You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
qemu/hw/scsi/esp-pci.c

586 lines
16 KiB
C

/*
* QEMU ESP/NCR53C9x emulation
*
* Copyright (c) 2005-2006 Fabrice Bellard
* Copyright (c) 2012 Herve Poussineau
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "hw/pci/pci_device.h"
#include "hw/irq.h"
#include "hw/nvram/eeprom93xx.h"
#include "hw/scsi/esp.h"
#include "migration/vmstate.h"
#include "trace.h"
#include "qapi/error.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "qom/object.h"
#define TYPE_AM53C974_DEVICE "am53c974"
typedef struct PCIESPState PCIESPState;
DECLARE_INSTANCE_CHECKER(PCIESPState, PCI_ESP,
TYPE_AM53C974_DEVICE)
#define DMA_CMD 0x0
#define DMA_STC 0x1
#define DMA_SPA 0x2
#define DMA_WBC 0x3
#define DMA_WAC 0x4
#define DMA_STAT 0x5
#define DMA_SMDLA 0x6
#define DMA_WMAC 0x7
#define DMA_CMD_MASK 0x03
#define DMA_CMD_DIAG 0x04
#define DMA_CMD_MDL 0x10
#define DMA_CMD_INTE_P 0x20
#define DMA_CMD_INTE_D 0x40
#define DMA_CMD_DIR 0x80
#define DMA_STAT_PWDN 0x01
#define DMA_STAT_ERROR 0x02
#define DMA_STAT_ABORT 0x04
#define DMA_STAT_DONE 0x08
#define DMA_STAT_SCSIINT 0x10
#define DMA_STAT_BCMBLT 0x20
#define SBAC_STATUS (1 << 24)
struct PCIESPState {
/*< private >*/
PCIDevice parent_obj;
/*< public >*/
MemoryRegion io;
uint32_t dma_regs[8];
uint32_t sbac;
ESPState esp;
};
static void esp_pci_update_irq(PCIESPState *pci)
{
int scsi_level = !!(pci->dma_regs[DMA_STAT] & DMA_STAT_SCSIINT);
int dma_level = (pci->dma_regs[DMA_CMD] & DMA_CMD_INTE_D) ?
!!(pci->dma_regs[DMA_STAT] & DMA_STAT_DONE) : 0;
int level = scsi_level || dma_level;
pci_set_irq(PCI_DEVICE(pci), level);
}
static void esp_irq_handler(void *opaque, int irq_num, int level)
{
PCIESPState *pci = PCI_ESP(opaque);
if (level) {
pci->dma_regs[DMA_STAT] |= DMA_STAT_SCSIINT;
/*
* If raising the ESP IRQ to indicate end of DMA transfer, set
* DMA_STAT_DONE at the same time. In theory this should be done in
* esp_pci_dma_memory_rw(), however there is a delay between setting
* DMA_STAT_DONE and the ESP IRQ arriving which is visible to the
* guest that can cause confusion e.g. Linux
*/
if ((pci->dma_regs[DMA_CMD] & DMA_CMD_MASK) == 0x3 &&
pci->dma_regs[DMA_WBC] == 0) {
pci->dma_regs[DMA_STAT] |= DMA_STAT_DONE;
}
} else {
pci->dma_regs[DMA_STAT] &= ~DMA_STAT_SCSIINT;
}
esp_pci_update_irq(pci);
}
static void esp_pci_handle_idle(PCIESPState *pci, uint32_t val)
{
ESPState *s = &pci->esp;
trace_esp_pci_dma_idle(val);
esp_dma_enable(s, 0, 0);
}
static void esp_pci_handle_blast(PCIESPState *pci, uint32_t val)
{
trace_esp_pci_dma_blast(val);
qemu_log_mask(LOG_UNIMP, "am53c974: cmd BLAST not implemented\n");
pci->dma_regs[DMA_STAT] |= DMA_STAT_BCMBLT;
}
static void esp_pci_handle_abort(PCIESPState *pci, uint32_t val)
{
ESPState *s = &pci->esp;
trace_esp_pci_dma_abort(val);
if (s->current_req) {
scsi_req_cancel(s->current_req);
}
}
static void esp_pci_handle_start(PCIESPState *pci, uint32_t val)
{
ESPState *s = &pci->esp;
trace_esp_pci_dma_start(val);
pci->dma_regs[DMA_WBC] = pci->dma_regs[DMA_STC];
pci->dma_regs[DMA_WAC] = pci->dma_regs[DMA_SPA];
pci->dma_regs[DMA_WMAC] = pci->dma_regs[DMA_SMDLA];
pci->dma_regs[DMA_STAT] &= ~(DMA_STAT_BCMBLT | DMA_STAT_SCSIINT
| DMA_STAT_DONE | DMA_STAT_ABORT
| DMA_STAT_ERROR | DMA_STAT_PWDN);
esp_dma_enable(s, 0, 1);
}
static void esp_pci_dma_write(PCIESPState *pci, uint32_t saddr, uint32_t val)
{
trace_esp_pci_dma_write(saddr, pci->dma_regs[saddr], val);
switch (saddr) {
case DMA_CMD:
pci->dma_regs[saddr] = val;
switch (val & DMA_CMD_MASK) {
case 0x0: /* IDLE */
esp_pci_handle_idle(pci, val);
break;
case 0x1: /* BLAST */
esp_pci_handle_blast(pci, val);
break;
case 0x2: /* ABORT */
esp_pci_handle_abort(pci, val);
break;
case 0x3: /* START */
esp_pci_handle_start(pci, val);
break;
default: /* can't happen */
abort();
}
break;
case DMA_STC:
case DMA_SPA:
case DMA_SMDLA:
pci->dma_regs[saddr] = val;
break;
case DMA_STAT:
if (pci->sbac & SBAC_STATUS) {
/* clear some bits on write */
uint32_t mask = DMA_STAT_ERROR | DMA_STAT_ABORT | DMA_STAT_DONE;
pci->dma_regs[DMA_STAT] &= ~(val & mask);
esp_pci_update_irq(pci);
}
break;
default:
trace_esp_pci_error_invalid_write_dma(val, saddr);
return;
}
}
static uint32_t esp_pci_dma_read(PCIESPState *pci, uint32_t saddr)
{
uint32_t val;
val = pci->dma_regs[saddr];
if (saddr == DMA_STAT) {
if (!(pci->sbac & SBAC_STATUS)) {
pci->dma_regs[DMA_STAT] &= ~(DMA_STAT_ERROR | DMA_STAT_ABORT |
DMA_STAT_DONE);
esp_pci_update_irq(pci);
}
}
trace_esp_pci_dma_read(saddr, val);
return val;
}
static void esp_pci_io_write(void *opaque, hwaddr addr,
uint64_t val, unsigned int size)
{
PCIESPState *pci = opaque;
ESPState *s = &pci->esp;
if (size < 4 || addr & 3) {
/* need to upgrade request: we only support 4-bytes accesses */
uint32_t current = 0, mask;
int shift;
if (addr < 0x40) {
current = s->wregs[addr >> 2];
} else if (addr < 0x60) {
current = pci->dma_regs[(addr - 0x40) >> 2];
} else if (addr < 0x74) {
current = pci->sbac;
}
shift = (4 - size) * 8;
mask = (~(uint32_t)0 << shift) >> shift;
shift = ((4 - (addr & 3)) & 3) * 8;
val <<= shift;
val |= current & ~(mask << shift);
addr &= ~3;
size = 4;
}
g_assert(size >= 4);
if (addr < 0x40) {
/* SCSI core reg */
esp_reg_write(s, addr >> 2, val);
} else if (addr < 0x60) {
/* PCI DMA CCB */
esp_pci_dma_write(pci, (addr - 0x40) >> 2, val);
} else if (addr == 0x70) {
/* DMA SCSI Bus and control */
trace_esp_pci_sbac_write(pci->sbac, val);
pci->sbac = val;
} else {
trace_esp_pci_error_invalid_write((int)addr);
}
}
static uint64_t esp_pci_io_read(void *opaque, hwaddr addr,
unsigned int size)
{
PCIESPState *pci = opaque;
ESPState *s = &pci->esp;
uint32_t ret;
if (addr < 0x40) {
/* SCSI core reg */
ret = esp_reg_read(s, addr >> 2);
} else if (addr < 0x60) {
/* PCI DMA CCB */
ret = esp_pci_dma_read(pci, (addr - 0x40) >> 2);
} else if (addr == 0x70) {
/* DMA SCSI Bus and control */
trace_esp_pci_sbac_read(pci->sbac);
ret = pci->sbac;
} else {
/* Invalid region */
trace_esp_pci_error_invalid_read((int)addr);
ret = 0;
}
/* give only requested data */
ret >>= (addr & 3) * 8;
ret &= ~(~(uint64_t)0 << (8 * size));
return ret;
}
static void esp_pci_dma_memory_rw(PCIESPState *pci, uint8_t *buf, int len,
DMADirection dir)
{
dma_addr_t addr;
DMADirection expected_dir;
if (pci->dma_regs[DMA_CMD] & DMA_CMD_DIR) {
expected_dir = DMA_DIRECTION_FROM_DEVICE;
} else {
expected_dir = DMA_DIRECTION_TO_DEVICE;
}
if (dir != expected_dir) {
trace_esp_pci_error_invalid_dma_direction();
return;
}
if (pci->dma_regs[DMA_STAT] & DMA_CMD_MDL) {
qemu_log_mask(LOG_UNIMP, "am53c974: MDL transfer not implemented\n");
}
addr = pci->dma_regs[DMA_WAC];
if (pci->dma_regs[DMA_WBC] < len) {
len = pci->dma_regs[DMA_WBC];
}
pci_dma_rw(PCI_DEVICE(pci), addr, buf, len, dir, MEMTXATTRS_UNSPECIFIED);
/* update status registers */
pci->dma_regs[DMA_WBC] -= len;
pci->dma_regs[DMA_WAC] += len;
}
static void esp_pci_dma_memory_read(void *opaque, uint8_t *buf, int len)
{
PCIESPState *pci = opaque;
esp_pci_dma_memory_rw(pci, buf, len, DMA_DIRECTION_TO_DEVICE);
}
static void esp_pci_dma_memory_write(void *opaque, uint8_t *buf, int len)
{
PCIESPState *pci = opaque;
esp_pci_dma_memory_rw(pci, buf, len, DMA_DIRECTION_FROM_DEVICE);
}
static const MemoryRegionOps esp_pci_io_ops = {
.read = esp_pci_io_read,
.write = esp_pci_io_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 1,
.max_access_size = 4,
},
};
static void esp_pci_hard_reset(DeviceState *dev)
{
PCIESPState *pci = PCI_ESP(dev);
ESPState *s = &pci->esp;
esp_hard_reset(s);
pci->dma_regs[DMA_CMD] &= ~(DMA_CMD_DIR | DMA_CMD_INTE_D | DMA_CMD_INTE_P
| DMA_CMD_MDL | DMA_CMD_DIAG | DMA_CMD_MASK);
pci->dma_regs[DMA_WBC] &= ~0xffff;
pci->dma_regs[DMA_WAC] = 0xffffffff;
pci->dma_regs[DMA_STAT] &= ~(DMA_STAT_BCMBLT | DMA_STAT_SCSIINT
| DMA_STAT_DONE | DMA_STAT_ABORT
| DMA_STAT_ERROR);
pci->dma_regs[DMA_WMAC] = 0xfffffffd;
}
static const VMStateDescription vmstate_esp_pci_scsi = {
.name = "pciespscsi",
.version_id = 2,
.minimum_version_id = 1,
.pre_save = esp_pre_save,
.fields = (const VMStateField[]) {
VMSTATE_PCI_DEVICE(parent_obj, PCIESPState),
VMSTATE_BUFFER_UNSAFE(dma_regs, PCIESPState, 0, 8 * sizeof(uint32_t)),
VMSTATE_UINT8_V(esp.mig_version_id, PCIESPState, 2),
VMSTATE_STRUCT(esp, PCIESPState, 0, vmstate_esp, ESPState),
VMSTATE_END_OF_LIST()
}
};
static const struct SCSIBusInfo esp_pci_scsi_info = {
.tcq = false,
.max_target = ESP_MAX_DEVS,
.max_lun = 7,
.transfer_data = esp_transfer_data,
.complete = esp_command_complete,
.cancel = esp_request_cancelled,
};
static void esp_pci_scsi_realize(PCIDevice *dev, Error **errp)
{
PCIESPState *pci = PCI_ESP(dev);
DeviceState *d = DEVICE(dev);
ESPState *s = &pci->esp;
uint8_t *pci_conf;
if (!qdev_realize(DEVICE(s), NULL, errp)) {
return;
}
pci_conf = dev->config;
/* Interrupt pin A */
pci_conf[PCI_INTERRUPT_PIN] = 0x01;
s->dma_memory_read = esp_pci_dma_memory_read;
s->dma_memory_write = esp_pci_dma_memory_write;
s->dma_opaque = pci;
s->chip_id = TCHI_AM53C974;
memory_region_init_io(&pci->io, OBJECT(pci), &esp_pci_io_ops, pci,
"esp-io", 0x80);
pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &pci->io);
s->irq = qemu_allocate_irq(esp_irq_handler, pci, 0);
scsi_bus_init(&s->bus, sizeof(s->bus), d, &esp_pci_scsi_info);
}
static void esp_pci_scsi_exit(PCIDevice *d)
{
PCIESPState *pci = PCI_ESP(d);
ESPState *s = &pci->esp;
qemu_free_irq(s->irq);
}
static void esp_pci_init(Object *obj)
{
PCIESPState *pci = PCI_ESP(obj);
object_initialize_child(obj, "esp", &pci->esp, TYPE_ESP);
}
static void esp_pci_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
k->realize = esp_pci_scsi_realize;
k->exit = esp_pci_scsi_exit;
k->vendor_id = PCI_VENDOR_ID_AMD;
k->device_id = PCI_DEVICE_ID_AMD_SCSI;
k->revision = 0x10;
k->class_id = PCI_CLASS_STORAGE_SCSI;
set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
dc->desc = "AMD Am53c974 PCscsi-PCI SCSI adapter";
device_class_set_legacy_reset(dc, esp_pci_hard_reset);
dc->vmsd = &vmstate_esp_pci_scsi;
}
static const TypeInfo esp_pci_info = {
.name = TYPE_AM53C974_DEVICE,
.parent = TYPE_PCI_DEVICE,
.instance_init = esp_pci_init,
.instance_size = sizeof(PCIESPState),
.class_init = esp_pci_class_init,
.interfaces = (InterfaceInfo[]) {
{ INTERFACE_CONVENTIONAL_PCI_DEVICE },
{ },
},
};
struct DC390State {
PCIESPState pci;
eeprom_t *eeprom;
};
typedef struct DC390State DC390State;
#define TYPE_DC390_DEVICE "dc390"
DECLARE_INSTANCE_CHECKER(DC390State, DC390,
TYPE_DC390_DEVICE)
#define EE_ADAPT_SCSI_ID 64
#define EE_MODE2 65
#define EE_DELAY 66
#define EE_TAG_CMD_NUM 67
#define EE_ADAPT_OPTIONS 68
#define EE_BOOT_SCSI_ID 69
#define EE_BOOT_SCSI_LUN 70
#define EE_CHKSUM1 126
#define EE_CHKSUM2 127
#define EE_ADAPT_OPTION_F6_F8_AT_BOOT 0x01
#define EE_ADAPT_OPTION_BOOT_FROM_CDROM 0x02
#define EE_ADAPT_OPTION_INT13 0x04
#define EE_ADAPT_OPTION_SCAM_SUPPORT 0x08
static uint32_t dc390_read_config(PCIDevice *dev, uint32_t addr, int l)
{
DC390State *pci = DC390(dev);
uint32_t val;
val = pci_default_read_config(dev, addr, l);
if (addr == 0x00 && l == 1) {
/* First byte of address space is AND-ed with EEPROM DO line */
if (!eeprom93xx_read(pci->eeprom)) {
val &= ~0xff;
}
}
return val;
}
static void dc390_write_config(PCIDevice *dev,
uint32_t addr, uint32_t val, int l)
{
DC390State *pci = DC390(dev);
if (addr == 0x80) {
/* EEPROM write */
int eesk = val & 0x80 ? 1 : 0;
int eedi = val & 0x40 ? 1 : 0;
eeprom93xx_write(pci->eeprom, 1, eesk, eedi);
} else if (addr == 0xc0) {
/* EEPROM CS low */
eeprom93xx_write(pci->eeprom, 0, 0, 0);
} else {
pci_default_write_config(dev, addr, val, l);
}
}
static void dc390_scsi_realize(PCIDevice *dev, Error **errp)
{
DC390State *pci = DC390(dev);
Error *err = NULL;
uint8_t *contents;
uint16_t chksum = 0;
int i;
/* init base class */
esp_pci_scsi_realize(dev, &err);
if (err) {
error_propagate(errp, err);
return;
}
/* EEPROM */
pci->eeprom = eeprom93xx_new(DEVICE(dev), 64);
/* set default eeprom values */
contents = (uint8_t *)eeprom93xx_data(pci->eeprom);
for (i = 0; i < 16; i++) {
contents[i * 2] = 0x57;
contents[i * 2 + 1] = 0x00;
}
contents[EE_ADAPT_SCSI_ID] = 7;
contents[EE_MODE2] = 0x0f;
contents[EE_TAG_CMD_NUM] = 0x04;
contents[EE_ADAPT_OPTIONS] = EE_ADAPT_OPTION_F6_F8_AT_BOOT
| EE_ADAPT_OPTION_BOOT_FROM_CDROM
| EE_ADAPT_OPTION_INT13;
/* update eeprom checksum */
for (i = 0; i < EE_CHKSUM1; i += 2) {
chksum += contents[i] + (((uint16_t)contents[i + 1]) << 8);
}
chksum = 0x1234 - chksum;
contents[EE_CHKSUM1] = chksum & 0xff;
contents[EE_CHKSUM2] = chksum >> 8;
}
static void dc390_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
k->realize = dc390_scsi_realize;
k->config_read = dc390_read_config;
k->config_write = dc390_write_config;
set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
dc->desc = "Tekram DC-390 SCSI adapter";
}
static const TypeInfo dc390_info = {
.name = TYPE_DC390_DEVICE,
.parent = TYPE_AM53C974_DEVICE,
.instance_size = sizeof(DC390State),
.class_init = dc390_class_init,
};
static void esp_pci_register_types(void)
{
type_register_static(&esp_pci_info);
type_register_static(&dc390_info);
}
type_init(esp_pci_register_types)