|
|
DISAS_TARGET_5,
|
|
DISAS_TARGET_6,
|
|
DISAS_TARGET_7,
|
|
DISAS_TARGET_8,
|
|
DISAS_TARGET_9,
|
|
DISAS_TARGET_10,
|
|
DISAS_TARGET_11,
|
|
} DisasJumpType;
|
|
|
|
/**
|
|
* DisasContextBase:
|
|
* @tb: Translation block for this disassembly.
|
|
* @pc_first: Address of first guest instruction in this TB.
|
|
* @pc_next: Address of next guest instruction in this TB (current during
|
|
* disassembly).
|
|
* @is_jmp: What instruction to disassemble next.
|
|
* @num_insns: Number of translated instructions (including current).
|
|
* @max_insns: Maximum number of instructions to be translated in this TB.
|
|
* @plugin_enabled: TCG plugin enabled in this TB.
|
|
* @fake_insn: True if translator_fake_ldb used.
|
|
* @insn_start: The last op emitted by the insn_start hook,
|
|
* which is expected to be INDEX_op_insn_start.
|
|
*
|
|
* Architecture-agnostic disassembly context.
|
|
*/
|
|
struct DisasContextBase {
|
|
TranslationBlock *tb;
|
|
vaddr pc_first;
|
|
vaddr pc_next;
|
|
DisasJumpType is_jmp;
|
|
int num_insns;
|
|
int max_insns;
|
|
bool plugin_enabled;
|
|
bool fake_insn;
|
|
struct TCGOp *insn_start;
|
|
void *host_addr[2];
|
|
|
|
/*
|
|
* Record insn data that we cannot read directly from host memory.
|
|
* There are only two reasons we cannot use host memory:
|
|
* (1) We are executing from I/O,
|
|
* (2) We are executing a synthetic instruction (s390x EX).
|
|
* In both cases we need record exactly one instruction,
|
|
* and thus the maximum amount of data we record is limited.
|
|
*/
|
|
int record_start;
|
|
int record_len;
|
|
uint8_t record[32];
|
|
};
|
|
|
|
/**
|
|
* TranslatorOps:
|
|
* @init_disas_context:
|
|
* Initialize the target-specific portions of DisasContext struct.
|
|
* The generic DisasContextBase has already been initialized.
|
|
*
|
|
* @tb_start:
|
|
* Emit any code required before the start of the main loop,
|
|
* after the generic gen_tb_start().
|
|
*
|
|
* @insn_start:
|
|
* Emit the tcg_gen_insn_start opcode.
|
|
*
|
|
* @translate_insn:
|
|
* Disassemble one instruction and set db->pc_next for the start
|
|
* of the following instruction. Set db->is_jmp as necessary to
|
|
* terminate the main loop.
|
|
*
|
|
* @tb_stop:
|
|
* Emit any opcodes required to exit the TB, based on db->is_jmp.
|
|
*
|
|
* @disas_log:
|
|
* Print instruction disassembly to log.
|
|
*/
|
|
typedef struct TranslatorOps {
|
|
void (*init_disas_context)(DisasContextBase *db, CPUState *cpu);
|
|
void (*tb_start)(DisasContextBase *db, CPUState *cpu);
|
|
void (*insn_start)(DisasContextBase *db, CPUState *cpu);
|
|
void (*translate_insn)(DisasContextBase *db, CPUState *cpu);
|
|
void (*tb_stop)(DisasContextBase *db, CPUState *cpu);
|
|
bool (*disas_log)(const DisasContextBase *db, CPUState *cpu, FILE *f);
|
|
} TranslatorOps;
|
|
|
|
/**
|
|
* translator_loop:
|
|
* @cpu: Target vCPU.
|
|
* @tb: Translation block.
|
|
* @max_insns: Maximum number of insns to translate.
|
|
* @pc: guest virtual program counter address
|
|
* @host_pc: host physical program counter address
|
|
* @ops: Target-specific operations.
|
|
* @db: Disassembly context.
|
|
*
|
|
* Generic translator loop.
|
|
*
|
|
* Translation will stop in the following cases (in order):
|
|
* - When is_jmp set by #TranslatorOps::breakpoint_check.
|
|
* - set to DISAS_TOO_MANY exits after translating one more insn
|
|
* - set to any other value than DISAS_NEXT exits immediately.
|
|
* - When is_jmp set by #TranslatorOps::translate_insn.
|
|
* - set to any value other than DISAS_NEXT exits immediately.
|
|
* - When the TCG operation buffer is full.
|
|
* - When single-stepping is enabled (system-wide or on the current vCPU).
|
|
* - When too many instructions have been translated.
|
|
*/
|
|
void translator_loop(CPUState *cpu, TranslationBlock *tb, int *max_insns,
|
|
vaddr pc, void *host_pc, const TranslatorOps *ops,
|
|
DisasContextBase *db);
|
|
|
|
/**
|
|
* translator_use_goto_tb
|
|
* @db: Disassembly context
|
|
* @dest: target pc of the goto
|
|
*
|
|
* Return true if goto_tb is allowed between the current TB
|
|
* and the destination PC.
|
|
*/
|
|
bool translator_use_goto_tb(DisasContextBase *db, vaddr dest);
|
|
|
|
/**
|
|
* translator_io_start
|
|
* @db: Disassembly context
|
|
*
|
|
* If icount is enabled, set cpu->can_do_io, adjust db->is_jmp to
|
|
* DISAS_TOO_MANY if it is still DISAS_NEXT, and return true.
|
|
* Otherwise return false.
|
|
*/
|
|
bool translator_io_start(DisasContextBase *db);
|
|
|
|
/*
|
|
* Translator Load Functions
|
|
*
|
|
* These are intended to replace the direct usage of the cpu_ld*_code
|
|
* functions and are mandatory for front-ends that have been migrated
|
|
* to the common translator_loop. These functions are only intended
|
|
* to be called from the translation stage and should not be called
|
|
* from helper functions. Those functions should be converted to encode
|
|
* the relevant information at translation time.
|
|
*/
|
|
|
|
uint8_t translator_ldub(CPUArchState *env, DisasContextBase *db, vaddr pc);
|
|
uint16_t translator_lduw(CPUArchState *env, DisasContextBase *db, vaddr pc);
|
|
uint32_t translator_ldl(CPUArchState *env, DisasContextBase *db, vaddr pc);
|
|
uint64_t translator_ldq(CPUArchState *env, DisasContextBase *db, vaddr pc);
|
|
|
|
static inline uint16_t
|
|
translator_lduw_swap(CPUArchState *env, DisasContextBase *db,
|
|
vaddr pc, bool do_swap)
|
|
{
|
|
uint16_t ret = translator_lduw(env, db, pc);
|
|
if (do_swap) {
|
|
ret = bswap16(ret);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static inline uint32_t
|
|
translator_ldl_swap(CPUArchState *env, DisasContextBase *db,
|
|
vaddr pc, bool do_swap)
|
|
{
|
|
uint32_t ret = translator_ldl(env, db, pc);
|
|
if (do_swap) {
|
|
ret = bswap32(ret);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static inline uint64_t
|
|
translator_ldq_swap(CPUArchState *env, DisasContextBase *db,
|
|
vaddr pc, bool do_swap)
|
|
{
|
|
uint64_t ret = translator_ldq(env, db, pc);
|
|
if (do_swap) {
|
|
ret = bswap64(ret);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* translator_fake_ld - fake instruction load
|
|
* @db: Disassembly context
|
|
* @data: bytes of instruction
|
|
* @len: number of bytes
|
|
*
|
|
* This is a special case helper used where the instruction we are
|
|
* about to translate comes from somewhere else (e.g. being
|
|
* re-synthesised for s390x "ex"). It ensures we update other areas of
|
|
* the translator with details of the executed instruction.
|
|
*/
|
|
void translator_fake_ld(DisasContextBase *db, const void *data, size_t len);
|
|
|
|
/**
|
|
* translator_st
|
|
* @db: disassembly context
|
|
* @dest: address to copy into
|
|
* @addr: virtual address within TB
|
|
* @len: length
|
|
*
|
|
* Copy @len bytes from @addr into @dest.
|
|
* All bytes must have been read during translation.
|
|
* Return true on success or false on failure.
|
|
*/
|
|
bool translator_st(const DisasContextBase *db, void *dest,
|
|
vaddr addr, size_t len);
|
|
|
|
/**
|
|
* translator_st_len
|
|
* @db: disassembly context
|
|
*
|
|
* Return the number of bytes available to copy from the
|
|
* current translation block with translator_st.
|
|
*/
|
|
size_t translator_st_len(const DisasContextBase *db);
|
|
|
|
#ifdef COMPILING_PER_TARGET
|
|
/*
|
|
* Return whether addr is on the same page as where disassembly started.
|
|
* Translators can use this to enforce the rule that only single-insn
|
|
* translation blocks are allowed to cross page boundaries.
|
|
*/
|
|
static inline bool is_same_page(const DisasContextBase *db, vaddr addr)
|
|
{
|
|
return ((addr ^ db->pc_first) & TARGET_PAGE_MASK) == 0;
|
|
}
|
|
#endif
|
|
|
|
#endif /* EXEC__TRANSLATOR_H */
|