You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
qemu/hw/ppc/pnv_core.c

756 lines
21 KiB
C

/*
* QEMU PowerPC PowerNV CPU Core model
*
* Copyright (c) 2016, IBM Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "sysemu/reset.h"
#include "qapi/error.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "target/ppc/cpu.h"
#include "hw/ppc/ppc.h"
#include "hw/ppc/pnv.h"
#include "hw/ppc/pnv_chip.h"
#include "hw/ppc/pnv_core.h"
#include "hw/ppc/pnv_xscom.h"
#include "hw/ppc/xics.h"
#include "hw/qdev-properties.h"
#include "helper_regs.h"
static const char *pnv_core_cpu_typename(PnvCore *pc)
{
const char *core_type = object_class_get_name(object_get_class(OBJECT(pc)));
int len = strlen(core_type) - strlen(PNV_CORE_TYPE_SUFFIX);
char *s = g_strdup_printf(POWERPC_CPU_TYPE_NAME("%.*s"), len, core_type);
const char *cpu_type = object_class_get_name(object_class_by_name(s));
g_free(s);
return cpu_type;
}
static void pnv_core_cpu_reset(PnvCore *pc, PowerPCCPU *cpu)
{
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
PnvChipClass *pcc = PNV_CHIP_GET_CLASS(pc->chip);
cpu_reset(cs);
/*
* the skiboot firmware elects a primary thread to initialize the
* system and it can be any.
*/
env->gpr[3] = PNV_FDT_ADDR;
env->nip = 0x10;
env->msr |= MSR_HVB; /* Hypervisor mode */
env->spr[SPR_HRMOR] = pc->hrmor;
if (pc->big_core) {
/* Clear "small core" bit on Power9/10 (this is set in default PVR) */
env->spr[SPR_PVR] &= ~PPC_BIT(51);
}
hreg_compute_hflags(env);
ppc_maybe_interrupt(env);
cpu_ppc_tb_reset(env);
pcc->intc_reset(pc->chip, cpu);
}
/*
* These values are read by the PowerNV HW monitors under Linux
*/
#define PNV_XSCOM_EX_DTS_RESULT0 0x50000
#define PNV_XSCOM_EX_DTS_RESULT1 0x50001
static uint64_t pnv_core_power8_xscom_read(void *opaque, hwaddr addr,
unsigned int width)
{
uint32_t offset = addr >> 3;
uint64_t val = 0;
/* The result should be 38 C */
switch (offset) {
case PNV_XSCOM_EX_DTS_RESULT0:
val = 0x26f024f023f0000ull;
break;
case PNV_XSCOM_EX_DTS_RESULT1:
val = 0x24f000000000000ull;
break;
default:
qemu_log_mask(LOG_UNIMP, "%s: unimp read 0x%08x\n", __func__,
offset);
}
return val;
}
static void pnv_core_power8_xscom_write(void *opaque, hwaddr addr, uint64_t val,
unsigned int width)
{
uint32_t offset = addr >> 3;
qemu_log_mask(LOG_UNIMP, "%s: unimp write 0x%08x\n", __func__,
offset);
}
static const MemoryRegionOps pnv_core_power8_xscom_ops = {
.read = pnv_core_power8_xscom_read,
.write = pnv_core_power8_xscom_write,
.valid.min_access_size = 8,
.valid.max_access_size = 8,
.impl.min_access_size = 8,
.impl.max_access_size = 8,
.endianness = DEVICE_BIG_ENDIAN,
};
/*
* POWER9 core controls
*/
#define PNV9_XSCOM_EC_PPM_SPECIAL_WKUP_HYP 0xf010d
#define PNV9_XSCOM_EC_PPM_SPECIAL_WKUP_OTR 0xf010a
#define PNV9_XSCOM_EC_CORE_THREAD_STATE 0x10ab3
static uint64_t pnv_core_power9_xscom_read(void *opaque, hwaddr addr,
unsigned int width)
{
uint32_t offset = addr >> 3;
uint64_t val = 0;
/* The result should be 38 C */
switch (offset) {
case PNV_XSCOM_EX_DTS_RESULT0:
val = 0x26f024f023f0000ull;
break;
case PNV_XSCOM_EX_DTS_RESULT1:
val = 0x24f000000000000ull;
break;
case PNV9_XSCOM_EC_PPM_SPECIAL_WKUP_HYP:
case PNV9_XSCOM_EC_PPM_SPECIAL_WKUP_OTR:
val = 0x0;
break;
case PNV9_XSCOM_EC_CORE_THREAD_STATE:
val = 0;
break;
default:
qemu_log_mask(LOG_UNIMP, "%s: unimp read 0x%08x\n", __func__,
offset);
}
return val;
}
static void pnv_core_power9_xscom_write(void *opaque, hwaddr addr, uint64_t val,
unsigned int width)
{
uint32_t offset = addr >> 3;
switch (offset) {
case PNV9_XSCOM_EC_PPM_SPECIAL_WKUP_HYP:
case PNV9_XSCOM_EC_PPM_SPECIAL_WKUP_OTR:
break;
default:
qemu_log_mask(LOG_UNIMP, "%s: unimp write 0x%08x\n", __func__,
offset);
}
}
static const MemoryRegionOps pnv_core_power9_xscom_ops = {
.read = pnv_core_power9_xscom_read,
.write = pnv_core_power9_xscom_write,
.valid.min_access_size = 8,
.valid.max_access_size = 8,
.impl.min_access_size = 8,
.impl.max_access_size = 8,
.endianness = DEVICE_BIG_ENDIAN,
};
/*
* POWER10 core controls
*/
#define PNV10_XSCOM_EC_CORE_THREAD_STATE 0x412
#define PNV10_XSCOM_EC_CORE_THREAD_INFO 0x413
#define PNV10_XSCOM_EC_CORE_DIRECT_CONTROLS 0x449
#define PNV10_XSCOM_EC_CORE_RAS_STATUS 0x454
static uint64_t pnv_core_power10_xscom_read(void *opaque, hwaddr addr,
unsigned int width)
{
PnvCore *pc = PNV_CORE(opaque);
int nr_threads = CPU_CORE(pc)->nr_threads;
int i;
uint32_t offset = addr >> 3;
uint64_t val = 0;
switch (offset) {
case PNV10_XSCOM_EC_CORE_THREAD_STATE:
for (i = 0; i < nr_threads; i++) {
PowerPCCPU *cpu = pc->threads[i];
CPUState *cs = CPU(cpu);
if (cs->halted) {
val |= PPC_BIT(56 + i);
}
}
if (pc->lpar_per_core) {
val |= PPC_BIT(62);
}
break;
case PNV10_XSCOM_EC_CORE_THREAD_INFO:
break;
case PNV10_XSCOM_EC_CORE_RAS_STATUS:
for (i = 0; i < nr_threads; i++) {
PowerPCCPU *cpu = pc->threads[i];
CPUPPCState *env = &cpu->env;
if (env->quiesced) {
val |= PPC_BIT(0 + 8 * i) | PPC_BIT(1 + 8 * i);
}
}
break;
default:
qemu_log_mask(LOG_UNIMP, "%s: unimp read 0x%08x\n", __func__,
offset);
}
return val;
}
static void pnv_core_power10_xscom_write(void *opaque, hwaddr addr,
uint64_t val, unsigned int width)
{
PnvCore *pc = PNV_CORE(opaque);
int nr_threads = CPU_CORE(pc)->nr_threads;
int i;
uint32_t offset = addr >> 3;
switch (offset) {
case PNV10_XSCOM_EC_CORE_DIRECT_CONTROLS:
for (i = 0; i < nr_threads; i++) {
PowerPCCPU *cpu = pc->threads[i];
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
if (val & PPC_BIT(7 + 8 * i)) { /* stop */
val &= ~PPC_BIT(7 + 8 * i);
cpu_pause(cs);
env->quiesced = true;
}
if (val & PPC_BIT(6 + 8 * i)) { /* start */
val &= ~PPC_BIT(6 + 8 * i);
env->quiesced = false;
cpu_resume(cs);
}
if (val & PPC_BIT(4 + 8 * i)) { /* sreset */
val &= ~PPC_BIT(4 + 8 * i);
env->quiesced = false;
pnv_cpu_do_nmi_resume(cs);
}
if (val & PPC_BIT(3 + 8 * i)) { /* clear maint */
env->quiesced = false;
/*
* Hardware has very particular cases for where clear maint
* must be used and where start must be used to resume a
* thread. These are not modelled exactly, just treat
* this and start the same.
*/
val &= ~PPC_BIT(3 + 8 * i);
cpu_resume(cs);
}
}
if (val) {
qemu_log_mask(LOG_UNIMP, "%s: unimp bits in DIRECT_CONTROLS "
"0x%016" PRIx64 "\n", __func__, val);
}
break;
default:
qemu_log_mask(LOG_UNIMP, "%s: unimp write 0x%08x\n", __func__,
offset);
}
}
static const MemoryRegionOps pnv_core_power10_xscom_ops = {
.read = pnv_core_power10_xscom_read,
.write = pnv_core_power10_xscom_write,
.valid.min_access_size = 8,
.valid.max_access_size = 8,
.impl.min_access_size = 8,
.impl.max_access_size = 8,
.endianness = DEVICE_BIG_ENDIAN,
};
static void pnv_core_cpu_realize(PnvCore *pc, PowerPCCPU *cpu, Error **errp,
int thread_index)
{
CPUPPCState *env = &cpu->env;
int core_hwid;
ppc_spr_t *pir_spr = &env->spr_cb[SPR_PIR];
ppc_spr_t *tir_spr = &env->spr_cb[SPR_TIR];
uint32_t pir, tir;
Error *local_err = NULL;
PnvChipClass *pcc = PNV_CHIP_GET_CLASS(pc->chip);
if (!qdev_realize(DEVICE(cpu), NULL, errp)) {
return;
}
pcc->intc_create(pc->chip, cpu, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
core_hwid = object_property_get_uint(OBJECT(pc), "hwid", &error_abort);
pcc->get_pir_tir(pc->chip, core_hwid, thread_index, &pir, &tir);
pir_spr->default_value = pir;
tir_spr->default_value = tir;
env->chip_index = pc->chip->chip_id;
if (pc->big_core) {
/* 2 "small cores" get the same core index for SMT operations */
env->core_index = core_hwid >> 1;
} else {
env->core_index = core_hwid;
}
if (pc->lpar_per_core) {
cpu_ppc_set_1lpar(cpu);
}
/* Set time-base frequency to 512 MHz */
cpu_ppc_tb_init(env, PNV_TIMEBASE_FREQ);
}
static void pnv_core_reset(void *dev)
{
CPUCore *cc = CPU_CORE(dev);
PnvCore *pc = PNV_CORE(dev);
int i;
for (i = 0; i < cc->nr_threads; i++) {
pnv_core_cpu_reset(pc, pc->threads[i]);
}
}
static void pnv_core_realize(DeviceState *dev, Error **errp)
{
PnvCore *pc = PNV_CORE(OBJECT(dev));
PnvCoreClass *pcc = PNV_CORE_GET_CLASS(pc);
CPUCore *cc = CPU_CORE(OBJECT(dev));
const char *typename = pnv_core_cpu_typename(pc);
Error *local_err = NULL;
void *obj;
int i, j;
char name[32];
assert(pc->chip);
pc->threads = g_new(PowerPCCPU *, cc->nr_threads);
for (i = 0; i < cc->nr_threads; i++) {
PowerPCCPU *cpu;
PnvCPUState *pnv_cpu;
obj = object_new(typename);
cpu = POWERPC_CPU(obj);
pc->threads[i] = POWERPC_CPU(obj);
if (cc->nr_threads > 1) {
cpu->env.has_smt_siblings = true;
}
snprintf(name, sizeof(name), "thread[%d]", i);
object_property_add_child(OBJECT(pc), name, obj);
cpu->machine_data = g_new0(PnvCPUState, 1);
pnv_cpu = pnv_cpu_state(cpu);
pnv_cpu->pnv_core = pc;
object_unref(obj);
}
for (j = 0; j < cc->nr_threads; j++) {
pnv_core_cpu_realize(pc, pc->threads[j], &local_err, j);
if (local_err) {
goto err;
}
}
snprintf(name, sizeof(name), "xscom-core.%d", cc->core_id);
pnv_xscom_region_init(&pc->xscom_regs, OBJECT(dev), pcc->xscom_ops,
pc, name, pcc->xscom_size);
qemu_register_reset(pnv_core_reset, pc);
return;
err:
while (--i >= 0) {
obj = OBJECT(pc->threads[i]);
object_unparent(obj);
}
g_free(pc->threads);
error_propagate(errp, local_err);
}
static void pnv_core_cpu_unrealize(PnvCore *pc, PowerPCCPU *cpu)
{
PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
PnvChipClass *pcc = PNV_CHIP_GET_CLASS(pc->chip);
pcc->intc_destroy(pc->chip, cpu);
cpu_remove_sync(CPU(cpu));
cpu->machine_data = NULL;
g_free(pnv_cpu);
object_unparent(OBJECT(cpu));
}
static void pnv_core_unrealize(DeviceState *dev)
{
PnvCore *pc = PNV_CORE(dev);
CPUCore *cc = CPU_CORE(dev);
int i;
qemu_unregister_reset(pnv_core_reset, pc);
for (i = 0; i < cc->nr_threads; i++) {
pnv_core_cpu_unrealize(pc, pc->threads[i]);
}
g_free(pc->threads);
}
static Property pnv_core_properties[] = {
DEFINE_PROP_UINT32("hwid", PnvCore, hwid, 0),
DEFINE_PROP_UINT64("hrmor", PnvCore, hrmor, 0),
DEFINE_PROP_BOOL("big-core", PnvCore, big_core, false),
DEFINE_PROP_BOOL("quirk-tb-big-core", PnvCore, tod_state.big_core_quirk,
false),
DEFINE_PROP_BOOL("lpar-per-core", PnvCore, lpar_per_core, false),
DEFINE_PROP_LINK("chip", PnvCore, chip, TYPE_PNV_CHIP, PnvChip *),
DEFINE_PROP_END_OF_LIST(),
};
static void pnv_core_power8_class_init(ObjectClass *oc, void *data)
{
PnvCoreClass *pcc = PNV_CORE_CLASS(oc);
pcc->xscom_ops = &pnv_core_power8_xscom_ops;
pcc->xscom_size = PNV_XSCOM_EX_SIZE;
}
static void pnv_core_power9_class_init(ObjectClass *oc, void *data)
{
PnvCoreClass *pcc = PNV_CORE_CLASS(oc);
pcc->xscom_ops = &pnv_core_power9_xscom_ops;
pcc->xscom_size = PNV_XSCOM_EX_SIZE;
}
static void pnv_core_power10_class_init(ObjectClass *oc, void *data)
{
PnvCoreClass *pcc = PNV_CORE_CLASS(oc);
pcc->xscom_ops = &pnv_core_power10_xscom_ops;
pcc->xscom_size = PNV10_XSCOM_EC_SIZE;
}
static void pnv_core_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
dc->realize = pnv_core_realize;
dc->unrealize = pnv_core_unrealize;
device_class_set_props(dc, pnv_core_properties);
dc->user_creatable = false;
}
#define DEFINE_PNV_CORE_TYPE(family, cpu_model) \
{ \
.parent = TYPE_PNV_CORE, \
.name = PNV_CORE_TYPE_NAME(cpu_model), \
.class_init = pnv_core_##family##_class_init, \
}
static const TypeInfo pnv_core_infos[] = {
{
.name = TYPE_PNV_CORE,
.parent = TYPE_CPU_CORE,
.instance_size = sizeof(PnvCore),
.class_size = sizeof(PnvCoreClass),
.class_init = pnv_core_class_init,
.abstract = true,
},
DEFINE_PNV_CORE_TYPE(power8, "power8e_v2.1"),
DEFINE_PNV_CORE_TYPE(power8, "power8_v2.0"),
DEFINE_PNV_CORE_TYPE(power8, "power8nvl_v1.0"),
DEFINE_PNV_CORE_TYPE(power9, "power9_v2.2"),
DEFINE_PNV_CORE_TYPE(power10, "power10_v2.0"),
};
DEFINE_TYPES(pnv_core_infos)
/*
* POWER9 Quads
*/
#define P9X_EX_NCU_SPEC_BAR 0x11010
static uint64_t pnv_quad_power9_xscom_read(void *opaque, hwaddr addr,
unsigned int width)
{
uint32_t offset = addr >> 3;
uint64_t val = -1;
switch (offset) {
case P9X_EX_NCU_SPEC_BAR:
case P9X_EX_NCU_SPEC_BAR + 0x400: /* Second EX */
val = 0;
break;
default:
qemu_log_mask(LOG_UNIMP, "%s: unimp read 0x%08x\n", __func__,
offset);
}
return val;
}
static void pnv_quad_power9_xscom_write(void *opaque, hwaddr addr, uint64_t val,
unsigned int width)
{
uint32_t offset = addr >> 3;
switch (offset) {
case P9X_EX_NCU_SPEC_BAR:
case P9X_EX_NCU_SPEC_BAR + 0x400: /* Second EX */
break;
default:
qemu_log_mask(LOG_UNIMP, "%s: unimp write 0x%08x\n", __func__,
offset);
}
}
static const MemoryRegionOps pnv_quad_power9_xscom_ops = {
.read = pnv_quad_power9_xscom_read,
.write = pnv_quad_power9_xscom_write,
.valid.min_access_size = 8,
.valid.max_access_size = 8,
.impl.min_access_size = 8,
.impl.max_access_size = 8,
.endianness = DEVICE_BIG_ENDIAN,
};
/*
* POWER10 Quads
*/
static uint64_t pnv_quad_power10_xscom_read(void *opaque, hwaddr addr,
unsigned int width)
{
uint32_t offset = addr >> 3;
uint64_t val = -1;
switch (offset) {
default:
qemu_log_mask(LOG_UNIMP, "%s: unimp read 0x%08x\n", __func__,
offset);
}
return val;
}
static void pnv_quad_power10_xscom_write(void *opaque, hwaddr addr,
uint64_t val, unsigned int width)
{
uint32_t offset = addr >> 3;
switch (offset) {
default:
qemu_log_mask(LOG_UNIMP, "%s: unimp write 0x%08x\n", __func__,
offset);
}
}
static const MemoryRegionOps pnv_quad_power10_xscom_ops = {
.read = pnv_quad_power10_xscom_read,
.write = pnv_quad_power10_xscom_write,
.valid.min_access_size = 8,
.valid.max_access_size = 8,
.impl.min_access_size = 8,
.impl.max_access_size = 8,
.endianness = DEVICE_BIG_ENDIAN,
};
#define P10_QME_SPWU_HYP 0x83c
#define P10_QME_SSH_HYP 0x82c
static uint64_t pnv_qme_power10_xscom_read(void *opaque, hwaddr addr,
unsigned int width)
{
PnvQuad *eq = PNV_QUAD(opaque);
uint32_t offset = addr >> 3;
uint64_t val = -1;
/*
* Forth nibble selects the core within a quad, mask it to process read
* for any core.
*/
switch (offset & ~PPC_BITMASK32(16, 19)) {
case P10_QME_SSH_HYP:
val = 0;
if (eq->special_wakeup_done) {
val |= PPC_BIT(1); /* SPWU DONE */
val |= PPC_BIT(4); /* SSH SPWU DONE */
}
break;
default:
qemu_log_mask(LOG_UNIMP, "%s: unimp read 0x%08x\n", __func__,
offset);
}
return val;
}
static void pnv_qme_power10_xscom_write(void *opaque, hwaddr addr,
uint64_t val, unsigned int width)
{
PnvQuad *eq = PNV_QUAD(opaque);
uint32_t offset = addr >> 3;
bool set;
int i;
switch (offset & ~PPC_BITMASK32(16, 19)) {
case P10_QME_SPWU_HYP:
set = !!(val & PPC_BIT(0));
eq->special_wakeup_done = set;
for (i = 0; i < 4; i++) {
/* These bits select cores in the quad */
if (offset & PPC_BIT32(16 + i)) {
eq->special_wakeup[i] = set;
}
}
break;
default:
qemu_log_mask(LOG_UNIMP, "%s: unimp write 0x%08x\n", __func__,
offset);
}
}
static const MemoryRegionOps pnv_qme_power10_xscom_ops = {
.read = pnv_qme_power10_xscom_read,
.write = pnv_qme_power10_xscom_write,
.valid.min_access_size = 8,
.valid.max_access_size = 8,
.impl.min_access_size = 8,
.impl.max_access_size = 8,
.endianness = DEVICE_BIG_ENDIAN,
};
static void pnv_quad_power9_realize(DeviceState *dev, Error **errp)
{
PnvQuad *eq = PNV_QUAD(dev);
PnvQuadClass *pqc = PNV_QUAD_GET_CLASS(eq);
char name[32];
snprintf(name, sizeof(name), "xscom-quad.%d", eq->quad_id);
pnv_xscom_region_init(&eq->xscom_regs, OBJECT(dev),
pqc->xscom_ops,
eq, name,
pqc->xscom_size);
}
static void pnv_quad_power10_realize(DeviceState *dev, Error **errp)
{
PnvQuad *eq = PNV_QUAD(dev);
PnvQuadClass *pqc = PNV_QUAD_GET_CLASS(eq);
char name[32];
snprintf(name, sizeof(name), "xscom-quad.%d", eq->quad_id);
pnv_xscom_region_init(&eq->xscom_regs, OBJECT(dev),
pqc->xscom_ops,
eq, name,
pqc->xscom_size);
snprintf(name, sizeof(name), "xscom-qme.%d", eq->quad_id);
pnv_xscom_region_init(&eq->xscom_qme_regs, OBJECT(dev),
pqc->xscom_qme_ops,
eq, name,
pqc->xscom_qme_size);
}
static Property pnv_quad_properties[] = {
DEFINE_PROP_UINT32("quad-id", PnvQuad, quad_id, 0),
DEFINE_PROP_END_OF_LIST(),
};
static void pnv_quad_power9_class_init(ObjectClass *oc, void *data)
{
PnvQuadClass *pqc = PNV_QUAD_CLASS(oc);
DeviceClass *dc = DEVICE_CLASS(oc);
dc->realize = pnv_quad_power9_realize;
pqc->xscom_ops = &pnv_quad_power9_xscom_ops;
pqc->xscom_size = PNV9_XSCOM_EQ_SIZE;
}
static void pnv_quad_power10_class_init(ObjectClass *oc, void *data)
{
PnvQuadClass *pqc = PNV_QUAD_CLASS(oc);
DeviceClass *dc = DEVICE_CLASS(oc);
dc->realize = pnv_quad_power10_realize;
pqc->xscom_ops = &pnv_quad_power10_xscom_ops;
pqc->xscom_size = PNV10_XSCOM_EQ_SIZE;
pqc->xscom_qme_ops = &pnv_qme_power10_xscom_ops;
pqc->xscom_qme_size = PNV10_XSCOM_QME_SIZE;
}
static void pnv_quad_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
device_class_set_props(dc, pnv_quad_properties);
dc->user_creatable = false;
}
static const TypeInfo pnv_quad_infos[] = {
{
.name = TYPE_PNV_QUAD,
.parent = TYPE_DEVICE,
.instance_size = sizeof(PnvQuad),
.class_size = sizeof(PnvQuadClass),
.class_init = pnv_quad_class_init,
.abstract = true,
},
{
.parent = TYPE_PNV_QUAD,
.name = PNV_QUAD_TYPE_NAME("power9"),
.class_init = pnv_quad_power9_class_init,
},
{
.parent = TYPE_PNV_QUAD,
.name = PNV_QUAD_TYPE_NAME("power10"),
.class_init = pnv_quad_power10_class_init,
},
};
DEFINE_TYPES(pnv_quad_infos);