You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
qemu/hw/ppc/spapr_events.c

1086 lines
38 KiB
C

/*
* QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
*
* RTAS events handling
*
* Copyright (c) 2012 David Gibson, IBM Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "sysemu/device_tree.h"
#include "sysemu/runstate.h"
#include "hw/ppc/fdt.h"
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_vio.h"
#include "hw/pci/pci.h"
#include "hw/irq.h"
#include "hw/pci-host/spapr.h"
#include "hw/ppc/spapr_drc.h"
#include "qemu/help_option.h"
#include "qemu/bcd.h"
#include "qemu/main-loop.h"
#include "hw/ppc/spapr_ovec.h"
#include <libfdt.h>
#include "migration/blocker.h"
#define RTAS_LOG_VERSION_MASK 0xff000000
#define RTAS_LOG_VERSION_6 0x06000000
#define RTAS_LOG_SEVERITY_MASK 0x00e00000
#define RTAS_LOG_SEVERITY_ALREADY_REPORTED 0x00c00000
#define RTAS_LOG_SEVERITY_FATAL 0x00a00000
#define RTAS_LOG_SEVERITY_ERROR 0x00800000
#define RTAS_LOG_SEVERITY_ERROR_SYNC 0x00600000
#define RTAS_LOG_SEVERITY_WARNING 0x00400000
#define RTAS_LOG_SEVERITY_EVENT 0x00200000
#define RTAS_LOG_SEVERITY_NO_ERROR 0x00000000
#define RTAS_LOG_DISPOSITION_MASK 0x00180000
#define RTAS_LOG_DISPOSITION_FULLY_RECOVERED 0x00000000
#define RTAS_LOG_DISPOSITION_LIMITED_RECOVERY 0x00080000
#define RTAS_LOG_DISPOSITION_NOT_RECOVERED 0x00100000
#define RTAS_LOG_OPTIONAL_PART_PRESENT 0x00040000
#define RTAS_LOG_INITIATOR_MASK 0x0000f000
#define RTAS_LOG_INITIATOR_UNKNOWN 0x00000000
#define RTAS_LOG_INITIATOR_CPU 0x00001000
#define RTAS_LOG_INITIATOR_PCI 0x00002000
#define RTAS_LOG_INITIATOR_MEMORY 0x00004000
#define RTAS_LOG_INITIATOR_HOTPLUG 0x00006000
#define RTAS_LOG_TARGET_MASK 0x00000f00
#define RTAS_LOG_TARGET_UNKNOWN 0x00000000
#define RTAS_LOG_TARGET_CPU 0x00000100
#define RTAS_LOG_TARGET_PCI 0x00000200
#define RTAS_LOG_TARGET_MEMORY 0x00000400
#define RTAS_LOG_TARGET_HOTPLUG 0x00000600
#define RTAS_LOG_TYPE_MASK 0x000000ff
#define RTAS_LOG_TYPE_OTHER 0x00000000
#define RTAS_LOG_TYPE_RETRY 0x00000001
#define RTAS_LOG_TYPE_TCE_ERR 0x00000002
#define RTAS_LOG_TYPE_INTERN_DEV_FAIL 0x00000003
#define RTAS_LOG_TYPE_TIMEOUT 0x00000004
#define RTAS_LOG_TYPE_DATA_PARITY 0x00000005
#define RTAS_LOG_TYPE_ADDR_PARITY 0x00000006
#define RTAS_LOG_TYPE_CACHE_PARITY 0x00000007
#define RTAS_LOG_TYPE_ADDR_INVALID 0x00000008
#define RTAS_LOG_TYPE_ECC_UNCORR 0x00000009
#define RTAS_LOG_TYPE_ECC_CORR 0x0000000a
#define RTAS_LOG_TYPE_EPOW 0x00000040
#define RTAS_LOG_TYPE_HOTPLUG 0x000000e5
struct rtas_error_log {
uint32_t summary;
uint32_t extended_length;
} QEMU_PACKED;
struct rtas_event_log_v6 {
uint8_t b0;
#define RTAS_LOG_V6_B0_VALID 0x80
#define RTAS_LOG_V6_B0_UNRECOVERABLE_ERROR 0x40
#define RTAS_LOG_V6_B0_RECOVERABLE_ERROR 0x20
#define RTAS_LOG_V6_B0_DEGRADED_OPERATION 0x10
#define RTAS_LOG_V6_B0_PREDICTIVE_ERROR 0x08
#define RTAS_LOG_V6_B0_NEW_LOG 0x04
#define RTAS_LOG_V6_B0_BIGENDIAN 0x02
uint8_t _resv1;
uint8_t b2;
#define RTAS_LOG_V6_B2_POWERPC_FORMAT 0x80
#define RTAS_LOG_V6_B2_LOG_FORMAT_MASK 0x0f
#define RTAS_LOG_V6_B2_LOG_FORMAT_PLATFORM_EVENT 0x0e
uint8_t _resv2[9];
uint32_t company;
#define RTAS_LOG_V6_COMPANY_IBM 0x49424d00 /* IBM<null> */
} QEMU_PACKED;
struct rtas_event_log_v6_section_header {
uint16_t section_id;
uint16_t section_length;
uint8_t section_version;
uint8_t section_subtype;
uint16_t creator_component_id;
} QEMU_PACKED;
struct rtas_event_log_v6_maina {
#define RTAS_LOG_V6_SECTION_ID_MAINA 0x5048 /* PH */
struct rtas_event_log_v6_section_header hdr;
uint32_t creation_date; /* BCD: YYYYMMDD */
uint32_t creation_time; /* BCD: HHMMSS00 */
uint8_t _platform1[8];
char creator_id;
uint8_t _resv1[2];
uint8_t section_count;
uint8_t _resv2[4];
uint8_t _platform2[8];
uint32_t plid;
uint8_t _platform3[4];
} QEMU_PACKED;
struct rtas_event_log_v6_mainb {
#define RTAS_LOG_V6_SECTION_ID_MAINB 0x5548 /* UH */
struct rtas_event_log_v6_section_header hdr;
uint8_t subsystem_id;
uint8_t _platform1;
uint8_t event_severity;
uint8_t event_subtype;
uint8_t _platform2[4];
uint8_t _resv1[2];
uint16_t action_flags;
uint8_t _resv2[4];
} QEMU_PACKED;
struct rtas_event_log_v6_epow {
#define RTAS_LOG_V6_SECTION_ID_EPOW 0x4550 /* EP */
struct rtas_event_log_v6_section_header hdr;
uint8_t sensor_value;
#define RTAS_LOG_V6_EPOW_ACTION_RESET 0
#define RTAS_LOG_V6_EPOW_ACTION_WARN_COOLING 1
#define RTAS_LOG_V6_EPOW_ACTION_WARN_POWER 2
#define RTAS_LOG_V6_EPOW_ACTION_SYSTEM_SHUTDOWN 3
#define RTAS_LOG_V6_EPOW_ACTION_SYSTEM_HALT 4
#define RTAS_LOG_V6_EPOW_ACTION_MAIN_ENCLOSURE 5
#define RTAS_LOG_V6_EPOW_ACTION_POWER_OFF 7
uint8_t event_modifier;
#define RTAS_LOG_V6_EPOW_MODIFIER_NORMAL 1
#define RTAS_LOG_V6_EPOW_MODIFIER_ON_UPS 2
#define RTAS_LOG_V6_EPOW_MODIFIER_CRITICAL 3
#define RTAS_LOG_V6_EPOW_MODIFIER_TEMPERATURE 4
uint8_t extended_modifier;
#define RTAS_LOG_V6_EPOW_XMODIFIER_SYSTEM_WIDE 0
#define RTAS_LOG_V6_EPOW_XMODIFIER_PARTITION_SPECIFIC 1
uint8_t _resv;
uint64_t reason_code;
} QEMU_PACKED;
struct epow_extended_log {
struct rtas_event_log_v6 v6hdr;
struct rtas_event_log_v6_maina maina;
struct rtas_event_log_v6_mainb mainb;
struct rtas_event_log_v6_epow epow;
} QEMU_PACKED;
union drc_identifier {
uint32_t index;
uint32_t count;
struct {
uint32_t count;
uint32_t index;
} count_indexed;
char name[1];
} QEMU_PACKED;
struct rtas_event_log_v6_hp {
#define RTAS_LOG_V6_SECTION_ID_HOTPLUG 0x4850 /* HP */
struct rtas_event_log_v6_section_header hdr;
uint8_t hotplug_type;
#define RTAS_LOG_V6_HP_TYPE_CPU 1
#define RTAS_LOG_V6_HP_TYPE_MEMORY 2
#define RTAS_LOG_V6_HP_TYPE_SLOT 3
#define RTAS_LOG_V6_HP_TYPE_PHB 4
#define RTAS_LOG_V6_HP_TYPE_PCI 5
#define RTAS_LOG_V6_HP_TYPE_PMEM 6
uint8_t hotplug_action;
#define RTAS_LOG_V6_HP_ACTION_ADD 1
#define RTAS_LOG_V6_HP_ACTION_REMOVE 2
uint8_t hotplug_identifier;
#define RTAS_LOG_V6_HP_ID_DRC_NAME 1
#define RTAS_LOG_V6_HP_ID_DRC_INDEX 2
#define RTAS_LOG_V6_HP_ID_DRC_COUNT 3
#define RTAS_LOG_V6_HP_ID_DRC_COUNT_INDEXED 4
uint8_t reserved;
union drc_identifier drc_id;
} QEMU_PACKED;
struct hp_extended_log {
struct rtas_event_log_v6 v6hdr;
struct rtas_event_log_v6_maina maina;
struct rtas_event_log_v6_mainb mainb;
struct rtas_event_log_v6_hp hp;
} QEMU_PACKED;
struct rtas_event_log_v6_mc {
#define RTAS_LOG_V6_SECTION_ID_MC 0x4D43 /* MC */
struct rtas_event_log_v6_section_header hdr;
uint32_t fru_id;
uint32_t proc_id;
uint8_t error_type;
#define RTAS_LOG_V6_MC_TYPE_UE 0
#define RTAS_LOG_V6_MC_TYPE_SLB 1
#define RTAS_LOG_V6_MC_TYPE_ERAT 2
#define RTAS_LOG_V6_MC_TYPE_TLB 4
#define RTAS_LOG_V6_MC_TYPE_D_CACHE 5
#define RTAS_LOG_V6_MC_TYPE_I_CACHE 7
uint8_t sub_err_type;
#define RTAS_LOG_V6_MC_UE_INDETERMINATE 0
#define RTAS_LOG_V6_MC_UE_IFETCH 1
#define RTAS_LOG_V6_MC_UE_PAGE_TABLE_WALK_IFETCH 2
#define RTAS_LOG_V6_MC_UE_LOAD_STORE 3
#define RTAS_LOG_V6_MC_UE_PAGE_TABLE_WALK_LOAD_STORE 4
#define RTAS_LOG_V6_MC_SLB_PARITY 0
#define RTAS_LOG_V6_MC_SLB_MULTIHIT 1
#define RTAS_LOG_V6_MC_SLB_INDETERMINATE 2
#define RTAS_LOG_V6_MC_ERAT_PARITY 1
#define RTAS_LOG_V6_MC_ERAT_MULTIHIT 2
#define RTAS_LOG_V6_MC_ERAT_INDETERMINATE 3
#define RTAS_LOG_V6_MC_TLB_PARITY 1
#define RTAS_LOG_V6_MC_TLB_MULTIHIT 2
#define RTAS_LOG_V6_MC_TLB_INDETERMINATE 3
/*
* Per PAPR,
* For UE error type, set bit 1 of sub_err_type to indicate effective addr is
* provided. For other error types (SLB/ERAT/TLB), set bit 0 to indicate
* same.
*/
#define RTAS_LOG_V6_MC_UE_EA_ADDR_PROVIDED 0x40
#define RTAS_LOG_V6_MC_EA_ADDR_PROVIDED 0x80
uint8_t reserved_1[6];
uint64_t effective_address;
uint64_t logical_address;
} QEMU_PACKED;
struct mc_extended_log {
struct rtas_event_log_v6 v6hdr;
struct rtas_event_log_v6_mc mc;
} QEMU_PACKED;
struct MC_ierror_table {
unsigned long srr1_mask;
unsigned long srr1_value;
bool nip_valid; /* nip is a valid indicator of faulting address */
uint8_t error_type;
uint8_t error_subtype;
unsigned int initiator;
unsigned int severity;
};
static const struct MC_ierror_table mc_ierror_table[] = {
{ 0x00000000081c0000, 0x0000000000040000, true,
RTAS_LOG_V6_MC_TYPE_UE, RTAS_LOG_V6_MC_UE_IFETCH,
RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
{ 0x00000000081c0000, 0x0000000000080000, true,
RTAS_LOG_V6_MC_TYPE_SLB, RTAS_LOG_V6_MC_SLB_PARITY,
RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
{ 0x00000000081c0000, 0x00000000000c0000, true,
RTAS_LOG_V6_MC_TYPE_SLB, RTAS_LOG_V6_MC_SLB_MULTIHIT,
RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
{ 0x00000000081c0000, 0x0000000000100000, true,
RTAS_LOG_V6_MC_TYPE_ERAT, RTAS_LOG_V6_MC_ERAT_MULTIHIT,
RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
{ 0x00000000081c0000, 0x0000000000140000, true,
RTAS_LOG_V6_MC_TYPE_TLB, RTAS_LOG_V6_MC_TLB_MULTIHIT,
RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
{ 0x00000000081c0000, 0x0000000000180000, true,
RTAS_LOG_V6_MC_TYPE_UE, RTAS_LOG_V6_MC_UE_PAGE_TABLE_WALK_IFETCH,
RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, } };
struct MC_derror_table {
unsigned long dsisr_value;
bool dar_valid; /* dar is a valid indicator of faulting address */
uint8_t error_type;
uint8_t error_subtype;
unsigned int initiator;
unsigned int severity;
};
static const struct MC_derror_table mc_derror_table[] = {
{ 0x00008000, false,
RTAS_LOG_V6_MC_TYPE_UE, RTAS_LOG_V6_MC_UE_LOAD_STORE,
RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
{ 0x00004000, true,
RTAS_LOG_V6_MC_TYPE_UE, RTAS_LOG_V6_MC_UE_PAGE_TABLE_WALK_LOAD_STORE,
RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
{ 0x00000800, true,
RTAS_LOG_V6_MC_TYPE_ERAT, RTAS_LOG_V6_MC_ERAT_MULTIHIT,
RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
{ 0x00000400, true,
RTAS_LOG_V6_MC_TYPE_TLB, RTAS_LOG_V6_MC_TLB_MULTIHIT,
RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
{ 0x00000080, true,
RTAS_LOG_V6_MC_TYPE_SLB, RTAS_LOG_V6_MC_SLB_MULTIHIT, /* Before PARITY */
RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
{ 0x00000100, true,
RTAS_LOG_V6_MC_TYPE_SLB, RTAS_LOG_V6_MC_SLB_PARITY,
RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, } };
#define SRR1_MC_LOADSTORE(srr1) ((srr1) & PPC_BIT(42))
typedef enum EventClass {
EVENT_CLASS_INTERNAL_ERRORS = 0,
EVENT_CLASS_EPOW = 1,
EVENT_CLASS_RESERVED = 2,
EVENT_CLASS_HOT_PLUG = 3,
EVENT_CLASS_IO = 4,
EVENT_CLASS_MAX
} EventClassIndex;
#define EVENT_CLASS_MASK(index) (1 << (31 - index))
static const char * const event_names[EVENT_CLASS_MAX] = {
[EVENT_CLASS_INTERNAL_ERRORS] = "internal-errors",
[EVENT_CLASS_EPOW] = "epow-events",
[EVENT_CLASS_HOT_PLUG] = "hot-plug-events",
[EVENT_CLASS_IO] = "ibm,io-events",
};
struct SpaprEventSource {
int irq;
uint32_t mask;
bool enabled;
};
static SpaprEventSource *spapr_event_sources_new(void)
{
return g_new0(SpaprEventSource, EVENT_CLASS_MAX);
}
static void spapr_event_sources_register(SpaprEventSource *event_sources,
EventClassIndex index, int irq)
{
/* we only support 1 irq per event class at the moment */
g_assert(event_sources);
g_assert(!event_sources[index].enabled);
event_sources[index].irq = irq;
event_sources[index].mask = EVENT_CLASS_MASK(index);
event_sources[index].enabled = true;
}
static const SpaprEventSource *
spapr_event_sources_get_source(SpaprEventSource *event_sources,
EventClassIndex index)
{
g_assert(index < EVENT_CLASS_MAX);
g_assert(event_sources);
return &event_sources[index];
}
void spapr_dt_events(SpaprMachineState *spapr, void *fdt)
{
uint32_t irq_ranges[EVENT_CLASS_MAX * 2];
int i, count = 0, event_sources;
SpaprEventSource *events = spapr->event_sources;
g_assert(events);
_FDT(event_sources = fdt_add_subnode(fdt, 0, "event-sources"));
for (i = 0, count = 0; i < EVENT_CLASS_MAX; i++) {
int node_offset;
uint32_t interrupts[2];
const SpaprEventSource *source =
spapr_event_sources_get_source(events, i);
const char *source_name = event_names[i];
if (!source->enabled) {
continue;
}
spapr_dt_irq(interrupts, source->irq, false);
_FDT(node_offset = fdt_add_subnode(fdt, event_sources, source_name));
_FDT(fdt_setprop(fdt, node_offset, "interrupts", interrupts,
sizeof(interrupts)));
irq_ranges[count++] = interrupts[0];
irq_ranges[count++] = cpu_to_be32(1);
}
_FDT((fdt_setprop(fdt, event_sources, "interrupt-controller", NULL, 0)));
_FDT((fdt_setprop_cell(fdt, event_sources, "#interrupt-cells", 2)));
_FDT((fdt_setprop(fdt, event_sources, "interrupt-ranges",
irq_ranges, count * sizeof(uint32_t))));
}
static const SpaprEventSource *
rtas_event_log_to_source(SpaprMachineState *spapr, int log_type)
{
const SpaprEventSource *source;
g_assert(spapr->event_sources);
switch (log_type) {
case RTAS_LOG_TYPE_HOTPLUG:
source = spapr_event_sources_get_source(spapr->event_sources,
EVENT_CLASS_HOT_PLUG);
if (spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT)) {
g_assert(source->enabled);
break;
}
/* fall through back to epow for legacy hotplug interrupt source */
case RTAS_LOG_TYPE_EPOW:
source = spapr_event_sources_get_source(spapr->event_sources,
EVENT_CLASS_EPOW);
break;
default:
source = NULL;
}
return source;
}
static int rtas_event_log_to_irq(SpaprMachineState *spapr, int log_type)
{
const SpaprEventSource *source;
source = rtas_event_log_to_source(spapr, log_type);
g_assert(source);
g_assert(source->enabled);
return source->irq;
}
static uint32_t spapr_event_log_entry_type(SpaprEventLogEntry *entry)
{
return entry->summary & RTAS_LOG_TYPE_MASK;
}
static void rtas_event_log_queue(SpaprMachineState *spapr,
SpaprEventLogEntry *entry)
{
QTAILQ_INSERT_TAIL(&spapr->pending_events, entry, next);
}
static SpaprEventLogEntry *rtas_event_log_dequeue(SpaprMachineState *spapr,
uint32_t event_mask)
{
SpaprEventLogEntry *entry = NULL;
QTAILQ_FOREACH(entry, &spapr->pending_events, next) {
const SpaprEventSource *source =
rtas_event_log_to_source(spapr,
spapr_event_log_entry_type(entry));
g_assert(source);
if (source->mask & event_mask) {
break;
}
}
if (entry) {
QTAILQ_REMOVE(&spapr->pending_events, entry, next);
}
return entry;
}
static bool rtas_event_log_contains(SpaprMachineState *spapr, uint32_t event_mask)
{
SpaprEventLogEntry *entry = NULL;
QTAILQ_FOREACH(entry, &spapr->pending_events, next) {
const SpaprEventSource *source =
rtas_event_log_to_source(spapr,
spapr_event_log_entry_type(entry));
if (source->mask & event_mask) {
return true;
}
}
return false;
}
static uint32_t next_plid;
static void spapr_init_v6hdr(struct rtas_event_log_v6 *v6hdr)
{
v6hdr->b0 = RTAS_LOG_V6_B0_VALID | RTAS_LOG_V6_B0_NEW_LOG
| RTAS_LOG_V6_B0_BIGENDIAN;
v6hdr->b2 = RTAS_LOG_V6_B2_POWERPC_FORMAT
| RTAS_LOG_V6_B2_LOG_FORMAT_PLATFORM_EVENT;
v6hdr->company = cpu_to_be32(RTAS_LOG_V6_COMPANY_IBM);
}
static void spapr_init_maina(SpaprMachineState *spapr,
struct rtas_event_log_v6_maina *maina,
int section_count)
{
struct tm tm;
int year;
maina->hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_MAINA);
maina->hdr.section_length = cpu_to_be16(sizeof(*maina));
/* FIXME: section version, subtype and creator id? */
spapr_rtc_read(&spapr->rtc, &tm, NULL);
year = tm.tm_year + 1900;
maina->creation_date = cpu_to_be32((to_bcd(year / 100) << 24)
| (to_bcd(year % 100) << 16)
| (to_bcd(tm.tm_mon + 1) << 8)
| to_bcd(tm.tm_mday));
maina->creation_time = cpu_to_be32((to_bcd(tm.tm_hour) << 24)
| (to_bcd(tm.tm_min) << 16)
| (to_bcd(tm.tm_sec) << 8));
maina->creator_id = 'H'; /* Hypervisor */
maina->section_count = section_count;
maina->plid = next_plid++;
}
static void spapr_powerdown_req(Notifier *n, void *opaque)
{
SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
SpaprEventLogEntry *entry;
struct rtas_event_log_v6 *v6hdr;
struct rtas_event_log_v6_maina *maina;
struct rtas_event_log_v6_mainb *mainb;
struct rtas_event_log_v6_epow *epow;
struct epow_extended_log *new_epow;
entry = g_new(SpaprEventLogEntry, 1);
new_epow = g_malloc0(sizeof(*new_epow));
entry->extended_log = new_epow;
v6hdr = &new_epow->v6hdr;
maina = &new_epow->maina;
mainb = &new_epow->mainb;
epow = &new_epow->epow;
entry->summary = RTAS_LOG_VERSION_6
| RTAS_LOG_SEVERITY_EVENT
| RTAS_LOG_DISPOSITION_NOT_RECOVERED
| RTAS_LOG_OPTIONAL_PART_PRESENT
| RTAS_LOG_TYPE_EPOW;
entry->extended_length = sizeof(*new_epow);
spapr_init_v6hdr(v6hdr);
spapr_init_maina(spapr, maina, 3 /* Main-A, Main-B and EPOW */);
mainb->hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_MAINB);
mainb->hdr.section_length = cpu_to_be16(sizeof(*mainb));
/* FIXME: section version, subtype and creator id? */
mainb->subsystem_id = 0xa0; /* External environment */
mainb->event_severity = 0x00; /* Informational / non-error */
mainb->event_subtype = 0xd0; /* Normal shutdown */
epow->hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_EPOW);
epow->hdr.section_length = cpu_to_be16(sizeof(*epow));
epow->hdr.section_version = 2; /* includes extended modifier */
/* FIXME: section subtype and creator id? */
epow->sensor_value = RTAS_LOG_V6_EPOW_ACTION_SYSTEM_SHUTDOWN;
epow->event_modifier = RTAS_LOG_V6_EPOW_MODIFIER_NORMAL;
epow->extended_modifier = RTAS_LOG_V6_EPOW_XMODIFIER_PARTITION_SPECIFIC;
rtas_event_log_queue(spapr, entry);
qemu_irq_pulse(spapr_qirq(spapr,
rtas_event_log_to_irq(spapr, RTAS_LOG_TYPE_EPOW)));
}
static void spapr_hotplug_req_event(uint8_t hp_id, uint8_t hp_action,
SpaprDrcType drc_type,
union drc_identifier *drc_id)
{
SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
SpaprEventLogEntry *entry;
struct hp_extended_log *new_hp;
struct rtas_event_log_v6 *v6hdr;
struct rtas_event_log_v6_maina *maina;
struct rtas_event_log_v6_mainb *mainb;
struct rtas_event_log_v6_hp *hp;
entry = g_new(SpaprEventLogEntry, 1);
new_hp = g_new0(struct hp_extended_log, 1);
entry->extended_log = new_hp;
v6hdr = &new_hp->v6hdr;
maina = &new_hp->maina;
mainb = &new_hp->mainb;
hp = &new_hp->hp;
entry->summary = RTAS_LOG_VERSION_6
| RTAS_LOG_SEVERITY_EVENT
| RTAS_LOG_DISPOSITION_NOT_RECOVERED
| RTAS_LOG_OPTIONAL_PART_PRESENT
| RTAS_LOG_INITIATOR_HOTPLUG
| RTAS_LOG_TYPE_HOTPLUG;
entry->extended_length = sizeof(*new_hp);
spapr_init_v6hdr(v6hdr);
spapr_init_maina(spapr, maina, 3 /* Main-A, Main-B, HP */);
mainb->hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_MAINB);
mainb->hdr.section_length = cpu_to_be16(sizeof(*mainb));
mainb->subsystem_id = 0x80; /* External environment */
mainb->event_severity = 0x00; /* Informational / non-error */
mainb->event_subtype = 0x00; /* Normal shutdown */
hp->hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_HOTPLUG);
hp->hdr.section_length = cpu_to_be16(sizeof(*hp));
hp->hdr.section_version = 1; /* includes extended modifier */
hp->hotplug_action = hp_action;
hp->hotplug_identifier = hp_id;
switch (drc_type) {
case SPAPR_DR_CONNECTOR_TYPE_PCI:
hp->hotplug_type = RTAS_LOG_V6_HP_TYPE_PCI;
break;
case SPAPR_DR_CONNECTOR_TYPE_LMB:
hp->hotplug_type = RTAS_LOG_V6_HP_TYPE_MEMORY;
break;
case SPAPR_DR_CONNECTOR_TYPE_CPU:
hp->hotplug_type = RTAS_LOG_V6_HP_TYPE_CPU;
break;
case SPAPR_DR_CONNECTOR_TYPE_PHB:
hp->hotplug_type = RTAS_LOG_V6_HP_TYPE_PHB;
break;
case SPAPR_DR_CONNECTOR_TYPE_PMEM:
hp->hotplug_type = RTAS_LOG_V6_HP_TYPE_PMEM;
break;
default:
/* we shouldn't be signaling hotplug events for resources
* that don't support them
*/
g_assert_not_reached();
}
if (hp_id == RTAS_LOG_V6_HP_ID_DRC_COUNT) {
hp->drc_id.count = cpu_to_be32(drc_id->count);
} else if (hp_id == RTAS_LOG_V6_HP_ID_DRC_INDEX) {
hp->drc_id.index = cpu_to_be32(drc_id->index);
} else if (hp_id == RTAS_LOG_V6_HP_ID_DRC_COUNT_INDEXED) {
/* we should not be using count_indexed value unless the guest
* supports dedicated hotplug event source
*/
g_assert(spapr_memory_hot_unplug_supported(spapr));
hp->drc_id.count_indexed.count =
cpu_to_be32(drc_id->count_indexed.count);
hp->drc_id.count_indexed.index =
cpu_to_be32(drc_id->count_indexed.index);
}
rtas_event_log_queue(spapr, entry);
qemu_irq_pulse(spapr_qirq(spapr,
rtas_event_log_to_irq(spapr, RTAS_LOG_TYPE_HOTPLUG)));
}
void spapr_hotplug_req_add_by_index(SpaprDrc *drc)
{
SpaprDrcType drc_type = spapr_drc_type(drc);
union drc_identifier drc_id;
drc_id.index = spapr_drc_index(drc);
spapr_hotplug_req_event(RTAS_LOG_V6_HP_ID_DRC_INDEX,
RTAS_LOG_V6_HP_ACTION_ADD, drc_type, &drc_id);
}
void spapr_hotplug_req_remove_by_index(SpaprDrc *drc)
{
SpaprDrcType drc_type = spapr_drc_type(drc);
union drc_identifier drc_id;
drc_id.index = spapr_drc_index(drc);
spapr_hotplug_req_event(RTAS_LOG_V6_HP_ID_DRC_INDEX,
RTAS_LOG_V6_HP_ACTION_REMOVE, drc_type, &drc_id);
}
void spapr_hotplug_req_add_by_count(SpaprDrcType drc_type,
uint32_t count)
{
union drc_identifier drc_id;
drc_id.count = count;
spapr_hotplug_req_event(RTAS_LOG_V6_HP_ID_DRC_COUNT,
RTAS_LOG_V6_HP_ACTION_ADD, drc_type, &drc_id);
}
void spapr_hotplug_req_remove_by_count(SpaprDrcType drc_type,
uint32_t count)
{
union drc_identifier drc_id;
drc_id.count = count;
spapr_hotplug_req_event(RTAS_LOG_V6_HP_ID_DRC_COUNT,
RTAS_LOG_V6_HP_ACTION_REMOVE, drc_type, &drc_id);
}
void spapr_hotplug_req_add_by_count_indexed(SpaprDrcType drc_type,
uint32_t count, uint32_t index)
{
union drc_identifier drc_id;
drc_id.count_indexed.count = count;
drc_id.count_indexed.index = index;
spapr_hotplug_req_event(RTAS_LOG_V6_HP_ID_DRC_COUNT_INDEXED,
RTAS_LOG_V6_HP_ACTION_ADD, drc_type, &drc_id);
}
void spapr_hotplug_req_remove_by_count_indexed(SpaprDrcType drc_type,
uint32_t count, uint32_t index)
{
union drc_identifier drc_id;
drc_id.count_indexed.count = count;
drc_id.count_indexed.index = index;
spapr_hotplug_req_event(RTAS_LOG_V6_HP_ID_DRC_COUNT_INDEXED,
RTAS_LOG_V6_HP_ACTION_REMOVE, drc_type, &drc_id);
}
static void spapr_mc_set_ea_provided_flag(struct mc_extended_log *ext_elog)
{
switch (ext_elog->mc.error_type) {
case RTAS_LOG_V6_MC_TYPE_UE:
ext_elog->mc.sub_err_type |= RTAS_LOG_V6_MC_UE_EA_ADDR_PROVIDED;
break;
case RTAS_LOG_V6_MC_TYPE_SLB:
case RTAS_LOG_V6_MC_TYPE_ERAT:
case RTAS_LOG_V6_MC_TYPE_TLB:
ext_elog->mc.sub_err_type |= RTAS_LOG_V6_MC_EA_ADDR_PROVIDED;
break;
default:
break;
}
}
static uint32_t spapr_mce_get_elog_type(PowerPCCPU *cpu, bool recovered,
struct mc_extended_log *ext_elog)
{
int i;
CPUPPCState *env = &cpu->env;
uint32_t summary;
uint64_t dsisr = env->spr[SPR_DSISR];
summary = RTAS_LOG_VERSION_6 | RTAS_LOG_OPTIONAL_PART_PRESENT;
if (recovered) {
summary |= RTAS_LOG_DISPOSITION_FULLY_RECOVERED;
} else {
summary |= RTAS_LOG_DISPOSITION_NOT_RECOVERED;
}
if (SRR1_MC_LOADSTORE(env->spr[SPR_SRR1])) {
for (i = 0; i < ARRAY_SIZE(mc_derror_table); i++) {
if (!(dsisr & mc_derror_table[i].dsisr_value)) {
continue;
}
ext_elog->mc.error_type = mc_derror_table[i].error_type;
ext_elog->mc.sub_err_type = mc_derror_table[i].error_subtype;
if (mc_derror_table[i].dar_valid) {
ext_elog->mc.effective_address = cpu_to_be64(env->spr[SPR_DAR]);
spapr_mc_set_ea_provided_flag(ext_elog);
}
summary |= mc_derror_table[i].initiator
| mc_derror_table[i].severity;
return summary;
}
} else {
for (i = 0; i < ARRAY_SIZE(mc_ierror_table); i++) {
if ((env->spr[SPR_SRR1] & mc_ierror_table[i].srr1_mask) !=
mc_ierror_table[i].srr1_value) {
continue;
}
ext_elog->mc.error_type = mc_ierror_table[i].error_type;
ext_elog->mc.sub_err_type = mc_ierror_table[i].error_subtype;
if (mc_ierror_table[i].nip_valid) {
ext_elog->mc.effective_address = cpu_to_be64(env->nip);
spapr_mc_set_ea_provided_flag(ext_elog);
}
summary |= mc_ierror_table[i].initiator
| mc_ierror_table[i].severity;
return summary;
}
}
summary |= RTAS_LOG_INITIATOR_CPU;
return summary;
}
static void spapr_mce_dispatch_elog(SpaprMachineState *spapr, PowerPCCPU *cpu,
bool recovered)
{
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
uint64_t rtas_addr;
struct rtas_error_log log;
struct mc_extended_log *ext_elog;
uint32_t summary;
ext_elog = g_malloc0(sizeof(*ext_elog));
summary = spapr_mce_get_elog_type(cpu, recovered, ext_elog);
log.summary = cpu_to_be32(summary);
log.extended_length = cpu_to_be32(sizeof(*ext_elog));
spapr_init_v6hdr(&ext_elog->v6hdr);
ext_elog->mc.hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_MC);
ext_elog->mc.hdr.section_length =
cpu_to_be16(sizeof(struct rtas_event_log_v6_mc));
ext_elog->mc.hdr.section_version = 1;
/* get rtas addr from fdt */
rtas_addr = spapr_get_rtas_addr();
if (!rtas_addr) {
if (!recovered) {
error_report(
"FWNMI: Unable to deliver machine check to guest: rtas_addr not found.");
qemu_system_guest_panicked(NULL);
} else {
warn_report(
"FWNMI: Unable to deliver machine check to guest: rtas_addr not found. "
"Machine check recovered.");
}
g_free(ext_elog);
return;
}
/*
* By taking the interlock, we assume that the MCE will be
* delivered to the guest. CAUTION: don't add anything that could
* prevent the MCE to be delivered after this line, otherwise the
* guest won't be able to release the interlock and ultimately
* hang/crash?
*/
spapr->fwnmi_machine_check_interlock = cpu->vcpu_id;
stq_be_phys(&address_space_memory, rtas_addr + RTAS_ERROR_LOG_OFFSET,
env->gpr[3]);
cpu_physical_memory_write(rtas_addr + RTAS_ERROR_LOG_OFFSET +
sizeof(env->gpr[3]), &log, sizeof(log));
cpu_physical_memory_write(rtas_addr + RTAS_ERROR_LOG_OFFSET +
sizeof(env->gpr[3]) + sizeof(log), ext_elog,
sizeof(*ext_elog));
g_free(ext_elog);
env->gpr[3] = rtas_addr + RTAS_ERROR_LOG_OFFSET;
ppc_cpu_do_fwnmi_machine_check(cs, spapr->fwnmi_machine_check_addr);
}
void spapr_mce_req_event(PowerPCCPU *cpu, bool recovered)
{
SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
CPUState *cs = CPU(cpu);
int ret;
if (spapr->fwnmi_machine_check_addr == -1) {
/* Non-FWNMI case, deliver it like an architected CPU interrupt. */
cs->exception_index = POWERPC_EXCP_MCHECK;
ppc_cpu_do_interrupt(cs);
return;
}
/* Wait for FWNMI interlock. */
while (spapr->fwnmi_machine_check_interlock != -1) {
/*
* Check whether the same CPU got machine check error
* while still handling the mc error (i.e., before
* that CPU called "ibm,nmi-interlock")
*/
if (spapr->fwnmi_machine_check_interlock == cpu->vcpu_id) {
if (!recovered) {
error_report(
"FWNMI: Unable to deliver machine check to guest: nested machine check.");
qemu_system_guest_panicked(NULL);
} else {
warn_report(
"FWNMI: Unable to deliver machine check to guest: nested machine check. "
"Machine check recovered.");
}
return;
}
qemu_cond_wait_bql(&spapr->fwnmi_machine_check_interlock_cond);
if (spapr->fwnmi_machine_check_addr == -1) {
/*
* If the machine was reset while waiting for the interlock,
* abort the delivery. The machine check applies to a context
* that no longer exists, so it wouldn't make sense to deliver
* it now.
*/
return;
}
}
/*
* Try to block migration while FWNMI is being handled, so the
* machine check handler runs where the information passed to it
* actually makes sense. This shouldn't actually block migration,
* only delay it slightly, assuming migration is retried. If the
* attempt to block fails, carry on. Unfortunately, it always
* fails when running with -only-migrate. A proper interface to
* delay migration completion for a bit could avoid that.
*/
error_setg(&spapr->fwnmi_migration_blocker,
"A machine check is being handled during migration. The handler"
"may run and log hardware error on the destination");
ret = migrate_add_blocker(&spapr->fwnmi_migration_blocker, NULL);
if (ret == -EBUSY) {
warn_report("Received a fwnmi while migration was in progress");
}
spapr_mce_dispatch_elog(spapr, cpu, recovered);
}
static void check_exception(PowerPCCPU *cpu, SpaprMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
uint32_t mask, buf, len, event_len;
SpaprEventLogEntry *event;
struct rtas_error_log header;
int i;
if ((nargs < 6) || (nargs > 7) || nret != 1) {
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
return;
}
mask = rtas_ld(args, 2);
buf = rtas_ld(args, 4);
len = rtas_ld(args, 5);
event = rtas_event_log_dequeue(spapr, mask);
if (!event) {
goto out_no_events;
}
event_len = event->extended_length + sizeof(header);
if (event_len < len) {
len = event_len;
}
header.summary = cpu_to_be32(event->summary);
header.extended_length = cpu_to_be32(event->extended_length);
cpu_physical_memory_write(buf, &header, sizeof(header));
cpu_physical_memory_write(buf + sizeof(header), event->extended_log,
event->extended_length);
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
g_free(event->extended_log);
g_free(event);
/* according to PAPR+, the IRQ must be left asserted, or re-asserted, if
* there are still pending events to be fetched via check-exception. We
* do the latter here, since our code relies on edge-triggered
* interrupts.
*/
for (i = 0; i < EVENT_CLASS_MAX; i++) {
if (rtas_event_log_contains(spapr, EVENT_CLASS_MASK(i))) {
const SpaprEventSource *source =
spapr_event_sources_get_source(spapr->event_sources, i);
g_assert(source->enabled);
qemu_irq_pulse(spapr_qirq(spapr, source->irq));
}
}
return;
out_no_events:
rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
}
static void event_scan(PowerPCCPU *cpu, SpaprMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
int i;
if (nargs != 4 || nret != 1) {
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
return;
}
for (i = 0; i < EVENT_CLASS_MAX; i++) {
if (rtas_event_log_contains(spapr, EVENT_CLASS_MASK(i))) {
const SpaprEventSource *source =
spapr_event_sources_get_source(spapr->event_sources, i);
g_assert(source->enabled);
qemu_irq_pulse(spapr_qirq(spapr, source->irq));
}
}
rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
}
void spapr_clear_pending_events(SpaprMachineState *spapr)
{
SpaprEventLogEntry *entry = NULL, *next_entry;
QTAILQ_FOREACH_SAFE(entry, &spapr->pending_events, next, next_entry) {
QTAILQ_REMOVE(&spapr->pending_events, entry, next);
g_free(entry->extended_log);
g_free(entry);
}
}
void spapr_clear_pending_hotplug_events(SpaprMachineState *spapr)
{
SpaprEventLogEntry *entry = NULL, *next_entry;
QTAILQ_FOREACH_SAFE(entry, &spapr->pending_events, next, next_entry) {
if (spapr_event_log_entry_type(entry) == RTAS_LOG_TYPE_HOTPLUG) {
QTAILQ_REMOVE(&spapr->pending_events, entry, next);
g_free(entry->extended_log);
g_free(entry);
}
}
}
void spapr_events_init(SpaprMachineState *spapr)
{
int epow_irq = SPAPR_IRQ_EPOW;
if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
epow_irq = spapr_irq_findone(spapr, &error_fatal);
}
spapr_irq_claim(spapr, epow_irq, false, &error_fatal);
QTAILQ_INIT(&spapr->pending_events);
spapr->event_sources = spapr_event_sources_new();
spapr_event_sources_register(spapr->event_sources, EVENT_CLASS_EPOW,
epow_irq);
/* NOTE: if machine supports modern/dedicated hotplug event source,
* we add it to the device-tree unconditionally. This means we may
* have cases where the source is enabled in QEMU, but unused by the
* guest because it does not support modern hotplug events, so we
* take care to rely on checking for negotiation of OV5_HP_EVT option
* before attempting to use it to signal events, rather than simply
* checking that it's enabled.
*/
if (spapr->use_hotplug_event_source) {
int hp_irq = SPAPR_IRQ_HOTPLUG;
if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
hp_irq = spapr_irq_findone(spapr, &error_fatal);
}
spapr_irq_claim(spapr, hp_irq, false, &error_fatal);
spapr_event_sources_register(spapr->event_sources, EVENT_CLASS_HOT_PLUG,
hp_irq);
}
spapr->epow_notifier.notify = spapr_powerdown_req;
qemu_register_powerdown_notifier(&spapr->epow_notifier);
spapr_rtas_register(RTAS_CHECK_EXCEPTION, "check-exception",
check_exception);
spapr_rtas_register(RTAS_EVENT_SCAN, "event-scan", event_scan);
}