You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
qemu/hw/net/tulip.c

1051 lines
28 KiB
C

/*
* QEMU TULIP Emulation
*
* Copyright (c) 2019 Sven Schnelle <svens@stackframe.org>
*
* This work is licensed under the GNU GPL license version 2 or later.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "hw/irq.h"
#include "hw/pci/pci_device.h"
#include "hw/qdev-properties.h"
#include "hw/nvram/eeprom93xx.h"
#include "migration/vmstate.h"
#include "sysemu/sysemu.h"
#include "tulip.h"
#include "trace.h"
#include "net/eth.h"
struct TULIPState {
PCIDevice dev;
MemoryRegion io;
MemoryRegion memory;
NICConf c;
qemu_irq irq;
NICState *nic;
eeprom_t *eeprom;
uint32_t csr[16];
/* state for MII */
uint32_t old_csr9;
uint32_t mii_word;
uint32_t mii_bitcnt;
hwaddr current_rx_desc;
hwaddr current_tx_desc;
uint8_t rx_frame[2048];
uint8_t tx_frame[2048];
uint16_t tx_frame_len;
uint16_t rx_frame_len;
uint16_t rx_frame_size;
uint32_t rx_status;
uint8_t filter[16][6];
};
static const VMStateDescription vmstate_pci_tulip = {
.name = "tulip",
.fields = (const VMStateField[]) {
VMSTATE_PCI_DEVICE(dev, TULIPState),
VMSTATE_UINT32_ARRAY(csr, TULIPState, 16),
VMSTATE_UINT32(old_csr9, TULIPState),
VMSTATE_UINT32(mii_word, TULIPState),
VMSTATE_UINT32(mii_bitcnt, TULIPState),
VMSTATE_UINT64(current_rx_desc, TULIPState),
VMSTATE_UINT64(current_tx_desc, TULIPState),
VMSTATE_BUFFER(rx_frame, TULIPState),
VMSTATE_BUFFER(tx_frame, TULIPState),
VMSTATE_UINT16(rx_frame_len, TULIPState),
VMSTATE_UINT16(tx_frame_len, TULIPState),
VMSTATE_UINT16(rx_frame_size, TULIPState),
VMSTATE_UINT32(rx_status, TULIPState),
VMSTATE_UINT8_2DARRAY(filter, TULIPState, 16, 6),
VMSTATE_END_OF_LIST()
}
};
static void tulip_desc_read(TULIPState *s, hwaddr p,
struct tulip_descriptor *desc)
{
const MemTxAttrs attrs = { .memory = true };
if (s->csr[0] & CSR0_DBO) {
ldl_be_pci_dma(&s->dev, p, &desc->status, attrs);
ldl_be_pci_dma(&s->dev, p + 4, &desc->control, attrs);
ldl_be_pci_dma(&s->dev, p + 8, &desc->buf_addr1, attrs);
ldl_be_pci_dma(&s->dev, p + 12, &desc->buf_addr2, attrs);
} else {
ldl_le_pci_dma(&s->dev, p, &desc->status, attrs);
ldl_le_pci_dma(&s->dev, p + 4, &desc->control, attrs);
ldl_le_pci_dma(&s->dev, p + 8, &desc->buf_addr1, attrs);
ldl_le_pci_dma(&s->dev, p + 12, &desc->buf_addr2, attrs);
}
}
static void tulip_desc_write(TULIPState *s, hwaddr p,
struct tulip_descriptor *desc)
{
const MemTxAttrs attrs = { .memory = true };
if (s->csr[0] & CSR0_DBO) {
stl_be_pci_dma(&s->dev, p, desc->status, attrs);
stl_be_pci_dma(&s->dev, p + 4, desc->control, attrs);
stl_be_pci_dma(&s->dev, p + 8, desc->buf_addr1, attrs);
stl_be_pci_dma(&s->dev, p + 12, desc->buf_addr2, attrs);
} else {
stl_le_pci_dma(&s->dev, p, desc->status, attrs);
stl_le_pci_dma(&s->dev, p + 4, desc->control, attrs);
stl_le_pci_dma(&s->dev, p + 8, desc->buf_addr1, attrs);
stl_le_pci_dma(&s->dev, p + 12, desc->buf_addr2, attrs);
}
}
static void tulip_update_int(TULIPState *s)
{
uint32_t ie = s->csr[5] & s->csr[7];
bool assert = false;
s->csr[5] &= ~(CSR5_AIS | CSR5_NIS);
if (ie & (CSR5_TI | CSR5_TU | CSR5_RI | CSR5_GTE | CSR5_ERI)) {
s->csr[5] |= CSR5_NIS;
}
if (ie & (CSR5_LC | CSR5_GPI | CSR5_FBE | CSR5_LNF | CSR5_ETI | CSR5_RWT |
CSR5_RPS | CSR5_RU | CSR5_UNF | CSR5_LNP_ANC | CSR5_TJT |
CSR5_TPS)) {
s->csr[5] |= CSR5_AIS;
}
assert = s->csr[5] & s->csr[7] & (CSR5_AIS | CSR5_NIS);
trace_tulip_irq(s->csr[5], s->csr[7], assert ? "assert" : "deassert");
qemu_set_irq(s->irq, assert);
}
static bool tulip_rx_stopped(TULIPState *s)
{
return ((s->csr[5] >> CSR5_RS_SHIFT) & CSR5_RS_MASK) == CSR5_RS_STOPPED;
}
static void tulip_dump_tx_descriptor(TULIPState *s,
struct tulip_descriptor *desc)
{
trace_tulip_descriptor("TX ", s->current_tx_desc,
desc->status, desc->control >> 22,
desc->control & 0x7ff, (desc->control >> 11) & 0x7ff,
desc->buf_addr1, desc->buf_addr2);
}
static void tulip_dump_rx_descriptor(TULIPState *s,
struct tulip_descriptor *desc)
{
trace_tulip_descriptor("RX ", s->current_rx_desc,
desc->status, desc->control >> 22,
desc->control & 0x7ff, (desc->control >> 11) & 0x7ff,
desc->buf_addr1, desc->buf_addr2);
}
static void tulip_next_rx_descriptor(TULIPState *s,
struct tulip_descriptor *desc)
{
if (desc->control & RDES1_RER) {
s->current_rx_desc = s->csr[3];
} else if (desc->control & RDES1_RCH) {
s->current_rx_desc = desc->buf_addr2;
} else {
s->current_rx_desc += sizeof(struct tulip_descriptor) +
(((s->csr[0] >> CSR0_DSL_SHIFT) & CSR0_DSL_MASK) << 2);
}
s->current_rx_desc &= ~3ULL;
}
static void tulip_copy_rx_bytes(TULIPState *s, struct tulip_descriptor *desc)
{
int len1 = (desc->control >> RDES1_BUF1_SIZE_SHIFT) & RDES1_BUF1_SIZE_MASK;
int len2 = (desc->control >> RDES1_BUF2_SIZE_SHIFT) & RDES1_BUF2_SIZE_MASK;
int len;
if (s->rx_frame_len && len1) {
if (s->rx_frame_len > len1) {
len = len1;
} else {
len = s->rx_frame_len;
}
pci_dma_write(&s->dev, desc->buf_addr1, s->rx_frame +
(s->rx_frame_size - s->rx_frame_len), len);
s->rx_frame_len -= len;
}
if (s->rx_frame_len && len2) {
if (s->rx_frame_len > len2) {
len = len2;
} else {
len = s->rx_frame_len;
}
pci_dma_write(&s->dev, desc->buf_addr2, s->rx_frame +
(s->rx_frame_size - s->rx_frame_len), len);
s->rx_frame_len -= len;
}
}
static bool tulip_filter_address(TULIPState *s, const uint8_t *addr)
{
static const char broadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
bool ret = false;
int i;
for (i = 0; i < 16 && ret == false; i++) {
if (!memcmp(&s->filter[i], addr, ETH_ALEN)) {
ret = true;
}
}
if (!memcmp(addr, broadcast, ETH_ALEN)) {
return true;
}
if (s->csr[6] & (CSR6_PR | CSR6_RA)) {
/* Promiscuous mode enabled */
s->rx_status |= RDES0_FF;
return true;
}
if ((s->csr[6] & CSR6_PM) && (addr[0] & 1)) {
/* Pass all Multicast enabled */
s->rx_status |= RDES0_MF;
return true;
}
if (s->csr[6] & CSR6_IF) {
ret ^= true;
}
return ret;
}
static ssize_t tulip_receive(TULIPState *s, const uint8_t *buf, size_t size)
{
struct tulip_descriptor desc;
trace_tulip_receive(buf, size);
if (size < 14 || size > sizeof(s->rx_frame) - 4
|| s->rx_frame_len || tulip_rx_stopped(s)) {
return 0;
}
if (!tulip_filter_address(s, buf)) {
return size;
}
do {
tulip_desc_read(s, s->current_rx_desc, &desc);
tulip_dump_rx_descriptor(s, &desc);
if (!(desc.status & RDES0_OWN)) {
s->csr[5] |= CSR5_RU;
tulip_update_int(s);
return s->rx_frame_size - s->rx_frame_len;
}
desc.status = 0;
if (!s->rx_frame_len) {
s->rx_frame_size = size + 4;
s->rx_status = RDES0_LS |
((s->rx_frame_size & RDES0_FL_MASK) << RDES0_FL_SHIFT);
desc.status |= RDES0_FS;
memcpy(s->rx_frame, buf, size);
s->rx_frame_len = s->rx_frame_size;
}
tulip_copy_rx_bytes(s, &desc);
if (!s->rx_frame_len) {
desc.status |= s->rx_status;
s->csr[5] |= CSR5_RI;
tulip_update_int(s);
}
tulip_dump_rx_descriptor(s, &desc);
tulip_desc_write(s, s->current_rx_desc, &desc);
tulip_next_rx_descriptor(s, &desc);
} while (s->rx_frame_len);
return size;
}
static ssize_t tulip_receive_nc(NetClientState *nc,
const uint8_t *buf, size_t size)
{
return tulip_receive(qemu_get_nic_opaque(nc), buf, size);
}
static NetClientInfo net_tulip_info = {
.type = NET_CLIENT_DRIVER_NIC,
.size = sizeof(NICState),
.receive = tulip_receive_nc,
};
static const char *tulip_reg_name(const hwaddr addr)
{
switch (addr) {
case CSR(0):
return "CSR0";
case CSR(1):
return "CSR1";
case CSR(2):
return "CSR2";
case CSR(3):
return "CSR3";
case CSR(4):
return "CSR4";
case CSR(5):
return "CSR5";
case CSR(6):
return "CSR6";
case CSR(7):
return "CSR7";
case CSR(8):
return "CSR8";
case CSR(9):
return "CSR9";
case CSR(10):
return "CSR10";
case CSR(11):
return "CSR11";
case CSR(12):
return "CSR12";
case CSR(13):
return "CSR13";
case CSR(14):
return "CSR14";
case CSR(15):
return "CSR15";
default:
break;
}
return "";
}
static const char *tulip_rx_state_name(int state)
{
switch (state) {
case CSR5_RS_STOPPED:
return "STOPPED";
case CSR5_RS_RUNNING_FETCH:
return "RUNNING/FETCH";
case CSR5_RS_RUNNING_CHECK_EOR:
return "RUNNING/CHECK EOR";
case CSR5_RS_RUNNING_WAIT_RECEIVE:
return "WAIT RECEIVE";
case CSR5_RS_SUSPENDED:
return "SUSPENDED";
case CSR5_RS_RUNNING_CLOSE:
return "RUNNING/CLOSE";
case CSR5_RS_RUNNING_FLUSH:
return "RUNNING/FLUSH";
case CSR5_RS_RUNNING_QUEUE:
return "RUNNING/QUEUE";
default:
break;
}
return "";
}
static const char *tulip_tx_state_name(int state)
{
switch (state) {
case CSR5_TS_STOPPED:
return "STOPPED";
case CSR5_TS_RUNNING_FETCH:
return "RUNNING/FETCH";
case CSR5_TS_RUNNING_WAIT_EOT:
return "RUNNING/WAIT EOT";
case CSR5_TS_RUNNING_READ_BUF:
return "RUNNING/READ BUF";
case CSR5_TS_RUNNING_SETUP:
return "RUNNING/SETUP";
case CSR5_TS_SUSPENDED:
return "SUSPENDED";
case CSR5_TS_RUNNING_CLOSE:
return "RUNNING/CLOSE";
default:
break;
}
return "";
}
static void tulip_update_rs(TULIPState *s, int state)
{
s->csr[5] &= ~(CSR5_RS_MASK << CSR5_RS_SHIFT);
s->csr[5] |= (state & CSR5_RS_MASK) << CSR5_RS_SHIFT;
trace_tulip_rx_state(tulip_rx_state_name(state));
}
static uint16_t tulip_mdi_default[] = {
/* MDI Registers 0 - 6, 7 */
0x3100, 0xf02c, 0x7810, 0x0000, 0x0501, 0x4181, 0x0000, 0x0000,
/* MDI Registers 8 - 15 */
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
/* MDI Registers 16 - 31 */
0x0003, 0x0000, 0x0001, 0x0000, 0x3b40, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
};
/* Readonly mask for MDI (PHY) registers */
static const uint16_t tulip_mdi_mask[] = {
0x0000, 0xffff, 0xffff, 0xffff, 0xc01f, 0xffff, 0xffff, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0fff, 0x0000, 0xffff, 0xffff, 0x0000, 0xffff, 0xffff, 0xffff,
0xffff, 0xffff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
};
static uint16_t tulip_mii_read(TULIPState *s, int phy, int reg)
{
uint16_t ret = 0;
if (phy == 1) {
ret = tulip_mdi_default[reg];
}
trace_tulip_mii_read(phy, reg, ret);
return ret;
}
static void tulip_mii_write(TULIPState *s, int phy, int reg, uint16_t data)
{
trace_tulip_mii_write(phy, reg, data);
if (phy != 1) {
return;
}
tulip_mdi_default[reg] &= ~tulip_mdi_mask[reg];
tulip_mdi_default[reg] |= (data & tulip_mdi_mask[reg]);
}
static void tulip_mii(TULIPState *s)
{
uint32_t changed = s->old_csr9 ^ s->csr[9];
uint16_t data;
int op, phy, reg;
if (!(changed & CSR9_MDC)) {
return;
}
if (!(s->csr[9] & CSR9_MDC)) {
return;
}
s->mii_bitcnt++;
s->mii_word <<= 1;
if (s->csr[9] & CSR9_MDO && (s->mii_bitcnt < 16 ||
!(s->csr[9] & CSR9_MII))) {
/* write op or address bits */
s->mii_word |= 1;
}
if (s->mii_bitcnt >= 16 && (s->csr[9] & CSR9_MII)) {
if (s->mii_word & 0x8000) {
s->csr[9] |= CSR9_MDI;
} else {
s->csr[9] &= ~CSR9_MDI;
}
}
if (s->mii_word == 0xffffffff) {
s->mii_bitcnt = 0;
} else if (s->mii_bitcnt == 16) {
op = (s->mii_word >> 12) & 0x0f;
phy = (s->mii_word >> 7) & 0x1f;
reg = (s->mii_word >> 2) & 0x1f;
if (op == 6) {
s->mii_word = tulip_mii_read(s, phy, reg);
}
} else if (s->mii_bitcnt == 32) {
op = (s->mii_word >> 28) & 0x0f;
phy = (s->mii_word >> 23) & 0x1f;
reg = (s->mii_word >> 18) & 0x1f;
data = s->mii_word & 0xffff;
if (op == 5) {
tulip_mii_write(s, phy, reg, data);
}
}
}
static uint32_t tulip_csr9_read(TULIPState *s)
{
if (s->csr[9] & CSR9_SR) {
if (eeprom93xx_read(s->eeprom)) {
s->csr[9] |= CSR9_SR_DO;
} else {
s->csr[9] &= ~CSR9_SR_DO;
}
}
tulip_mii(s);
return s->csr[9];
}
static void tulip_update_ts(TULIPState *s, int state)
{
s->csr[5] &= ~(CSR5_TS_MASK << CSR5_TS_SHIFT);
s->csr[5] |= (state & CSR5_TS_MASK) << CSR5_TS_SHIFT;
trace_tulip_tx_state(tulip_tx_state_name(state));
}
static uint64_t tulip_read(void *opaque, hwaddr addr,
unsigned size)
{
TULIPState *s = opaque;
uint64_t data = 0;
switch (addr) {
case CSR(9):
data = tulip_csr9_read(s);
break;
case CSR(12):
/* Fake autocompletion complete until we have PHY emulation */
data = 5 << CSR12_ANS_SHIFT;
break;
default:
if (addr & 7) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: read access at unknown address"
" 0x%"PRIx64"\n", __func__, addr);
} else {
data = s->csr[addr >> 3];
}
break;
}
trace_tulip_reg_read(addr, tulip_reg_name(addr), size, data);
return data;
}
static void tulip_tx(TULIPState *s, struct tulip_descriptor *desc)
{
if (s->tx_frame_len) {
if ((s->csr[6] >> CSR6_OM_SHIFT) & CSR6_OM_MASK) {
/* Internal or external Loopback */
tulip_receive(s, s->tx_frame, s->tx_frame_len);
} else if (s->tx_frame_len <= sizeof(s->tx_frame)) {
qemu_send_packet(qemu_get_queue(s->nic),
s->tx_frame, s->tx_frame_len);
}
}
if (desc->control & TDES1_IC) {
s->csr[5] |= CSR5_TI;
tulip_update_int(s);
}
}
static int tulip_copy_tx_buffers(TULIPState *s, struct tulip_descriptor *desc)
{
int len1 = (desc->control >> TDES1_BUF1_SIZE_SHIFT) & TDES1_BUF1_SIZE_MASK;
int len2 = (desc->control >> TDES1_BUF2_SIZE_SHIFT) & TDES1_BUF2_SIZE_MASK;
if (s->tx_frame_len + len1 > sizeof(s->tx_frame)) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: descriptor overflow (ofs: %u, len:%d, size:%zu)\n",
__func__, s->tx_frame_len, len1, sizeof(s->tx_frame));
return -1;
}
if (len1) {
pci_dma_read(&s->dev, desc->buf_addr1,
s->tx_frame + s->tx_frame_len, len1);
s->tx_frame_len += len1;
}
if (s->tx_frame_len + len2 > sizeof(s->tx_frame)) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: descriptor overflow (ofs: %u, len:%d, size:%zu)\n",
__func__, s->tx_frame_len, len2, sizeof(s->tx_frame));
return -1;
}
if (len2) {
pci_dma_read(&s->dev, desc->buf_addr2,
s->tx_frame + s->tx_frame_len, len2);
s->tx_frame_len += len2;
}
desc->status = (len1 + len2) ? 0 : 0x7fffffff;
return 0;
}
static void tulip_setup_filter_addr(TULIPState *s, uint8_t *buf, int n)
{
int offset = n * 12;
s->filter[n][0] = buf[offset];
s->filter[n][1] = buf[offset + 1];
s->filter[n][2] = buf[offset + 4];
s->filter[n][3] = buf[offset + 5];
s->filter[n][4] = buf[offset + 8];
s->filter[n][5] = buf[offset + 9];
trace_tulip_setup_filter(n, s->filter[n][5], s->filter[n][4],
s->filter[n][3], s->filter[n][2], s->filter[n][1], s->filter[n][0]);
}
static void tulip_setup_frame(TULIPState *s,
struct tulip_descriptor *desc)
{
uint8_t buf[4096];
int len = (desc->control >> TDES1_BUF1_SIZE_SHIFT) & TDES1_BUF1_SIZE_MASK;
int i;
trace_tulip_setup_frame();
if (len == 192) {
pci_dma_read(&s->dev, desc->buf_addr1, buf, len);
for (i = 0; i < 16; i++) {
tulip_setup_filter_addr(s, buf, i);
}
}
desc->status = 0x7fffffff;
if (desc->control & TDES1_IC) {
s->csr[5] |= CSR5_TI;
tulip_update_int(s);
}
}
static void tulip_next_tx_descriptor(TULIPState *s,
struct tulip_descriptor *desc)
{
if (desc->control & TDES1_TER) {
s->current_tx_desc = s->csr[4];
} else if (desc->control & TDES1_TCH) {
s->current_tx_desc = desc->buf_addr2;
} else {
s->current_tx_desc += sizeof(struct tulip_descriptor) +
(((s->csr[0] >> CSR0_DSL_SHIFT) & CSR0_DSL_MASK) << 2);
}
s->current_tx_desc &= ~3ULL;
}
static uint32_t tulip_ts(TULIPState *s)
{
return (s->csr[5] >> CSR5_TS_SHIFT) & CSR5_TS_MASK;
}
static void tulip_xmit_list_update(TULIPState *s)
{
#define TULIP_DESC_MAX 128
uint8_t i = 0;
struct tulip_descriptor desc;
if (tulip_ts(s) != CSR5_TS_SUSPENDED) {
return;
}
for (i = 0; i < TULIP_DESC_MAX; i++) {
tulip_desc_read(s, s->current_tx_desc, &desc);
tulip_dump_tx_descriptor(s, &desc);
if (!(desc.status & TDES0_OWN)) {
tulip_update_ts(s, CSR5_TS_SUSPENDED);
s->csr[5] |= CSR5_TU;
tulip_update_int(s);
return;
}
if (desc.control & TDES1_SET) {
tulip_setup_frame(s, &desc);
} else {
if (desc.control & TDES1_FS) {
s->tx_frame_len = 0;
}
if (!tulip_copy_tx_buffers(s, &desc)) {
if (desc.control & TDES1_LS) {
tulip_tx(s, &desc);
}
}
}
tulip_desc_write(s, s->current_tx_desc, &desc);
tulip_next_tx_descriptor(s, &desc);
}
}
static void tulip_csr9_write(TULIPState *s, uint32_t old_val,
uint32_t new_val)
{
if (new_val & CSR9_SR) {
eeprom93xx_write(s->eeprom,
!!(new_val & CSR9_SR_CS),
!!(new_val & CSR9_SR_SK),
!!(new_val & CSR9_SR_DI));
}
}
static void tulip_reset(TULIPState *s)
{
trace_tulip_reset();
s->csr[0] = 0xfe000000;
s->csr[1] = 0xffffffff;
s->csr[2] = 0xffffffff;
s->csr[5] = 0xf0000000;
s->csr[6] = 0x32000040;
s->csr[7] = 0xf3fe0000;
s->csr[8] = 0xe0000000;
s->csr[9] = 0xfff483ff;
s->csr[11] = 0xfffe0000;
s->csr[12] = 0x000000c6;
s->csr[13] = 0xffff0000;
s->csr[14] = 0xffffffff;
s->csr[15] = 0x8ff00000;
}
static void tulip_qdev_reset(DeviceState *dev)
{
PCIDevice *d = PCI_DEVICE(dev);
TULIPState *s = TULIP(d);
tulip_reset(s);
}
static void tulip_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
TULIPState *s = opaque;
trace_tulip_reg_write(addr, tulip_reg_name(addr), size, data);
switch (addr) {
case CSR(0):
s->csr[0] = data;
if (data & CSR0_SWR) {
tulip_reset(s);
tulip_update_int(s);
}
break;
case CSR(1):
tulip_xmit_list_update(s);
break;
case CSR(2):
qemu_flush_queued_packets(qemu_get_queue(s->nic));
break;
case CSR(3):
s->csr[3] = data & ~3ULL;
s->current_rx_desc = s->csr[3];
qemu_flush_queued_packets(qemu_get_queue(s->nic));
break;
case CSR(4):
s->csr[4] = data & ~3ULL;
s->current_tx_desc = s->csr[4];
tulip_xmit_list_update(s);
break;
case CSR(5):
/* Status register, write clears bit */
s->csr[5] &= ~(data & (CSR5_TI | CSR5_TPS | CSR5_TU | CSR5_TJT |
CSR5_LNP_ANC | CSR5_UNF | CSR5_RI | CSR5_RU |
CSR5_RPS | CSR5_RWT | CSR5_ETI | CSR5_GTE |
CSR5_LNF | CSR5_FBE | CSR5_ERI | CSR5_AIS |
CSR5_NIS | CSR5_GPI | CSR5_LC));
tulip_update_int(s);
break;
case CSR(6):
s->csr[6] = data;
if (s->csr[6] & CSR6_SR) {
tulip_update_rs(s, CSR5_RS_RUNNING_WAIT_RECEIVE);
qemu_flush_queued_packets(qemu_get_queue(s->nic));
} else {
tulip_update_rs(s, CSR5_RS_STOPPED);
}
if (s->csr[6] & CSR6_ST) {
tulip_update_ts(s, CSR5_TS_SUSPENDED);
tulip_xmit_list_update(s);
} else {
tulip_update_ts(s, CSR5_TS_STOPPED);
}
break;
case CSR(7):
s->csr[7] = data;
tulip_update_int(s);
break;
case CSR(8):
s->csr[9] = data;
break;
case CSR(9):
tulip_csr9_write(s, s->csr[9], data);
/* don't clear MII read data */
s->csr[9] &= CSR9_MDI;
s->csr[9] |= (data & ~CSR9_MDI);
tulip_mii(s);
s->old_csr9 = s->csr[9];
break;
case CSR(10):
s->csr[10] = data;
break;
case CSR(11):
s->csr[11] = data;
break;
case CSR(12):
/* SIA Status register, some bits are cleared by writing 1 */
s->csr[12] &= ~(data & (CSR12_MRA | CSR12_TRA | CSR12_ARA));
break;
case CSR(13):
s->csr[13] = data;
break;
case CSR(14):
s->csr[14] = data;
break;
case CSR(15):
s->csr[15] = data;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: write to CSR at unknown address "
"0x%"PRIx64"\n", __func__, addr);
break;
}
}
static const MemoryRegionOps tulip_ops = {
.read = tulip_read,
.write = tulip_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static void tulip_idblock_crc(TULIPState *s, uint16_t *srom)
{
int word;
int bit;
unsigned char bitval, crc;
const int len = 9;
crc = -1;
for (word = 0; word < len; word++) {
for (bit = 15; bit >= 0; bit--) {
if ((word == (len - 1)) && (bit == 7)) {
/*
* Insert the correct CRC result into input data stream
* in place.
*/
srom[len - 1] = (srom[len - 1] & 0xff00) | (unsigned short)crc;
break;
}
bitval = ((srom[word] >> bit) & 1) ^ ((crc >> 7) & 1);
crc = crc << 1;
if (bitval == 1) {
crc ^= 6;
crc |= 0x01;
}
}
}
}
static uint16_t tulip_srom_crc(TULIPState *s, uint8_t *eeprom, size_t len)
{
unsigned long crc = 0xffffffff;
unsigned long flippedcrc = 0;
unsigned char currentbyte;
unsigned int msb, bit, i;
for (i = 0; i < len; i++) {
currentbyte = eeprom[i];
for (bit = 0; bit < 8; bit++) {
msb = (crc >> 31) & 1;
crc <<= 1;
if (msb ^ (currentbyte & 1)) {
crc ^= 0x04c11db6;
crc |= 0x00000001;
}
currentbyte >>= 1;
}
}
for (i = 0; i < 32; i++) {
flippedcrc <<= 1;
bit = crc & 1;
crc >>= 1;
flippedcrc += bit;
}
return (flippedcrc ^ 0xffffffff) & 0xffff;
}
static const uint8_t eeprom_default[128] = {
0x3c, 0x10, 0x4f, 0x10, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x56, 0x08, 0x04, 0x01, 0x00, 0x80, 0x48, 0xb3,
0x0e, 0xa7, 0x00, 0x1e, 0x00, 0x00, 0x00, 0x08,
0x01, 0x8d, 0x03, 0x00, 0x00, 0x00, 0x00, 0x78,
0xe0, 0x01, 0x00, 0x50, 0x00, 0x18, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xe8, 0x6b,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,
0x48, 0xb3, 0x0e, 0xa7, 0x40, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};
static void tulip_fill_eeprom(TULIPState *s)
{
uint16_t *eeprom = eeprom93xx_data(s->eeprom);
memcpy(eeprom, eeprom_default, 128);
/* patch in our mac address */
eeprom[10] = cpu_to_le16(s->c.macaddr.a[0] | (s->c.macaddr.a[1] << 8));
eeprom[11] = cpu_to_le16(s->c.macaddr.a[2] | (s->c.macaddr.a[3] << 8));
eeprom[12] = cpu_to_le16(s->c.macaddr.a[4] | (s->c.macaddr.a[5] << 8));
tulip_idblock_crc(s, eeprom);
eeprom[63] = cpu_to_le16(tulip_srom_crc(s, (uint8_t *)eeprom, 126));
}
static void pci_tulip_realize(PCIDevice *pci_dev, Error **errp)
{
TULIPState *s = DO_UPCAST(TULIPState, dev, pci_dev);
uint8_t *pci_conf;
pci_conf = s->dev.config;
pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
qemu_macaddr_default_if_unset(&s->c.macaddr);
s->eeprom = eeprom93xx_new(&pci_dev->qdev, 64);
tulip_fill_eeprom(s);
memory_region_init_io(&s->io, OBJECT(&s->dev), &tulip_ops, s,
"tulip-io", 128);
memory_region_init_io(&s->memory, OBJECT(&s->dev), &tulip_ops, s,
"tulip-mem", 128);
pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->io);
pci_register_bar(&s->dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->memory);
s->irq = pci_allocate_irq(&s->dev);
s->nic = qemu_new_nic(&net_tulip_info, &s->c,
object_get_typename(OBJECT(pci_dev)),
pci_dev->qdev.id,
&pci_dev->qdev.mem_reentrancy_guard, s);
qemu_format_nic_info_str(qemu_get_queue(s->nic), s->c.macaddr.a);
}
static void pci_tulip_exit(PCIDevice *pci_dev)
{
TULIPState *s = DO_UPCAST(TULIPState, dev, pci_dev);
qemu_del_nic(s->nic);
qemu_free_irq(s->irq);
eeprom93xx_free(&pci_dev->qdev, s->eeprom);
}
static void tulip_instance_init(Object *obj)
{
PCIDevice *pci_dev = PCI_DEVICE(obj);
TULIPState *d = DO_UPCAST(TULIPState, dev, pci_dev);
device_add_bootindex_property(obj, &d->c.bootindex,
"bootindex", "/ethernet-phy@0",
&pci_dev->qdev);
}
static Property tulip_properties[] = {
DEFINE_NIC_PROPERTIES(TULIPState, c),
DEFINE_PROP_END_OF_LIST(),
};
static void tulip_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
k->realize = pci_tulip_realize;
k->exit = pci_tulip_exit;
k->vendor_id = PCI_VENDOR_ID_DEC;
k->device_id = PCI_DEVICE_ID_DEC_21143;
k->subsystem_vendor_id = PCI_VENDOR_ID_HP;
k->subsystem_id = 0x104f;
k->class_id = PCI_CLASS_NETWORK_ETHERNET;
dc->vmsd = &vmstate_pci_tulip;
device_class_set_props(dc, tulip_properties);
device_class_set_legacy_reset(dc, tulip_qdev_reset);
set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
}
static const TypeInfo tulip_info = {
.name = TYPE_TULIP,
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(TULIPState),
.class_init = tulip_class_init,
.instance_init = tulip_instance_init,
.interfaces = (InterfaceInfo[]) {
{ INTERFACE_CONVENTIONAL_PCI_DEVICE },
{ },
},
};
static void tulip_register_types(void)
{
type_register_static(&tulip_info);
}
type_init(tulip_register_types)