mirror of https://gitlab.com/qemu-project/qemu
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
474 lines
14 KiB
C
474 lines
14 KiB
C
/*
|
|
* Arm SSE Subsystem System Counter
|
|
*
|
|
* Copyright (c) 2020 Linaro Limited
|
|
* Written by Peter Maydell
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 or
|
|
* (at your option) any later version.
|
|
*/
|
|
|
|
/*
|
|
* This is a model of the "System counter" which is documented in
|
|
* the Arm SSE-123 Example Subsystem Technical Reference Manual:
|
|
* https://developer.arm.com/documentation/101370/latest/
|
|
*
|
|
* The system counter is a non-stop 64-bit up-counter. It provides
|
|
* this count value to other devices like the SSE system timer,
|
|
* which are driven by this system timestamp rather than directly
|
|
* from a clock. Internally to the counter the count is actually
|
|
* 88-bit precision (64.24 fixed point), with a programmable scale factor.
|
|
*
|
|
* The hardware has the optional feature that it supports dynamic
|
|
* clock switching, where two clock inputs are connected, and which
|
|
* one is used is selected via a CLKSEL input signal. Since the
|
|
* users of this device in QEMU don't use this feature, we only model
|
|
* the HWCLKSW=0 configuration.
|
|
*/
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/log.h"
|
|
#include "qemu/timer.h"
|
|
#include "qapi/error.h"
|
|
#include "trace.h"
|
|
#include "hw/timer/sse-counter.h"
|
|
#include "hw/sysbus.h"
|
|
#include "hw/registerfields.h"
|
|
#include "hw/clock.h"
|
|
#include "hw/qdev-clock.h"
|
|
#include "migration/vmstate.h"
|
|
|
|
/* Registers in the control frame */
|
|
REG32(CNTCR, 0x0)
|
|
FIELD(CNTCR, EN, 0, 1)
|
|
FIELD(CNTCR, HDBG, 1, 1)
|
|
FIELD(CNTCR, SCEN, 2, 1)
|
|
FIELD(CNTCR, INTRMASK, 3, 1)
|
|
FIELD(CNTCR, PSLVERRDIS, 4, 1)
|
|
FIELD(CNTCR, INTRCLR, 5, 1)
|
|
/*
|
|
* Although CNTCR defines interrupt-related bits, the counter doesn't
|
|
* appear to actually have an interrupt output. So INTRCLR is
|
|
* effectively a RAZ/WI bit, as are the reserved bits [31:6].
|
|
*/
|
|
#define CNTCR_VALID_MASK (R_CNTCR_EN_MASK | R_CNTCR_HDBG_MASK | \
|
|
R_CNTCR_SCEN_MASK | R_CNTCR_INTRMASK_MASK | \
|
|
R_CNTCR_PSLVERRDIS_MASK)
|
|
REG32(CNTSR, 0x4)
|
|
REG32(CNTCV_LO, 0x8)
|
|
REG32(CNTCV_HI, 0xc)
|
|
REG32(CNTSCR, 0x10) /* Aliased with CNTSCR0 */
|
|
REG32(CNTID, 0x1c)
|
|
FIELD(CNTID, CNTSC, 0, 4)
|
|
FIELD(CNTID, CNTCS, 16, 1)
|
|
FIELD(CNTID, CNTSELCLK, 17, 2)
|
|
FIELD(CNTID, CNTSCR_OVR, 19, 1)
|
|
REG32(CNTSCR0, 0xd0)
|
|
REG32(CNTSCR1, 0xd4)
|
|
|
|
/* Registers in the status frame */
|
|
REG32(STATUS_CNTCV_LO, 0x0)
|
|
REG32(STATUS_CNTCV_HI, 0x4)
|
|
|
|
/* Standard ID registers, present in both frames */
|
|
REG32(PID4, 0xFD0)
|
|
REG32(PID5, 0xFD4)
|
|
REG32(PID6, 0xFD8)
|
|
REG32(PID7, 0xFDC)
|
|
REG32(PID0, 0xFE0)
|
|
REG32(PID1, 0xFE4)
|
|
REG32(PID2, 0xFE8)
|
|
REG32(PID3, 0xFEC)
|
|
REG32(CID0, 0xFF0)
|
|
REG32(CID1, 0xFF4)
|
|
REG32(CID2, 0xFF8)
|
|
REG32(CID3, 0xFFC)
|
|
|
|
/* PID/CID values */
|
|
static const int control_id[] = {
|
|
0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
|
|
0xba, 0xb0, 0x0b, 0x00, /* PID0..PID3 */
|
|
0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
|
|
};
|
|
|
|
static const int status_id[] = {
|
|
0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
|
|
0xbb, 0xb0, 0x0b, 0x00, /* PID0..PID3 */
|
|
0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
|
|
};
|
|
|
|
static void sse_counter_notify_users(SSECounter *s)
|
|
{
|
|
/*
|
|
* Notify users of the count timestamp that they may
|
|
* need to recalculate.
|
|
*/
|
|
notifier_list_notify(&s->notifier_list, NULL);
|
|
}
|
|
|
|
static bool sse_counter_enabled(SSECounter *s)
|
|
{
|
|
return (s->cntcr & R_CNTCR_EN_MASK) != 0;
|
|
}
|
|
|
|
uint64_t sse_counter_tick_to_time(SSECounter *s, uint64_t tick)
|
|
{
|
|
if (!sse_counter_enabled(s)) {
|
|
return UINT64_MAX;
|
|
}
|
|
|
|
tick -= s->ticks_then;
|
|
|
|
if (s->cntcr & R_CNTCR_SCEN_MASK) {
|
|
/* Adjust the tick count to account for the scale factor */
|
|
tick = muldiv64(tick, 0x01000000, s->cntscr0);
|
|
}
|
|
|
|
return s->ns_then + clock_ticks_to_ns(s->clk, tick);
|
|
}
|
|
|
|
void sse_counter_register_consumer(SSECounter *s, Notifier *notifier)
|
|
{
|
|
/*
|
|
* For the moment we assume that both we and the devices
|
|
* which consume us last for the life of the simulation,
|
|
* and so there is no mechanism for removing a notifier.
|
|
*/
|
|
notifier_list_add(&s->notifier_list, notifier);
|
|
}
|
|
|
|
uint64_t sse_counter_for_timestamp(SSECounter *s, uint64_t now)
|
|
{
|
|
/* Return the CNTCV value for a particular timestamp (clock ns value). */
|
|
uint64_t ticks;
|
|
|
|
if (!sse_counter_enabled(s)) {
|
|
/* Counter is disabled and does not increment */
|
|
return s->ticks_then;
|
|
}
|
|
|
|
ticks = clock_ns_to_ticks(s->clk, now - s->ns_then);
|
|
if (s->cntcr & R_CNTCR_SCEN_MASK) {
|
|
/*
|
|
* Scaling is enabled. The CNTSCR value is the amount added to
|
|
* the underlying 88-bit counter for every tick of the
|
|
* underlying clock; CNTCV is the top 64 bits of that full
|
|
* 88-bit value. Multiplying the tick count by CNTSCR tells us
|
|
* how much the full 88-bit counter has moved on; we then
|
|
* divide that by 0x01000000 to find out how much the 64-bit
|
|
* visible portion has advanced. muldiv64() gives us the
|
|
* necessary at-least-88-bit precision for the intermediate
|
|
* result.
|
|
*/
|
|
ticks = muldiv64(ticks, s->cntscr0, 0x01000000);
|
|
}
|
|
return s->ticks_then + ticks;
|
|
}
|
|
|
|
static uint64_t sse_cntcv(SSECounter *s)
|
|
{
|
|
/* Return the CNTCV value for the current time */
|
|
return sse_counter_for_timestamp(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
|
|
}
|
|
|
|
static void sse_write_cntcv(SSECounter *s, uint32_t value, unsigned startbit)
|
|
{
|
|
/*
|
|
* Write one 32-bit half of the counter value; startbit is the
|
|
* bit position of this half in the 64-bit word, either 0 or 32.
|
|
*/
|
|
uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
|
uint64_t cntcv = sse_counter_for_timestamp(s, now);
|
|
|
|
cntcv = deposit64(cntcv, startbit, 32, value);
|
|
s->ticks_then = cntcv;
|
|
s->ns_then = now;
|
|
sse_counter_notify_users(s);
|
|
}
|
|
|
|
static uint64_t sse_counter_control_read(void *opaque, hwaddr offset,
|
|
unsigned size)
|
|
{
|
|
SSECounter *s = SSE_COUNTER(opaque);
|
|
uint64_t r;
|
|
|
|
switch (offset) {
|
|
case A_CNTCR:
|
|
r = s->cntcr;
|
|
break;
|
|
case A_CNTSR:
|
|
/*
|
|
* The only bit here is DBGH, indicating that the counter has been
|
|
* halted via the Halt-on-Debug signal. We don't implement halting
|
|
* debug, so the whole register always reads as zero.
|
|
*/
|
|
r = 0;
|
|
break;
|
|
case A_CNTCV_LO:
|
|
r = extract64(sse_cntcv(s), 0, 32);
|
|
break;
|
|
case A_CNTCV_HI:
|
|
r = extract64(sse_cntcv(s), 32, 32);
|
|
break;
|
|
case A_CNTID:
|
|
/*
|
|
* For our implementation:
|
|
* - CNTSCR can only be written when CNTCR.EN == 0
|
|
* - HWCLKSW=0, so selected clock is always CLK0
|
|
* - counter scaling is implemented
|
|
*/
|
|
r = (1 << R_CNTID_CNTSELCLK_SHIFT) | (1 << R_CNTID_CNTSC_SHIFT);
|
|
break;
|
|
case A_CNTSCR:
|
|
case A_CNTSCR0:
|
|
r = s->cntscr0;
|
|
break;
|
|
case A_CNTSCR1:
|
|
/* If HWCLKSW == 0, CNTSCR1 is RAZ/WI */
|
|
r = 0;
|
|
break;
|
|
case A_PID4 ... A_CID3:
|
|
r = control_id[(offset - A_PID4) / 4];
|
|
break;
|
|
default:
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"SSE System Counter control frame read: bad offset 0x%x",
|
|
(unsigned)offset);
|
|
r = 0;
|
|
break;
|
|
}
|
|
|
|
trace_sse_counter_control_read(offset, r, size);
|
|
return r;
|
|
}
|
|
|
|
static void sse_counter_control_write(void *opaque, hwaddr offset,
|
|
uint64_t value, unsigned size)
|
|
{
|
|
SSECounter *s = SSE_COUNTER(opaque);
|
|
|
|
trace_sse_counter_control_write(offset, value, size);
|
|
|
|
switch (offset) {
|
|
case A_CNTCR:
|
|
/*
|
|
* Although CNTCR defines interrupt-related bits, the counter doesn't
|
|
* appear to actually have an interrupt output. So INTRCLR is
|
|
* effectively a RAZ/WI bit, as are the reserved bits [31:6].
|
|
* The documentation does not explicitly say so, but we assume
|
|
* that changing the scale factor while the counter is enabled
|
|
* by toggling CNTCR.SCEN has the same behaviour (making the counter
|
|
* value UNKNOWN) as changing it by writing to CNTSCR, and so we
|
|
* don't need to try to recalculate for that case.
|
|
*/
|
|
value &= CNTCR_VALID_MASK;
|
|
if ((value ^ s->cntcr) & R_CNTCR_EN_MASK) {
|
|
/*
|
|
* Whether the counter is being enabled or disabled, the
|
|
* required action is the same: sync the (ns_then, ticks_then)
|
|
* tuple.
|
|
*/
|
|
uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
|
s->ticks_then = sse_counter_for_timestamp(s, now);
|
|
s->ns_then = now;
|
|
sse_counter_notify_users(s);
|
|
}
|
|
s->cntcr = value;
|
|
break;
|
|
case A_CNTCV_LO:
|
|
sse_write_cntcv(s, value, 0);
|
|
break;
|
|
case A_CNTCV_HI:
|
|
sse_write_cntcv(s, value, 32);
|
|
break;
|
|
case A_CNTSCR:
|
|
case A_CNTSCR0:
|
|
/*
|
|
* If the scale registers are changed when the counter is enabled,
|
|
* the count value becomes UNKNOWN. So we don't try to recalculate
|
|
* anything here but only do it on a write to CNTCR.EN.
|
|
*/
|
|
s->cntscr0 = value;
|
|
break;
|
|
case A_CNTSCR1:
|
|
/* If HWCLKSW == 0, CNTSCR1 is RAZ/WI */
|
|
break;
|
|
case A_CNTSR:
|
|
case A_CNTID:
|
|
case A_PID4 ... A_CID3:
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"SSE System Counter control frame: write to RO offset 0x%x\n",
|
|
(unsigned)offset);
|
|
break;
|
|
default:
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"SSE System Counter control frame: write to bad offset 0x%x\n",
|
|
(unsigned)offset);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static uint64_t sse_counter_status_read(void *opaque, hwaddr offset,
|
|
unsigned size)
|
|
{
|
|
SSECounter *s = SSE_COUNTER(opaque);
|
|
uint64_t r;
|
|
|
|
switch (offset) {
|
|
case A_STATUS_CNTCV_LO:
|
|
r = extract64(sse_cntcv(s), 0, 32);
|
|
break;
|
|
case A_STATUS_CNTCV_HI:
|
|
r = extract64(sse_cntcv(s), 32, 32);
|
|
break;
|
|
case A_PID4 ... A_CID3:
|
|
r = status_id[(offset - A_PID4) / 4];
|
|
break;
|
|
default:
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"SSE System Counter status frame read: bad offset 0x%x",
|
|
(unsigned)offset);
|
|
r = 0;
|
|
break;
|
|
}
|
|
|
|
trace_sse_counter_status_read(offset, r, size);
|
|
return r;
|
|
}
|
|
|
|
static void sse_counter_status_write(void *opaque, hwaddr offset,
|
|
uint64_t value, unsigned size)
|
|
{
|
|
trace_sse_counter_status_write(offset, value, size);
|
|
|
|
switch (offset) {
|
|
case A_STATUS_CNTCV_LO:
|
|
case A_STATUS_CNTCV_HI:
|
|
case A_PID4 ... A_CID3:
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"SSE System Counter status frame: write to RO offset 0x%x\n",
|
|
(unsigned)offset);
|
|
break;
|
|
default:
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"SSE System Counter status frame: write to bad offset 0x%x\n",
|
|
(unsigned)offset);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static const MemoryRegionOps sse_counter_control_ops = {
|
|
.read = sse_counter_control_read,
|
|
.write = sse_counter_control_write,
|
|
.endianness = DEVICE_LITTLE_ENDIAN,
|
|
.valid.min_access_size = 4,
|
|
.valid.max_access_size = 4,
|
|
};
|
|
|
|
static const MemoryRegionOps sse_counter_status_ops = {
|
|
.read = sse_counter_status_read,
|
|
.write = sse_counter_status_write,
|
|
.endianness = DEVICE_LITTLE_ENDIAN,
|
|
.valid.min_access_size = 4,
|
|
.valid.max_access_size = 4,
|
|
};
|
|
|
|
static void sse_counter_reset(DeviceState *dev)
|
|
{
|
|
SSECounter *s = SSE_COUNTER(dev);
|
|
|
|
trace_sse_counter_reset();
|
|
|
|
s->cntcr = 0;
|
|
s->cntscr0 = 0x01000000;
|
|
s->ns_then = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
|
s->ticks_then = 0;
|
|
}
|
|
|
|
static void sse_clk_callback(void *opaque, ClockEvent event)
|
|
{
|
|
SSECounter *s = SSE_COUNTER(opaque);
|
|
uint64_t now;
|
|
|
|
switch (event) {
|
|
case ClockPreUpdate:
|
|
/*
|
|
* Before the clock period updates, set (ticks_then, ns_then)
|
|
* to the current time and tick count (as calculated with
|
|
* the old clock period).
|
|
*/
|
|
if (sse_counter_enabled(s)) {
|
|
now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
|
s->ticks_then = sse_counter_for_timestamp(s, now);
|
|
s->ns_then = now;
|
|
}
|
|
break;
|
|
case ClockUpdate:
|
|
sse_counter_notify_users(s);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void sse_counter_init(Object *obj)
|
|
{
|
|
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
|
|
SSECounter *s = SSE_COUNTER(obj);
|
|
|
|
notifier_list_init(&s->notifier_list);
|
|
|
|
s->clk = qdev_init_clock_in(DEVICE(obj), "CLK", sse_clk_callback, s,
|
|
ClockPreUpdate | ClockUpdate);
|
|
memory_region_init_io(&s->control_mr, obj, &sse_counter_control_ops,
|
|
s, "sse-counter-control", 0x1000);
|
|
memory_region_init_io(&s->status_mr, obj, &sse_counter_status_ops,
|
|
s, "sse-counter-status", 0x1000);
|
|
sysbus_init_mmio(sbd, &s->control_mr);
|
|
sysbus_init_mmio(sbd, &s->status_mr);
|
|
}
|
|
|
|
static void sse_counter_realize(DeviceState *dev, Error **errp)
|
|
{
|
|
SSECounter *s = SSE_COUNTER(dev);
|
|
|
|
if (!clock_has_source(s->clk)) {
|
|
error_setg(errp, "SSE system counter: CLK must be connected");
|
|
return;
|
|
}
|
|
}
|
|
|
|
static const VMStateDescription sse_counter_vmstate = {
|
|
.name = "sse-counter",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.fields = (const VMStateField[]) {
|
|
VMSTATE_CLOCK(clk, SSECounter),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
static void sse_counter_class_init(ObjectClass *klass, void *data)
|
|
{
|
|
DeviceClass *dc = DEVICE_CLASS(klass);
|
|
|
|
dc->realize = sse_counter_realize;
|
|
dc->vmsd = &sse_counter_vmstate;
|
|
device_class_set_legacy_reset(dc, sse_counter_reset);
|
|
}
|
|
|
|
static const TypeInfo sse_counter_info = {
|
|
.name = TYPE_SSE_COUNTER,
|
|
.parent = TYPE_SYS_BUS_DEVICE,
|
|
.instance_size = sizeof(SSECounter),
|
|
.instance_init = sse_counter_init,
|
|
.class_init = sse_counter_class_init,
|
|
};
|
|
|
|
static void sse_counter_register_types(void)
|
|
{
|
|
type_register_static(&sse_counter_info);
|
|
}
|
|
|
|
type_init(sse_counter_register_types);
|